
EXTENDING THE SCALABILITY OF ISTSOS WITHIN THE 4ONSE PROJECT

D. Strigaroa*, M. Cannataa, M. Cardosoa, M. Antonovica, M. Hoffmanna

a IST-SUPSI, Institute of Earth Sciences, University of Applied Sciences and Arts of Southern Switzerland, via Trevano CH-6952
Canobbio, Switzerland – (daniele.strigaro, massimiliano.cannata, mirko.cardoso, milan.antonovic, marcus.hoffmann)@supsi.ch

Commission IV, WG IV/4

KEY WORDS: istSOS, istSOS-proxy, EMS, WNS, Big data, SOS, scalability, 4onse

ABSTRACT:

An Environmental Monitoring System (EMS) is needed not only to prevent many natural risks such as droughts, flooding and
landslides but also to provide information for a better management of water resources and crops irrigation and finally it helps to
increase the reliability of weather and climatological models. In addition, a monitoring system can directly impact the economic,
social and political spheres. Unfortunately, in most developing and low income countries, due to the high costs of hardware and
software there is a lack of efficient monitoring systems. The aim of the 4onse project (analysis of Four times Open Non-conventional
system for Sensing the Environment), funded by the Swiss National Science Foundation, is the development of a totally open
solution to monitor the environment. As well as the hardware layer, a monitoring system needs a data management software usually
hosted on a server structure. As a software platform which is SOS OGC compliant, istSOS is chosen to receive, manage, validate and
distribute environmental data. In the following article a solution to support big data is presented to extend the istSOS capabilities. In
fact, a sensors network can hardly stress a data management system because of the several concurrent users and sensors and the long
time series which every weather station can easily produce. Thus, a software called istSOS-proxy is developed as a single access
point over multiple instances of istSOS whose procedures are distributed to balance the total load. First results on the effectiveness of
the solution are proved thanks to load testing simulations of different levels of concurrent users.

1. INTRODUCTION

The systematic sampling of air, water, soil and biota data, as
well as the development of an Environmental Monitoring
System (EMS) leads to information on the state of the
environment and knowledge on hazardous processes (Artiola et
al. 2004, Wierma, 2004). Thus, an EMS affects socio-
economical aspects as well as the policy of the decision-makers
(Kiker et al., 2005).
Most developing and low income countries have a poor, old or
even totally absent monitoring systems mainly due to high costs
of acquisition and maintenance process of hardware and
software components (Snow, 2013). In addition, the
conventional systems are characterized by proprietary and
closed source components which reflect a low interoperability
for the data transmission/exchange and poor flexibility for
system customization.
The 4onse project (analysis of Four times Open Non-
conventional system for Sensing the Environment) wants to
develop a non-conventional solution with an high
interoperability and low cost standards using open hardware and
open source software to monitor and sense the environment for
lowering the impact of natural hazards in developing countries.
The project, funded by the Swiss National Science Foundation
(SNSF) and coordinated by the Institute of Earth Science (IST)
of the the University of Applied Sciences and Arts of Southern
Switzerland (SUPSI), in collaboration with the University of
Moratuwa (UoM), Sri Lanka and other international partners
(see http://4onse.ch) tries to reach the project goal installing a
fully operating monitoring system composed by 30 weather
stations distributed in a test area in Sri Lanka. The Oya basin,
the fourth largest river basin in Sri Lanka, has been selected as
test area. At present, this area suffers from issues like floods and
droughts. Due to the absence of real time, dense and continuous

