The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W2, 2017
FOSS4G-Europe 2017 — Academic Track, 18-22 July 2017, Marne La Vallée, France

BUILDING A COMPLETE FREE AND OPEN SOURCE GIS INFRASTRUCTURE FOR
HYDROLOGICAL COMPUTING AND DATA PUBLICATION USING GIS.LAB AND
GISQUICK PLATFORMS

M. Landa®, P. Kavka®, L. Strouhal®, J. Cepicky®

* Dept. of Geomatics, Faculty of Civil Engineering, Czech Technical University in Prague, Czech Republic - martin.landa@fsv.cvut.cz
® Dept. of Irrigation, Drainage and Landscape Engineering, Czech Technical University in Prague, Czech Republic -
(petr.kavka, ludek.strouhal) @fsv.cvut.cz
¢ OpenGeoLabs s.r.o., Prague, Czech Republic - jachym.cepicky @opengeolabs.cz

Commission IV, WG 1V/4

KEY WORDS: GIS, Open Source, Free Software, Deployment, Hydrology, GIS.lab, Gisquick

ABSTRACT:

Building a complete free and open source GIS computing and data publication platform can be a relatively easy task. This paper
describes an automated deployment of such platform using two open source software projects — GIS.lab and Gisquick. GIS.lab (http:
//web.gislab.io) is a project for rapid deployment of a complete, centrally managed and horizontally scalable GIS infrastructure
in the local area network, data center or cloud. It provides a comprehensive set of free geospatial software seamlessly integrated
into one, easy-to-use system. A platform for GIS computing (in our case demonstrated on hydrological data processing) requires core
components as a geoprocessing server, map server, and a computation engine as eg. GRASS GIS, SAGA, or other similar GIS software.
All these components can be rapidly, and automatically deployed by GIS.lab platform. In our demonstrated solution PyWPS is used
for serving WPS processes built on the top of GRASS GIS computation platform. GIS.lab can be easily extended by other components
running in Docker containers. This approach is shown on Gisquick seamless integration. Gisquick (http://gisquick.org) is an
open source platform for publishing geospatial data in the sense of rapid sharing of QGIS projects on the web. The platform consists
of QGIS plugin, Django-based server application, QGIS server, and web/mobile clients. In this paper is shown how to easily deploy
complete open source GIS infrastructure allowing all required operations as data preparation on desktop, data sharing, and geospatial
computation as the service. It also includes data publication in the sense of OGC Web Services and importantly also as interactive web
mapping applications.

1. INTRODUCTION 1.2 Putting Blocks Together

Building a complete open source GIS infrastructure allowing op-
1.1 Open Source GIS Packages erations from data preparation, analysis and computation to pub-
lishing results to end-user is a very complex task. There are two
major conditions for creating well organized, and fully opera-

In GIS (Geographic Information System) domain Free and Open . : e -
tional open source infrastructure: (a) solid bricks and (b) flexible

Source Software (FOSS) plays historically a strong role. One ’ _ |
of the first FOSS GIS project — GRASS GIS — started its devel- gh'le to integrate them. Solid brlcks.represent a mature, .well-
opment in early 80’s (Neteler et al., 2012). Later in 90’s and firlven open source QIS software projects. Crucial ffictor 1s.the
mainly after 2000 many other FOSS GIS projects were devel- 1ntegra't10n layer which puts.all gompont?nts together in a ﬂe)'(lble
oped. A comprehensive overview is provided by (no longer main- but §011d manner. Underestlm::}tmg the 1mp01.'tance.of such inte-
tained) FreeGIS.org website (FOSSGIS e.V., 2012). The list of ~ &ration layer (glue) leads to various problems in the infrastructure
GIS packages presented on this website appears to be impressive. maintanance, with upgra.dlng or replacing bricks (software pack-
But it is not an easy task to recognize which software projects ages), and hardware equipment.

are alive, solid, mature and reasonably maintained. Later in 2006
Open Source Geospatial Consorcium (OSGeo) was established.
Its goal has been to support the collaborative development of
open source geospatial software, and promote its widespread use
(OSGeo, 2017). One of the important instruments of the founda-
tion is an OSGeo Incubator!. FOSS GIS projects which pass the
incubation procedure are graduated as official OSGeo Projects.
This status is a clear sign to the users/consumers that such project
is reasonably mature and has strong and diverse user and devel-
oper community. Shortly, it is a sign of the quality. Solid compo-
nents are crucial for building GIS infrastructure. OSGeo Projects
should fulfill such requirements in many ways.

