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ABSTRACT: 

Reliable predictions of the impact of natural hazards turning into a disaster is important for better targeting humanitarian response as 

well as for triggering early action. Open data and machine learning can be used to predict loss and damage to the houses and livelihoods 

of affected people. This research focuses on agricultural loss, more specifically rice loss in the Philippines due to typhoons. Regression 

and binary classification algorithms are trained using feature selection methods to find the most important explanatory features. Both 

geographical data from every province, and typhoon specific features of 11 historical typhoons are used as input. The percentage of lost 

rice area is considered as the output, with an average value of 7.1%. As for the regression task, the support vector regressor performed 

best with a Mean Absolute Error of 6.83 percentage points. For the classification model, thresholds of 20%, 30% and 40% are tested in 

order to find the best performing model. These thresholds represent different levels of lost rice fields for triggering anticipatory action 

towards farmers. The binary classifiers are trained to increase its ability to rightly predict the positive samples. In all three cases, the 

support vector classifier performed the best with a recall score of 88%, 75% and 81.82%, respectively. However, the precision score for 

each of these models was low: 17.05%, 14.46% and 10.84%, respectively. For both the support vector regressor and classifier, of all 14 

available input features, only wind speed was selected as explanatory feature. Yet, for the other algorithms that were trained in this 

study, other sets of features were selected depending also on the hyperparameter settings. This variation in selected feature sets as well 

as the imprecise predictions were consequences of the small dataset that was used for this study. It is therefore important that data for 

more typhoons as well as data on other explanatory variables are gathered in order to make more robust and accurate predictions. Also, 

if loss data becomes available on municipality-level, rather than province-level, the models will become more accurate and valuable for 

operationalization.  

1. INTRODUCTION

Every year, natural hazards like typhoons, earthquakes and wild-

fires affect approximately 160 million people worldwide (WHO, 

2019). Due to climate change it is expected that scale, frequency 

and impact of these hazards will increase over the coming years 

which will result in an increasing demand of humanitarian aid 

(Ashdown, 2011). However, not all of these people can be helped 

due to limited funding and resources for disaster response. 

Therefore, the areas and individuals with the highest priority 

have to be determined. During this process, humanitarian 

organizations quickly need insight on the damage in the areas that 

were hit by the disaster. Nevertheless, this can often be very time 

consuming and sometimes also subjective because of a lack of 

data and tools to interpret them (van den Homberg et al., 2018; 

van den Homberg, 2017). Most of the disaster funding in the last 

20 years was spent on emergency response, reconstruction, and 

rehabilitation (Kellett, Caravani, 2013). According to a study of 

disaster-related financing by the Global Facility for Disaster 

Reduction and Recovery (GFDRR) and the Overseas 

Development Institute (ODI), only 13% is invested in reducing 

the risk of disaster before it happens. That such a small amount 

is spent on the pre-disaster phase is not very cost-effective, 

according to the review study of Mechler (Mechler, 2005). In the 

majority of evaluations of preventative action, the avoided 

disaster losses could at least double the investment in risk 

reduction. Nobre et al. also found positive results regarding 

preventative actions. In their study the potential cost-

effectiveness of cash transfer responses were evaluated, 

comparing the relative costs of ex-ante cash transfers during the 

maize growing season to ex-post cash transfers after harvesting 

in Kenya (Nobre et al., 2019). Overall, their findings suggest that 

early response can yield significant cost savings, and can 

potentially increase the effectiveness of existing cash transfer 

systems. Although this study is focused on crop damages due to 

extreme drought, it could be inferred that ex-ante cash transfers 

can also be helpful in cases of other weather and climate hazards. 

Given the above positive cost-benefit ratios, humanitarian 

funding is more and more becoming available in the pre-disaster 

phase to trigger preventative actions in the time  

window between a weather forecast and a potential disaster 

(Wilkinson et al., 2018). Humanitarian organizations such as FAO 

and the Red Cross Red Crescent Movement (DRK, 2019), are 

transforming their way of operating and are developing trigger 

models for early action. This transformation requires a data-driven 

approach that connects data on different risk predictors with actual 

impact. Machine learning can provide new methods of looking 

into these connections and provide more accurate and useful 

answers (GFDRR, 2018). In the private sector such as retail and 

finance, several machine learning techniques have been developed 

to deal with the greater amounts of (big) data becoming available. 

More and more of these commercially developed machine 

learning techniques are applied for social good, dealing with 

bigger issues confronting humans, like preparing for and 

recovering from disasters (GFDRR, 2018). About 20 years ago, 

machine learning techniques were introduced in the field of 

disaster management and have become one of the most effective 

methods for removing unrelated data and speeding up the analysis 

in disaster situations, which helps in fast prediction analysis and 

finding optimal response approaches (Yang, Li, 2018). Caragea et 

al. (2011) classified tweets and text messages to address the most 

urgent needs and to better understand the Haiti earthquake 

emergency situation. 