meteorological data, disaster warning is truly a challenging task
in this region.
The EMS consists of different layers: the hardware layer,
composed by the sensor unit; the service layer, composed by the
server architecture to store, validate and share data; the
communication layer, which enables the data transmission
between hardware and the software layer. This article focuses
on the problems and solutions found during the design and
development of the service layer.
The main purpose of this work is to provide a system capable to
support big data within the istSOS management platform. This
software has been developed by SUPSI to manage EMSs and
was selected as a core technology of the 4onse system. Many
simultaneous user requests and big database can stress the
istSOS software reducing its performance and causing failures
and long-time responses. While the number of users is not
constant and can increase in specific situations dramatically, the
database size can be predicted according to the measurement
frequency and the number of sensors on the network. The
database of a monitoring system can increase its size because of
large temporal and/or spatial dimensions. The temporal
dimension is correlated to database size due to two main factors:
the frequency of the environmental measurements and the
lifetime of the sensor. The spatial dimension impacts the size by
the number of sensors disseminated on the monitoring area.
In agreement with the INSPIRE directive 2007/2/EC –
regulation (EC) No 976/2009 – an environmental data system
should provide good service performance, capacity and
availability. A scalable system can substantially improve the
general performances to handle a growing amount of work. The
solution proposed in this article describes the development of a
new solution, called istSOS-proxy, that works as a single access
point over multiple instances of istSOS. The proposed
implementation is tested using a load testing python tool to

* Corresponding author

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W2, 2017
FOSS4G-Europe 2017 – Academic Track, 18–22 July 2017, Marne La Vallée, France

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-W2-155-2017 | © Authors 2017. CC BY 4.0 License. 155

http://4onse.ch/

prove the effectiveness of the whole system simulating different
levels of concurrent users.
The paper is divided into three sections: 1) the description of the
materials and methods used; 2) the presentation of the test
results with the discussion; 3) the conclusions.

2. MATERIALS AND METHODS

The following paragraphs describe the SOS standard, tools,
software and strategies used and developed to extend the
istSOS capabilities to better handle big data.

2.1 The Sensor Observation Service (SOS)

The SOS is one of the Open Geospatial Consortium (OGC)
standards applicable to an EMS. The standard is based on five
key elements (Figure 1): the procedure is the SOS element that
produces observations which are the values measured in a
specific time instant related to a feature of interest (for example
the position of the related procedure like the geolocalization of a
weather station); the observed property defines the
environmental parameter measured (e.g. air temperature, air
humidity, etc.) and finally the offering, which is usually referred
to a single procedure, but can be also a group of procedures
with a common domain, specifies summary information.

Figure 1. SOS key objects example.

This standard defines a series of requests, divided in classes, to
manage sensor networks and their observations. The Core main
requirements class (Bröring et al., 2010) is composed by:

• the GetCapabilities operation: it provides access to
the SOS general information such as the list of the
operations implemented, the procedures, offerings,
unit of measures available within the service, etc.;

• the DescribeSensor: it returns the description of a
specific sensor of the system formatted following
the SensorML OGC standard;

• the GetObservation request: it allows to retrieve
sensor observations using spatial, temporal or
thematic filters.

Other classes are optional and add specific capabilities, e.g.
transactional operations to insert/delete a sensor or observation.

2.2 istSOS

The istSOS package provides a complete and tested platform to
manage sensors data according to the SOS standard (Cannata et
al., 2010). It is composed by a server and a client side. The
server side of the application is entirely written in Python (Van
Rossum, 2003) and relies on the Apache HTTP server (The
Apache Software Foundation, 2013). The database structure is
based on PostgreSQL with the PostGIS spatial extension. The
client side of the application is completely written in Javascript
and takes advantage of the ExtJS library

(https://www.sencha.com/products/extjs), the dygraph library
(http://dygraphs.com) and CodeMirror 2 (http://codemirror.net).
The istSOS package comprises a nested architecture (Figure 2)
composed by three main components: 1) the istsoslib, the kernel
of the system, enables the implementation of the SOS standard;
2) the walib offers the classes and functions required to build
the web interface; 3) the wainterface is the user-friendly
interface to manage the system.

Figure 2. The software architecture of istSOS.