In any case putting these blocks together in order to create an op-
erative, well designed GIS infrastructure is a very complex task
which requires experience, good decisions of choosing software
components and ability to connect them into a working system.
This paper presents GIS.lab as an open source software solution
which helps to build such complete fully open source GIS infras-
tructure in an easy, but still fully customized manner.

2. METHODS

2.1 GIS.lab as a Core Component

GIS.lab (http://web.gislab.io) has been originally designed
Thttp://wuw.osgeo.org/incubator with a goal to enable simple, unbreakable deployment of a com-

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-W2-101-2017 | © Authors 2017. CC BY 4.0 License. 101



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W2, 2017
FOSS4G-Europe 2017 — Academic Track, 18-22 July 2017, Marne La Vallée, France

Figure 1. GIS.lab logo (source: GIS.lab Documentation)

plete, centrally managed, horizontally scalable GIS infrastructure
in the local network area (LAN), data center or cloud in a few
steps. GIS.lab is able to turn diverse open source GIS software
packages into a seamlessly integrated easy-to-use system. As a
result GIS.lab significantly decreases deployment of such com-
plex GIS infrastructure to absolute minimum, but still keeping
the whole technology under a full control of the system operator.
The whole technology is open source licensed under GNU GPL
license.

GIS.lab cluster consists of a master node (server) and client nodes
(desktop clients). All the components are running on Linux
Ubuntu distribution provided by Canonical.

GIS.lab
client
GIS.lab
client

GlS.lab
server

GlS.lab
client

GIS.lab
client

Figure 2. GIS.lab server-client based architecture (source:
GIS.lab documentation)

There is a large number of possible deployment scenarios in
which GIS.lab can be successfully used. GIS.lab can play a
key role for building geospatial computation cluster with effec-
tive horizontally scalable computer power providing geospatial
services to be consumed by different clients within a local net-
work area or even in the data center or cloud. GIS.lab is able
to turn heterogeneous computers into fully operative, centrally
managed GIS easy-to-use system and maintenance-free clients in
a few moments. It is an ideal platform for GIS education and
popularization of open source technologies. GIS.lab technology
can be incorporated into an existing computer network, or cre-
ate its own computer network. The latter option can be useful
for crisis management in very hard conditions of natural disaster
with Internet outages. GIS.lab can be customized in many ways
in order to fulfill different requirements.

(=) (e2)
&) &
(ad ()
N .-/
AR P
ol [l
\" ? - - k‘/
r ()
>/ \Qr/

Before After

Figure 3. GIS.lab infrastructure as a platform for teaching,
computation, or crisis management (source: GIS.lab
Documentation)

This paper shows how to easily build a complete open source
GIS infrastructure on the top of GIS.lab enabling highly special-
ized hydrological data processing. Such system is performed by
automated customization of GIS.lab ecosystem including master
(server) and client nodes.

Figure 4. GIS.lab components running in the real environment
(source: GIS.lab Documentation)

2.2 Gisquick as a Publication Platform

Gisquick (http://gisquick.org) is a separate project not di-
rectly related to GIS.lab. It is a web application based on modern
technologies as Django, Angular and OpenLayers 3 with fully
responsive design optimized also for mobile devices. The main
purpose of Gisquick is to provide the capability for easy publish-
ing the QGIS projects on the web. From this perspective Gisquick
is strongly connected to QGIS Desktop environment and stands
on QGIS Server component.

Figure 5. Gisquick web application interface (source: author)

Combining GIS.lab and Gisquick technologies leads to a com-
plete, seamlessly integrated platform capable to prepare the input
data, perform geospatial analysis and publish results easily on the
web in the sense of interactive web mapping application.

3. CASE STUDY

3.1 GIS Infrastructure for Hydrological Computation and
Data Processing

At first, let’s put together basic requirements for presented plat-
form. Desired system should allow the user to collect, prepare,
and preprocess data from heterogeneous data sources for hydro-
logical computation using GIS software packages. The user will
be able to perform hydrological computation locally on desktop
clients, and also consume dedicated geoprocessing service pro-
vided by a master node running in the infrastructure. The re-
sults of hydrological data processing can be easily published via
web services from user desktop environment and ideally also as
the interactive web mapping applications provided by the server
component (master node) in the infrastructure.