510, the humanitarian data initiative of the Netherlands Red Cross, 

developed a priority index that predicts the extent of damage to 

houses per municipality within 12 hours after a typhoon makes 

landfall (510Global, 2019). The results can give organizations like 

the Philippine Red Cross and UN OCHA an overview of the 

geographic distribution of damage when there are no other sources 

of reports available yet. Models to predict what the impact will be 

of an impending disaster are basically the same as models that do 

so before the disaster hits. Only in the latter case, one has to use 

hazard forecasts instead of actual hazard data adding more 

uncertainties (that increase with lead time) to the prediction of the 

impact. More and more studies use machine learning techniques 

to predict different types of damage due to natural disasters. 

Rajasekaran et al. (2008) used support vector regression to predict 
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storm surges, while Hu and Ho (2014) used the same method to 

predict the impact of typhoons on transportation networks. Wang 

et al. (2015) applied a random forest classifier to flood hazard 

risk assessment and Pradhan and Jebur (2017) used both K-

nearest neighbour and logistic regression algorithms to predict 

regions susceptible to natural hazards. Choi et al. (2018) 

experimented with algorithms like decision trees and random 

forests to predict heavy rain damage. Rajasekaran et al. (2008) 

used a support vector regressor to predict storm surges in order 

to avoid property loss and reduce risk by taking selective 

preventative action. As the examples show above, most studies 

have focused on impact on infrastructure. However, one of the 

other sectors that is often affected by natural hazards is 

agriculture. In developing countries, this sector absorbs 23 

percent of the total damage and losses. These damages have large 

negative impacts like disrupting production cycles, trade flows 

and livelihood means (FAO, 2017). It is therefore important to 

try to diminish the consequences by improving the preparation 

for these hazards. This study has focused on the prediction of rice 

loss due to typhoons in the Philippines. These storms are also 

known as cyclones or hurricanes, depending on where they 

occur. Due to its geographical location, the Philippines is very 

vulnerable to typhoons. Annually, an average of 22 typhoons 

enter the archipelagic country, and with approximately seven 

typhoons that cause significant damage it ranks second after 

China (Division, 2015). Farmers that harvest rice, which is the 

staple food in the Philippines, often suffer from these hazards. 

The average damages to rice farming between 2007 and 2010 due 

to typhoons in the Philippines amounted to 7,996.59 million 

Philippine Pesos per year (135 million Euro) (Israel, 2012). In 

order to diminish these damages, the Department of Agriculture 

(DA) regional office can lend two combine harvesters/threshers 

to farmers in order to save their crops from impending typhoons. 

According to the DA, farmers found this to be very advantageous 

in the past. As for the modelling, until now not more than a 

handful of studies have focused on the prediction of losses due to 

typhoons. Both studies of Blanc and Strobl (2016) and Masutomi 

et al. (2012) have used fragility curves for estimating the extent 

of crop areas damaged by typhoons. Such a function relates 

external forces and the probability of damage. Chiang et al. 

(2012) evaluated the impact of typhoons on agriculture in Taiwan 

and predicted the agricultural losses by a neural network. One 

limitation mentioned in the latter study is that the constructed 

model can only produce the losses at national instead of on a 

more local level. The same limitations were also addressed in the 

study of Masutomi et al. (2012). Koide et al. (2012) developed 

mostly regression type of models to predict rice yield at the end 

of a growing season with input variables on the cultivation 

process, rainfall and tropical cyclone activity (as captured in the 

Accumulated Cyclone Energy). The objective of our study is to 

determine if and how rice loss due to typhoons can be predicted 

using open data and machine learning. To this end, we 

experimented with several machine learning techniques and 

corresponding feature selections in a case study for the 

Philippines. In contrast with some of the previous studies 

regarding crop damage prediction, our models were trained to 

eventually make predictions a couple of days before the typhoon 

will make landfall, rather than shortly after the typhoon occurred.  

2. MATERIALS AND METHODS

In this section, the data as well as the methods used for the 

different prediction algorithms will be discussed. 

2.1 Case study and data 

The models were trained on data of 12 typhoons that hit the 

Philippines in the past eight years. These typhoons were chosen 

by 510 because these were the most important typhoons in the 

past eight years, and most of the in- and output data for these 

typhoons were used for earlier prediction models of 510 (HDX, 

2019 and Wagenaar et al., 2019). The names of these typhoons 

are: Goni, Kalmaegi, Koppu, Sarika, Haima, Melor, Rammasun, 

Utor, Nock-Ten, Hagupit, Haiyan and Bopha. Typhoons Sarika 

and Haima occurred in October 2016 a couple of days one after 

another, whereby Haima was a much bigger event than Sarika. 

The Department of Agriculture clustered the rice damage of these 

two typhoons; we therefore decided to label these two events as 

Haima, reducing hereby the amount of labelled events to 11. Data 

can be found on 510’s community risk assessment dashboard 

(CRA, 2019). In the next sections, first the output variable will 

be discussed, followed by a section regarding the input variables. 

Finally, in the last subsection, some visualizations and insights 

on the data will be given.  

2.1.1 Output variable 

The Philippines Department of Agriculture provided data on the 

rice damage at province level after filing a Freedom of 

Information (FOI. 2019) request. The output of the regression 

models is the percentage of the rice area that has been totally 

damaged. To obtain the damaged proportion, the rice area and the 

damaged rice area had to be known. First, the rice area for every 

province in the Philippines was obtained via Philippines Rice 

Information System (PRISM). PRISM collects data and generates 

rice production information using mobile technology, remote 

sensing, and Geographical In-formation System (GIS) (PRISM, 

2019). PRISM has rice area data on province-level of 2018 and 

2017 for both the first and second semester. Semester 2 refers to 

the first cropping, usually starting around June. Semester 1 refers 

to the second cropping, which starts around November. The 

majority of the provinces has more rice area in Semester 2. This 

could be because farmers usually plant more rice at the end of the 

dry season (June-July) to benefit from the rain, especially in areas 

without irrigation systems. For this study, the rice area data of 

2018 were used. For every observation, depending on when the 

typhoon occurred, the rice area for that province corresponding to 

either the first or second semester was used. Furthermore, a 

distinction was made in the damage data between totally damaged 

and with chance of recovery. For this study, only the totally 

damaged (lost) area was taken into account. After calculating the 

loss percentage for each observation, three of them exceeded 

100%. It could be the case that in that time, there was more rice 

planted than in 2018. Therefore, these values were replaced by 

100%. In total, 224 observations were used to train the models. 

Next to the three regression models, three binary classification 

models were trained, each of them having a different threshold. 

These thresholds are the percentage of the lost rice fields and 

represent the critical value for triggering early action. As there is 

not yet a gold standard for preventative action, a threshold of 

20%, 30% and 40% was used. 

2.1.2 Input variables 

The 14 input variables can be sub-divided in two categories: 

geographical and typhoon features. In Table 1, the features for 

every category are listed. Data on these input variables is obtained 

through desk research (scouting global and national data 

repositories) as well as through visiting organizations in-country 

(van Lint, 2016). We added for this research data on rice area, 

total length of streams and rivers and the drainage density. 

Quantum Geographic Information System (QGIS) was used to 

analyze and process the geospatial source data. The land map of 

the Philippines was covered with so called raster layers: matrices 

of cells that represent features on the earth’s surface. Each layer 

represents a different feature, and every cell in this layer contains 

the value for this feature (QGIS, 2019). Some of these features 

were initially on municipality-level, and therefore needed a 

transformation to province-level. The average elevation, slope 

and ruggedness, were obtained by taking the area weighted 

average for all the municipalities in a certain province. Figure 1 

shows the variation in the width and height of each province, with 

each province having an average area of 4000 km2. 
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Figure 1. The width and height of the 81 provinces in the 

Philippines. 

The ruggedness is defined as the mean difference between a 

central cell’s elevation value and the elevation values of its 

surrounding cells. The slope is defined as the angle of inclination 

to the horizontal. The X and Y coordinates are the transformed 

latitude and longitude of the centroid of the province. The 

drainage density is the ratio between the total length of streams 

and rivers and the total area of the province. The total rainfall is 

defined as the cumulative rainfall during the typhoon event. 

Furthermore, the distance to typhoon is the perpendicular 

distance from the center of a province to the track of that 

typhoon. The coastal length is zero for a province that is 

landlocked and gets larger for provinces that are an island; the 

ratio of the coastal length divided by the perimeter of the 

province is the coast-perimeter ratio. For three of the 11 

typhoons, the rainfall data were incomplete, so a second source 

was used to fill the missing rainfall data. This source was used 

for a previous project of 510 and contains data on municipality-

level and thus had to be aggregated. This was done by taking the 

area weighted average. After using this second source, the 

rainfall data for 17 observations were still not filled. Therefore, 

the missing entries were replaced by the mean of all the available 

rainfall data. Worth noting is that the average wind speed was 

only captured when it was equal or larger than 40 miles per hour 

(mph). If this was not the case, an average wind speed of 0 mph 

was noted. As typhoons often have a high wind speed, this 

probably did not affect provinces close to the typhoon track. 

Therefore, it was expected that this would not negatively impact 

the prediction models in a significant way. 

2.1.3 Data exploration 

As mentioned before, the data consisted of 224 observations. 