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-W2-101-2017 | © Authors 2017. CC BY 4.0 License. 102



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W2, 2017
FOSS4G-Europe 2017 — Academic Track, 18-22 July 2017, Marne La Vallée, France

Most of the requirements are already fulfilled by GIS.lab plat-
form. It provides fully established computer network consisting
of server (master node) and desktop clients (client nodes). Main
objective of GIS.lab is a rapid deployment of complete geospatial
computation platform enabling collaborative data managing, stor-
ing, processing, and analysing thanks to the fully automatic pro-
visioning. There are Lighttpd web server running on the master
node providing web services, PostGIS geospatial database server
for collecting, storing and manipulating geospatial data, GRASS
GIS engine for performing geospatial analysis, and QGIS Server
providing OGC Web Services (OWS). On the client side resides
the requested desktop GIS application for collecting, managing
and preprocessing input geospatial data. For this task GIS.lab
desktop client offers the well known QGIS Desktop application.
Hydrological data processing in the desktop environment can be
performed by the integrated GRASS GIS and QGIS GRASS plu-
gin.

Missing features can be easily integrated into GIS.lab eco-system
by customizing the deployment of the both master/server and
desktop client components. Since the geoprocessing service
should be provided by the customized infrastructure, the master
node must be extended by an application able to provide OGC
Web Processing Service (WPS). In this paper seamless deploy-
ment integration of PyWPS version 4 was demonstrated.

Another missing component is a publishing platform providing
the ability to easily publish the results of computation in the
form of an interactive web mapping application. For this purpose
Gisquick open source project was used. Gisquick integration was
executed by using Docker containers.

The last missing component — a tool for hydrological computa-
tion — is shown on GRASS AddOn tool rsubdayprecip.design
integration in the sense of desktop tool as well as a geo-
processing service implemented using OGC WPS. Presented
r.subdayprecip.design GRASS module provides the subday de-
sign precipitation totals based on hydrological Hradek’s method
of reduction of daily maximums to a chosen duration (Landa et
al., 2015).

3.2 Fundamentals

As mentioned earlier, one of the main objectives of GIS.lab tech-
nology is a rapid and fully automated deployment. For this
task GIS.lab uses Ansible framework. Ansible offers human-
readable automatizing language, agent-less execution, various
modules and support for different providers like AWS (Amazon
Web Services), Azure and others (Hochstein, 2014). It is impor-
tant to mention that current GIS.lab (version 0.7) supports two
providers: GIS.lab Unit and AWS. In this paper we will focus on
GIS.lab Unit provider in order to have the whole infrastructure
under the full control.

Described procedure consists of three major steps:
1. Deployment of a master node using GIS.lab technology
2. Master node customization
3. Gisquick integration

3.3 Deployment of a Master Node

Master node (playing a role of a server) of geospatial cluster can
be automatically deployed thanks to GIS.lab technology. There

are some hardware and software requirements which have to sat-
isfied. First of all, hardware on which the master node will be
running need to be available, it can be everything from Intel NUC
unit (ideal for testing) to real server rack hardware inhouse or pro-
vided by AWS, Azure or similar services. The operator runs host
(controlling) machine which will be used for master node pro-
vision. On controlling machine Ansible framework must be in-
stalled. Node(s) described in so-called inventory file are accessed
over SSH.

o |

GIS.lab

Figure 6. GIS.lab master node running on different providers
(source: GIS.lab Documentation)

At first on controlling machine needs to downloaded GIS.lab
source code (available freely from GitHub repository®) and
standard Ubuntu Server installation ISO image. In the next
step a new customized ISO will be created by GIS.lab utility
gislab-unit-iso.sh and used for installation on master node
hardware unit. After successful installation a plain Ubuntu oper-
ating system will be available on that machine.

Afterwards two Ansible playbooks (both located in GIS.lab
source code tree) will be launched from the controlling machine.
The first playbook gislab-unit.yml is dedicated for Intel NUC
only and stands for GIS.lab Unit initialization. The second —
core — playbook gislab.yml performs provisioning the whole
GIS.lab technology on master node equipment. It installs all re-
quired software packages, sets up all the services, creates and
configures desktop client images. This step can take from few
dozen of minutes to few hours depending on Internet connection
speed and hardware limits. Simplified commands are shown be-
low.

$ ansible-playbook ...
$ ansible-playbook ...

providers/../gislab-unit.yml
system/gislab.yml

S

Figure 7. All required hardware components for GIS.lab
deployment (source: GIS.lab Documentation)

Detail information about GIS.lab deployment procedure includ-
ing its configuration is part of an official GIS.lab documentation
(GIS.1ab Team, 2017).