These observations concern 57 different provinces. In Figure 2, 

the average loss per typhoon is visualized. The total average is 

7.1% and was computed by taking the average over all 

observations. Although Haiyan was one of the strongest 

typhoons the Philippines ever encountered, one can see that 

typhoon Nock-Ten caused the biggest rice loss (percentage 

wise). Further detailed study will be required to understand the 

reasons for this, although it might be related to the timing of the 

typhoon in the rice growing season. Nock-Ten hit the rice crops 

in Bicol province at the end of December when they were in 

advanced growth stages and got permanently lost (USDA, 2017), 

whereas typhoon Haiyan made landfall almost two months 

earlier in the growing season. Hence, the rice loss due to earlier 

typhoons, like typhoon Haiyan (2013), seem smaller. In Figure 

3, one can see that the number of observations vary a lot between 

typhoons. This was taken into account when evaluating the 

models, which will be explained in detail in the next subsection. 

Furthermore, in Figure 4, the Pearson correlations of the features 

with rice loss are presented. As expected, the wind speed has the 

largest correlation (r=0.41, =1.78e-5). The distance from the 

typhoon has the largest negative correlation (r=-0.29, =0.002). 

Geographic Typhoon 

Total area Average wind speed 

Total rice area Total rainfall 

Average elevation Distance to typhoon 

Average slope 

Average ruggedness 

Coast length 

Coast-perimeter ratio 

X and Y coordinates 

Total length of streams and 

Rivers 

Drainage density 

Table 1. Input variables 

2.2 Machine learning models 

The algorithms in this study were trained and tested on a MacBook 

Air (2017) with an Intel Core i5 1.8-GHz processor, 8 GB 1600 

MHz DDR3 RAM. The programming language used is Python 

3.6.8, using the software libraries Scikit-learn version 0.20.3 and 

Pandas version 0.24.1. The code developed is available on the 

https://github.com/rodekruis. 

2.2.1 Overall approach 

In this section, the regression and classification models that were 

used for prediction are discussed in detail. In Table 2 the 

algorithms per task are listed as well as the features used. We will 

now discuss the evaluation and feature selection methods of the 

models. 

Evaluation To evaluate every model’s performance, an 11-fold 

cross validation was carried out. For every fold, all the 

observations that concern one of the 11 typhoons were left out as 

a test set. This method is the most realistic, as in a real situation 

the damage of a typhoon is also being predicted on the basis of 

previous typhoons. Because of the inexplicable typhoon specific 

variation in the output, the performance of the model would be 

biased if both the training and test set contained observations of a 

certain typhoon. Finally, the average of the 11 performance 

metrics was taken. However, as there was a big variation in the 

number of observations per typhoon (see Figure 3), the weighted 

average was taken. The evaluation metrics that were used for the 

regression and classification models are discussed later on. 

Feature Selection For every separate algorithm, feature selection 

was carried out. This means that only the most important features 

are taken into account, as sometimes too many features can lead 

to poor generalization of the model (Guyon and Elisseeff, 2003). 

It is important that this is done together with the cross validation 

procedure, in order to prevent bias of the evaluation metric. If first 

the best features are selected based on all the data, and only 

thereafter cross-validation is used to estimate the prediction error, 

then the test set is not completely independent. This means that 

the test data in every fold of the cross-validation procedure would 

also be used to choose the best features. Feature selection is 

actually a kind of training and training can never be done on the 

test set as well. Therefore, test samples must be left out before 

selection steps are carried out (Friedman et al., 2001). As there are 

different approaches to feature selection, this study has 

experimented with different modules in order to find the best 

performing feature set for each algorithm. Every model has tried 

each of the following two approaches; Recursive Feature 

Elimination and SelectKBest. 
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Figure 2 Average rice loss 

Figure 3. Observations per typhoon 

Figure 4. Correlation with rice loss 

First of all, Scikit-Learn’s module Recursive Feature Elimination 

(RFE) was used. In this case, the estimator starts with all the 

initial features. Then recursively, the least important feature is 

being discarded until the desired number of features is reached. 

The importance of a feature is measured by the estimator’s rise 

in error or drop in accuracy, when this feature is being discarded. 

In contrast to the next method, RFE does not support the use of a 

support vector machine/regressor and k-nearest neighbor 

algorithm. This is because there is no notion of feature 

importance given in these algorithms. Therefore, this method was 

only used when training a random forest model and a linear 

regressor. This is because there is no notion of feature importance 

given in these algorithms. Therefore, this method was only used 

when training a random forest model and a linear regressor. 

Secondly, the selection method SelectKBest from Scikit-Learn’s 

univariate feature selection approach was used. Here, statistical 

tests are used to select k features that have the strongest 

relationship with the output variable. For the regression models, 

the scoring functions that were used are f regression and mutual 

info regression. As for the classification models, chi2, f_classif 

and mutual_info_classif were used as scoring functions. Both the 

f_regression and f_classif tests rank features according to their 

correlation with the output variable. The mutual info tests are 

non-parametric, meaning that there are no distribution 

assumptions, which use k-nearest neighbors to measure the 

degree of relatedness between the features and the output 

variable (Ross, 2014). Finally, the chi2 test computes the chi-

squared statistic between each non-negative feature and class. The 

chi-square test measures dependence between stochastic 

variables, so using this function leaves out the features that are the 

most likely to be independent of class and therefore irrelevant for 

classification (Pedregosa et al., 2011). The number of features, the 

selection method, and the hyperparameters are interdependent for 

each model. Therefore, the number of features and the feature 

selection method were included in the grid search for every 

separate algorithm. In practice, this was carried out through nested 

for-loops, such that every possible combination of 

hyperparameters, number of features and selection methods was 

evaluated. For some algorithms, the features that were selected 

were not the same for every fold. In this case, the features that had 

the maximum number of votes were chosen and the cross 

validation procedure, including a new hyperparameter search, was 

repeated with these features. 

2.2.2 Regression 

For the regression algorithms, the Mean Absolute Error (MAE) 

was used to evaluate the performance. This easily interpretable 

metric was preferred over Root Mean Squared Error (RMSE) and 

Mean Squared Error (MSE) as larger errors did not necessarily 

need to be more penalized in this study. As mentioned before, after 

applying 11-fold cross-validation, the MAE was determined by 

taking the test size-weighted average of all the MAE’s. After 

tuning the algorithm’s hyperparameters, a baseline was defined by 

running that same model but only with wind speed as explanatory 

variable, as this feature has the biggest correlation with rice loss. 

Setting this baseline was only to put the model’s performance into 

perspective. If the baseline would perform very well, this was also 

a positive outcome. Now, the different regression models and their 

hyperparameter settings will be discussed. 

Multiple linear regression First of all, a multiple linear 

regression model was implemented. One of the reasons is that this 

model has the ability to make a prediction that is higher than the 

values in the training data. This is called extrapolating for when 

an extreme typhoon occurs that was not seen earlier in the training 

data. For this straight forward algorithm, no hyperparameters were 

tuned. As for the feature selection, the f regression test selecting 

only wind speed as explanatory variable led to the lowest MAE. 

Random forest Second, a random forest regressor was used to 

predict the lost rice area. In contrast with linear regression, random 

forest models are able to detect non-linear relations. However, if 

applied to extrapolating domains, it could lead to poor predictions 

(Hengl et al., 2018). In a random forest, multiple decision trees are 

generated, where after the random forest predictor is formed by 

taking the average over the trees. Each of these trees uses a random 

subset of features and a new training set. This training set is drawn, 

with replacement, from the original training set, also known as 

bagging (Breiman, 2001). There are several hyperparameters that 

can be tuned for this algorithm. The optimal values for the number 

of estimators (n_est), the maximum depth (max_depth), the 

minimum sample split (min_split) and the minimum sample leaf 

(min_leaf) were found through grid search. The other 

hyperparameters were kept at their default values. The number of 

estimators represents the number of trees used in the forest. The 

maximum depth represents the maximum depth of  every tree in 

the forest. The deeper the tree, the more information it can extract 

from the data. The minimum sample split stands for the minimum 

number of samples required to split an internal node. The 

minimum sample leaf parameter specifies the minimum number 

of samples in a leaf node (last node of the tree). Setting it lower 

leads to trees with a larger depth which means that more splits are 

performed until the leaf nodes (Probst et al., 2018). The search 

ranges were initialized to be [4; 8], f2; 4; 6; 8; 10g, [1; 5] [ f0:1g 

and [1; 5] [ f0:1g for n_est, max_depth, min_split and min leaf, 

respectively. For min_split and min_leaf, 0.1 represents the 

fraction of samples. A total of five features were selected with the 
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use of RFE. These were not identical for every fold. The most 

common features were wind speed, rice area, drainage density, 

average slope and average elevation. After repeating the cross 

validation procedure with these features, the following 

hyperparameter values obtained the lowest MAE: n_est=4, 

max_depth=4, min_split=2 and min_leaf=4. 

Support vector regression Finally, a support vector regressor 

(SVR) was used. This choice was based on several studies that 

have predicted the impact of typhoons using this algorithm (Hu 

and Ho, 2014). SVR supports both linear and non-linear 

regression tasks. The goal is to find a function f that has at most 

ε deviation of the actual targets yi (Smola and Scholkopf, 2004). 

However, such a function does not always exist. Therefore, the 

penalty parameter C is introduced, which determines the trade-

off between the algorithm’s complexity and the amount up to 

which deviations larger than are tolerated. The kernel coefficient 

gamma contrast to the next method, RFE does not support the use 

of a defines how far the influence of a single training example 

reaches. When gamma is too small, the model is too constrained 

and cannot capture the complexity of the data. For gamma, C and 

the ε hyperparameters tried are {′𝑎𝑢𝑡𝑜′, 2𝑒 − 4, 1𝑒 −
4, 0.001, 0.1, 1}, {0.001, 0.1, 1, 2} and 
{0, 0.001, 0.1, 0.4, 0.8, 0.9}  respectively. When gamma=’auto’, 

the inverse of the number of features is taken. For the SVR, the 

f_regression test selected just one feature: wind speed. The 

values of the hyperparameters that led to the best generalization 

were: ε =0.4, C=1 and gamma=0.001. 