After successful deployment, a fully operative master node is run-
ning in our infrastructure providing all the services which GIS.lab

2https://github.com/gislab-npo/gislab

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-W2-101-2017 | © Authors 2017. CC BY 4.0 License. 103



—_

SOOI R WN—

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W2, 2017
FOSS4G-Europe 2017 — Academic Track, 18-22 July 2017, Marne La Vallée, France

offers out of the box. For our use-case is crucial database server
(PostgreSQL), map server (QGIS Server) and GIS computation
engine (GRASS GIS). All these components are available and
configured by GIS.lab. The clients can boot from master node us-
ing standard protocols like PXE or HTTP. The master and client
nodes creating geospatial cluster includes technologies like load
balancing and centrally managed system to control them. It also
covers user accounts management which is launched centrally by
LDAP server running on a master node.

GIS.lab
server

Figure 8. Building geospatial cluster using master and client
nodes (source: GIS.lab Documentation)

3.4 Master Node Customization

Master node has been successfully deployed using GIS.lab tech-
nology. In the following steps customization will be performed.
Customization rules are defined by Ansible Playbooks similarly
how GIS.lab provision works. Ansible Playbooks express config-
urations, deployment, and orchestration in Ansible (Shah, 2015).
Playbooks are based on YAML human-readable data serializa-
tion language and Jinja templates. As described in section 3.1
customization procedure will performed. Let’s summarize our
requirements:

1. Install and configure PyWPS4 on GIS.lab master node

2. Install GRASS AddOn module r.subdayprecip.design on
server-side (master node) and also in client images in or-
der to use this tool locally on desktop clients and also as re-
mote geoprocessing service provided by PyWPS4 running
on master node (server)

3. Set up PyWPS4 process based on rsubdayprecip.design
functionality.

Ansible Playbooks used for customization will be saved in pro-
vision directory and separated into set of roles. Each role is rep-
resented by fasks which perform calls to Ansible. Tasks for each
role are defined in main.ym! YAML file. Example below demon-
strates how can be implemented a role for installing and config-
uring PyPWS4.

- name: Install PyWPS4

pip:
name: pywps

version: 4.0.0

- name: Set up PyWPS4 configuration
template:
src: pywps.cfg.j2
dest: /opt/pywps4/pywps.cfg
mode: 0644

PyWPS4 package will be installed by standard pythonic pip com-
mand which is implemented by Ansible pip module, see lines 1-
4. In the next step, PyWPS4 configuration file is placed in the
destination folder on the server, see lines 6-10. Similarly is pro-
cessed PyWPS4 WSGI application file. From provisioning point
of view, the both files are placed in templates directory. Tem-
plate module based on Jinja templating language allows variable
propagation. Simplified and shorten example of sample PyWPS4
configuration file pywps.cfg.j2 is shown below.

1 [server]
2 url={{ base_url }}/services/wps

Variable values can be defined in main.yml file located in vars
directory.

base_url: http://gislab.mydomain.org

In a similar way other two roles for installing GRASS tool
r.subdayprecip.design and related WPS process will be defined.
The roles are put together in main deployment.yml YAML file.

I roles:

2 - { role: pywps4 }

3 - { role: subdayprecip-tool }
4 - { role: subdayprecip-wps 1}

Automated customization of master node will be performed by
Ansible Playbook command similarly to GIS.lab deployment pro-
cedure described in section 3.3.

$ ansible-playbook ... provision/deployment.yml

As a result customizated master node is providing a new ser-
vice based on OGC WPS thanks to integrated PyWPS4 software
package. Newly installed GRASS tool for hydrological compu-
tation of subday design precipitation totals based on hydrologi-
cal Hradek’s method of reduction of daily maximums to chosen
duration is available on master node and desktop clients. Also
ready-to-use WPS process providing described functionality is
offered by a master node via OGC WPS service and accessible
using HTTP(S) protocol.

A complete overview of customization Ansible Playbooks is
available from GitHub repository’. For another example of
GIS.lab customization see GISMentors training group GitHub
repository*.

3.5 Gisquick integration

On Gisquick publishing platform a different approach is demon-
strated. Instead of specific Ansible Playbooks, integration based
on Docker containers is performed. Gisquick project provides
core Docker images needed for successful running of this pub-
lishing platform. It significantly simplifies Gisquick integration
into GIS.lab infrastructure.