2.2.3 Classification 

In this subsection, the algorithms that were used for binary 

classification are discussed. Every algorithm was trained three 

times, each of them with a different threshold: 20%, 30% or 40%. 

The numbers are the rice loss percentages and represent the 

critical level for triggering early action. For these classification 

models, the accuracy, recall, precision and f1-score were 

evaluated. As mentioned before, after the cross-validation 

procedure, the weighted average of the evaluation metrics was 

taken. The accuracy was test size-weighted. The recall was 

weighted on the basis of the number of positive samples in ytrue. 

As for the precision, this metric was weighted on the basis of the 

number of positive samples in ypred. For some folds, either the 

precision or recall was undefined (weight 0) such that the f1-

score could not be computed. The developers of f-score have 

experimented with different methods when dealing with this 

problem. They recommended numbering the number of true 

positives (TP), false positive (FP) and false negatives (FN) over 

the folds and then use equation (1), as this method is almost 

perfectly unbiased. Furthermore, as in all the three cases the 

classes were imbalanced (see Figure 5), a re-sampling method 

was applied. In detail, a random oversampler aimed to balance 

class distribution through the random replication of minority 

class examples (Batista et al., 2004). It is important to apply such 

a re-sampling method only after the test set is split from the 

training set. If first re-sampling is applied and then the data are 

split, both the training and test set could contain the exact same 

observations, resulting in a bias of the evaluation metric. Now, 

the different classification models and their hyperparameter 

settings will be discussed. 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =  2 
𝑃𝑟 ∙𝑅𝑒

𝑃𝑟+𝑅𝑒
 = 2 
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𝑇𝑃

𝑇𝑃+𝐹𝑃
)(

𝑇𝑃
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) 
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 𝑇𝑃 +𝐹𝑁
)

 = 

 2 ∙
𝑇𝑃
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 (1) 

Figure 5. Class distribution for different thresholds 

Random forest Next to regressors, random forest models can also 

serve as classifiers. Instead of taking the average of the outcomes 

of every decision tree, the classifier assigns the observation to the 

majority vote class. The hyperparameters and their search ranges 

used for the random forest regressor, were also used for the 

classification task. For the binary classification where the 

threshold was set at 20%, the RFE method selected 3 features: 

wind speed, drainage density and rice area. The following 

hyperparameters performed best: n_est=6, max_depth=2, 

min_split=0.1 and min_leaf=0.1. For the threshold of 30%, the 

model performed best when a total of 9 features were included. 

The features that were not included are: total area, coast-perimeter 

ratio and the X and Y coordinate. The following hyperparameters 

values were obtained: n_est=4, max_depth=2, min_split=0.1 and 

min_leaf=0.1. For the model with a threshold of 40%, the 

following three features were selected with the RFE method: wind 

speed, slope and drainage density. Using these 3 features, the 

model performed best with the following hyperparameter values: 

n_est=4, max_depth=4, min_split=0.1 and min_leaf=4. 

Support vector machine Furthermore, a support vector machine 

(SVM) classifier was trained. The same hyperparameters as for 

the support vector regressor were tuned, except for ε. This 

hyperparameter is nonexistent for classification, as the aim is not 

to create a function that predicts the target value but to find a 

hyperplane that maximizes the margin between the two classes. In 

addition, the tolerance (tol) of the stopping criterion was also 

taken into account during the grid search, as this hyperparameter 

substantially increased the model’s performance. For the 

tolerance, the set f0.1, 0.2, 0.3, 0.4, 0.5g was used for grid search. 

For the other hyperparameters, the hyperparameter sets were equal 

to the ones of the support vector regressor. In all three cases, only 

wind speed was selected as feature with the f_classif test.  For the 

model with a threshold of 20%, the hyperparameter values that 

performed best were C=0.001, gamma=’auto’ and tol=0.1. When 

the threshold was set at 30%, the following hyperparameter values 

were selected: gamma=1e-4, C=0.001, tol=0.1. Finally, for the 

model with a threshold of 40% the following hyperparameter 

values were found through grid search: C=0.001, gamma= 2e-4 

and tol=0.1. 

K-nearest neighbour Finally, a k-nearest neighbour (k-NN)

classifier was trained. This algorithm assigns every observation

from the test set to the class of majority vote of the nearest k

neighbors (Cover, Hart, 1967). The value of k is a hyperparameter

for which the search range was set at [1; 15]. For the classification

with a threshold of 20%, two features were selected with the use

of the f classif test: wind speed and distance to typhoon. The

optimal value for k was 15. For the model with a threshold of 30%,

a total of 4 features were selected with the use of the mutual info

classif test: distance to typhoon, total rainfall, slope and rice area.

Setting the value of k at 11 made the model perform best. Finally,

the f_classif test selected one feature for the model with a

threshold at 40%. Not all selected features were the same, but wind

speed was the most common feature. After repeating the grid

search, an optimal value of 11 was found for k.
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Table 2. Overview of machine learning models: algorithms and 

features used 

3. RESULTS

In this section, the results of the regression and classification 

models are presented. The outcomes of the regression algorithms 

are given in percentage point. For every task, the algorithm in 

bold is the best performing algorithm. One can see that the 

support vector regressor performed best at the regression task 

with an MAE of 6.83 percentage points, representing the average 

difference between the predicted and the actual value. However, 

with an MAE of 7.36 percentage points the random forest 

regressor did not perform significantly worse. The linear 

regression model performed relatively worst, with an MAE of 

8.90 percentage points. As for the binary classifiers, the support 

vector machine obtained the highest recall score for all three 

thresholds. Recall scores of 88%, 75% and 81.82% were obtained 

when the threshold was set at 20%, 30% and 40%, respectively. 

One can clearly see the trade-off between the recall and precision 

of every classification model. When more positive labels are 

predicted, chances are high that most of the positive samples are 

rightly predicted, resulting in a high recall score. However, there 

is also a big chance that the predictor falsely labels the negative 

samples as positive, which causes a low precision score. Acting 

on these outcomes, would mean provinces receive aid although 

they are not in need of aid. 

4. DISCUSSION

Our study combined open data with regression and classification 

machine learning algorithms to determine how rice loss due to 

typhoons can be predicted for a case study in the Philippines. The 

regression models were trained to improve the MAE and the 

classification models were trained to improve the recall score. It 

is considered more important to rightly classify the provinces that 

are in need of aid, than to rightly classify the provinces that are 

not. Missing out on farmers that are in need is usually considered 

as a more serious error than acting in vain. But only a thorough 

valuation approach can provide an answer to what is the right 

balance (Lopez et al., 2018). The support vector regressor 

performed best with a MAE of 6.83 percentage points. As for the 

binary classification, the models were evaluated on their ability 

to rightly classify the positive samples. For all three thresholds, 

the support vector classifier obtained the highest recall score. For 

every threshold, the precision score was high. However, for all of 

these models the precision score was low. For both regression and 

classification tasks, the support vector machine performed best. 

For each of these support vector machine models, only wind 

speed was used as explanatory feature. It is remarkable that for 

most of the other algorithms, different sets of features came out 

best. Also, for the random forest algorithms, the hyperparameters 

used for the algorithms had great impact on features that were 

selected. This suggests that with the data that was available for  

this study, there was no convincing outcome regarding the most 

important features when predicting rice loss. There are a number 

of limitations of this study that could be improved in future 

research. The first and most important limitation is the amount of 

data that was available. It is important that more data are gathered 

such that more robust and accurate predictions can be made. With 

only 224 observations, this study has given an insight on the 

possibilities of rice loss prediction but the estimations are 

imprecise. Not only were there not much training data to train the 

models on, as an 11-fold cross-validation was used, each 

predictor was only tested on a test set consisting of only 20 

instances on average, which does not give a thorough reflection 

of the prediction performance. As already stated above, the most 

important features were not similar across the different 

algorithms and for some algorithms the hyperparameter settings 

had great impact on the features that were selected. It is expected 

that when there are more data available to train the models on, it 

will become clearer which features are most important when 

predicting rice loss. However, it is important to keep in mind that 

the set of most important features may differ per country. For 

example, it could be the case that for a certain country with a 

varied vegetation, the tree cover density is an important feature 

(shielding rice fields from the wind) whereas for another country 

it is not. However, a feature like wind speed is likely to be of great 

importance in all countries. Next to the amount of data, also the 

quality of the data can be improved. For example, the rainfall data 

were not complete and the total rice area data from 2018 were 

used although the typhoons occurred between 2012 and 2016. In 

reality the rice area, and thus the percentage rice loss, could have 

been larger or smaller. Also, the fact that the models in this study 

were on province-level rather than on municipality-level could 

have played a role in the mediocre performance of some of the 

models. It is expected that the prediction models on municipality-

level would perform better, as the input features would be more 

specific, instead of the global, aggregated province features. 

From the disaster management perspective, it would also be more 

valuable when predictions would be on municipality-level rather 

than on province-level, as in the latter case the outcome does not 

give a thorough insight of where exactly the early action or aid is 

needed. On average, a province of the Philippines has an area of 

almost 4000 km2, with considerable differences in lengths and 

widths as shown before in Figure 1. The average north-south 

length is 115 km. This means that the wind speed (the parameter 

most correlated with damage) varies a lot when a typhoon 

traverses a province (generally from east to west rather than north 

to south). This supports the need for municipal-level information 

and analysis. It is therefore important that a similar study, but then 

on municipality-level, will be carried out. Furthermore, the 

models in this study were trained with the objective to eventually 

predict rice loss a couple of days before a typhoon would make 

landfall. This means that the typhoon related features themselves 

Machine 

learning model 

Algorithm (threshold) Features 

Regression Linear regression Windspeed 

Random forest regressor Wind speed, rice area, drainage density, 

Support vector regressor Windspeed 

Classification Random forest classifier (20%) Wind speed, drainage density and rice area 