The core Gisquick Docker images are listed below:
e gisquick/nginx

e gisquick/django
e gisquick/qgisserver

Shttps://github.com/ctu-geoforall-lab/
subdayprecip-design
4https://github.com/GISMentors/gislab-customization

This contribution has been peer-reviewed.

https://doi.org/10.5194/isprs-archives-XLII-4-W2-101-2017 | © Authors 2017. CC BY 4.0 License.

104



The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W2, 2017
FOSS4G-Europe 2017 — Academic Track, 18-22 July 2017, Marne La Vallée, France

These Docker images can be automatically composed on GIS.lab
master node by running docker-compose command.

$ sudo docker-compose up

This command need to be run in the directory where Dockerfiles
for Gisquick are located. Official Dockerfiles are available from
Gisquick Git repository on GitHub’. Before running docker-
compose command a configuration rules for composing Docker
images must be created. The rules are stored in the file named
docker-compose.yml located in the same directory as Dockerfiles.
Shorten example of compose YAML file is shown below.

version: "2"

services:
qgisserver:
image: gisquick/qgis-server
volumes:
- /storage/publish:/publish/:ro

django:
image: gisquick/django
volumes:
- /storage/media:/var/www/gisquick/media/
- /storage/data:/var/www/gisquick/data/

nginx:
image: gisquick/nginx
volumes:
- /storage/letsencrypt/:/etc/letsencrypt/

The most important part of configuration from GIS.lab integra-
tion point of view is definition of volumes, see lines 5, 10, 16.
Here are listed local directories which will be mounted into run-
ning Docker containers. This procedure can be automized also
by Ansible Playbooks.

Gisquick is running on master node and available to the clients
using HTTP(S) protocol in the GIS.lab network. Clients can pub-
lish their projects by QGIS Gisquick plugin and simply copying
them to shared directories mounted over the Network File System
from master node.

4. CONCLUSIONS

Geospatial cluster can be arranged thanks to open source or-
chestration technologies in an automated and easily maintain-
able manner. This paper presents Ansible framework allowing
fully automated software provisioning, configuration manage-
ment, and application deployment. On the top of Ansible frame-
work a GIS.lab project is built. GIS.lab significantly reduces the
whole procedure of design, deployment and configuration of GIS
infrastructure to the virtual minimum. GIS.lab itself offers basic
components, tools, and services for building GIS (and not only
GIS) infrastructure. GIS cluster consists of the master node and
the client nodes. Client nodes are booting from the master us-
ing PXE or HTTP boot protocols. Master node services, user
accounts and data volumes are centrally managed and consumed
by the clients over the Network File System.

The master and client nodes can be customized using the specific
Ansible Playbooks including software provisioning and configu-
ration management. Customized infrastructure can be easily de-
ployed on a new hardware equipment. Integration of the new
components can be simplified by the Docker containers in order
to combine them into the working system seamlessly integrated
into the customized infrastructure.

Shttps://github.com/gislab-npo/gisquick

REFERENCES

FOSSGIS e.V., 2012. FreeGIS.org. http://freegis.org (21 May
2017).

GIS.lab Team, 2017. Online GIS.lab Documentation.
http://gislab.readthedocs.io (24 May 2017).

Hochstein, L., 2014. Ansible: Up and Running: Automating Con-
figuration Management and Deployment the Easy Way. O’Reilly
Media.

Landa, M., Kavka, P. and Strouhal, L., 2015. A GIS Tool for Re-
duction Day Precipitation to Subday. In: Geomatics WorkBooks
12, p. 725. ISSN 1591-092X.

Neteler, M., Bowman, M. H., Landa, M. and Metz, M., 2012.
GRASS GIS: A multi-purpose open source GIS. Environmental
Modelling & Software 31, pp. 124-130.

OSGeo, 2017. About the Open Source Geospatial Founda-
tion. http://www.osgeo.org/content/foundation/about.html (22
May 2017).

Shah, G., 2015. Ansible Playbook Essentials. Packt Publishing.

ACKNOWLEDGEMENTS

This work has been supported by the research project QJ1520265
- ”Variability of Short-term Precipitation and Runoff in Small
Czech Drainage Basins and its Influence on Water Resources
Management”.

The article is distributed under the Creative Commons Attribution
3.0 Unported License.

This contribution has been peer-reviewed.

https://doi.org/10.5194/isprs-archives-XLII-4-W2-101-2017 | © Authors 2017. CC BY 4.0 License.

105