Random forest classifier (30%) Average wind speed, Rice area, Average elevation, Average 

slope, Average ruggedness, Coast length, Total length of streams 

and rivers, Drainage density, Total rainfall, Distance to typhoon 

Random forest classifier (40%) Wind speed, slope and drainage density 

Support vector classifier (20, 30 and 40%) Wind speed 

K-nearest neighbour (20%) Wind speed and distance to typhoon 

K-nearest neighbour (30%) Distance to typhoon, total rainfall, slope and rice area. 

K-nearest neighbour (40%) Wind speed 
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are also obtained through a prediction model, such as ensemble 

forecasting models from University College London. 

Regression 

Model MAE (p.p.) Baseline (p.p.) 

Linear Regression 8.90 8.90 

Random Forest 7.36 8.65 

SVR 6.83 6.83 

Classification with threshold of 20% loss 

Model Acc (%) Rec (%) Prec (%) F1 (%) 

RF 81.25 68.00 33.33 57.63 

SVM 50.89 88.00 17.05 33.33 

k-NN 76.79 84.00 30.43 57.53 

Classification with threshold of 30% loss 

Model Acc (%) Rec (%) Prec (%) F1 (%) 

RF 72.32 68.75 16.18 26.20 

SVM 66.52 75.00 14.46 27.59 

k-NN 70.09 56.25 13.04 23.68 

Classification with threshold of 40% loss 

Model Acc (%) Rec (%) Prec (%) F1 (%) 

RF 83.93 72.73 19.51 36.36 

SVM 66.07 81.82 10.84 21.18 

k-NN 79.91 72.73 16.00 30.19 

Table 3. Results 

Forecasts on typhoon features are available for example at 72, 48 

and 24 hours’ time intervals before the typhoon makes landfall, 

whereby the uncertainty decreases. This uncertainty negatively 

influences the final performance of the impact model. Finally, the 

use of additional features could result in a better performance of 

the models. For example, in their study, Blanc and Strobl (2016) 

made a distinction between irrigated and rain-fed rice fields. Their 

findings suggested that irrigation technology is better able to deal 

with the potential damage due to typhoons. For example, 

irrigation systems may be able to counteract the excessive 

flooding during a storm. Chiang et al. (2012) used a neural 

network to predict typhoon induced losses on agriculture. They 

used among others, the minimum atmospheric pressure and the 

coverage of the typhoon as explanatory features. If these above 

measures make indeed the rice crop prediction model better, then 

the model can be discussed with implementing stakeholders. It 

will be essential to agree on levels beyond which the model will 

trigger early action, whereby these trigger levels can be dependent 

on the type of early action to take (such as early harvesting, 

irrigation or cash transfers). The Fairness, Accountability, and 

Transparency in Machine Learning community proposes five 

principles that will help those involved in early warning early 

action to implement algorithmics in an accountable way 

following five principles (FAT/ML, 2019): Responsibility, 

Explainability, Accuracy, Auditability and Fairness. It will also 

be necessary to describe the use of a model within the larger scope 

of an early action protocol (which includes for example also an 

assessment of the different early actions possible). Finally, it is 

important to note that The National Disaster Risk Reduction and 

Management Council of the Philippines (NDRRMC, 2019) 

revised mid 2019 the guidelines for declaring a state of calamity. 

The use of science-based forecasts are allowed to trigger faster 

utilization of funds at municipality level, whereby it is no longer 

necessary to have a whole province to be affected before 

declaring a state of calamity is possible. 

5. CONCLUSION

To conclude, this study has tried different machine learning 

techniques to predict rice loss due to typhoons in the Philippines. 

This study has been carried out because it is expected that a lot of 

damages that farmers encounter as a result of these typhoons can 

be saved when preventative actions are taken. For this task, the 

data of 11 typhoons were used to train both regression and binary 

classification models on province-level. For the binary 

classification, three different thresholds that represent the critical 

value for triggering early action were used: 20%, 30% and 40% 

lost rice area. The classifiers were trained to increase its ability to 

rightly predict the damaged areas. For the regression task, as well 

as for the three different binary classification tasks, the support 

vector machine performed best but were still imprecise. For each 

of these latter models only wind speed was selected as 

explanatory feature. However, for the other algorithms that were 

trained in this study, other sets of features were used. Moreover, 

for some algorithms the hyperparameter settings had great impact 

on the features that were selected. This is most probably a 

consequence of the small data set that was used for this study. It 

is therefore important that more data are gathered in order to make 

more robust and accurate predictions in the future. Also, if there 

can be damage data collected on municipality-level, rather than 

province-level, it is expected that the models would be more 

accurate and valuable.  
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