2.3 Scaling techniques

Big data are a great challenge to face off both for hardware and
software components. For this reason, a system needs to adapt
itself to increasing requests incorporating scaling in different
forms (Singh et al., 2015). Two types of scaling could be
considered: vertical and horizontal scaling. Vertical scaling
means, basically, increasing the hardware specifications of the
server (more and faster CPUs, RAM and storage units). The
horizontal scaling is characterized by the distribution of the
workload across many server machines to improve the
processing capability.
For the deployment of the future 4onse EMS it has been
considered to apply both scaling types: vertical by new
hardware configuration acquired and horizontal by applying a
sharding method to split massive time-series across multiple
instances of istSOS.

2.4 IstSOS-proxy

While istSOS has demonstrated to be a solid platform for
managing environmental data with good stability and
performances, its ability of supporting big data is still not
guaranteed. To this end, in view of having a system capable to
support large number of concurrent users and massive datasets
while maintaining good performances, a lighting fast cascading
proxy server, named istSOS-proxy, for multiple instances of
istSOS is designed and developed. This solution integrates big
data support with the abilities to scale horizontally over
distributed databases of time series. It basically consists in a
layer capable to redirect SOS requests and collect the responses
to and from different istSOS instances in a cloud. The solution
offers a unique access point to retrieve observations and
metadata of different Wireless Sensor Networks (Figure 3). In
addition, thanks to this layer, it is possible to handle several
concurrent users by using non-blocking network I/O (solving
tasks asynchronously) to scale many open connections. As a
requirement, at this stage of development the mandatory SOS
requests are supported.
The istSOS-proxy is totally written in python using the Tornado
web framework (http://www.tornadoweb.org) to build the web
services and take advantage of the async programming feature.
PostgreSQL/PostGIS is the chosen database to store basic
information harvested from the registered istSOS instances.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W2, 2017
FOSS4G-Europe 2017 – Academic Track, 18–22 July 2017, Marne La Vallée, France

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-W2-155-2017 | © Authors 2017. CC BY 4.0 License.

156

http://codemirror.net/

The istSOS-proxy is composed by two main services:
• api : a RESTful service which can be used to

configure the database connection and add istSOS
instances;

• sos : a web service compliant with the SOS version
1.0.0 and 2.0.0 core profiles.

Figure 3. Schema of how istSOS-proxy works.

2.5 Load testing configuration

The solution proposed to support big data within istSOS is
preliminary validated performing a number of load tests. The
open source load testing python tool, called Locust.io
(http://locust.io/), provides an effective way to simulate several
simultaneous users and figure out how many concurrent users a
system can handle.
As shown in Figure 4, three Virtual Machines (VMs) (VM-0,
VM-1 and VM-2) with Ubuntu 16.04 64bit are built with the
same hardware specifications (Table 1) and software
components (Apache 2.4.18, PostgreSQL v9.5/PostGIS v2.2.1 ,
istSOS v2.3.1).

Hardware component Number/Size

CPUs 12

RAM 12 GB

Hard Disk 300 GB SSD

Table 1. Virtual machines hardware characteristics.

The first VM (VM-0) has a database composed by 130
procedures, 1 offering, 13 observed properties and 25 years of
data for a total of 1.4 Billions of observations and 167 GB of
database size. A copy of the database is then distributed into two
more databases each hosted on a different virtual machine.
The configuration process has, as result, the virtual machines
VM-1 and VM-2 with 65 procedures each one and the same
amount of offering and observed properties registered in the
VM-0. The resulting databases have different sizes because the
procedure created does not have the same amount of
observations. The VM-1 has about 0.6 Billions of observations,
the VM-2 0.7 Billions. This situation represents a real case
study where even if the procedures are equally distributed on
the istSOS instances, the amount of observations will be most
probably different due to the heterogeneity of the sensors
specifications (frequency of measures, lifetime interval, etc.).

Figure 4. Schema of the VMs built to run the load test.

Finally, the istSOS-proxy is installed on a fourth Proxy Machine
(PM) using Ubuntu 14.04 64bit as operating system, an Intel®
Core™ i7-5820k processor and 32 GB of RAM. Even if this is a
very powerful machine, as described in the previous paragraph,
istSOS-proxy does not require such powerful resources because
it is composed by a light database and simple processes which
basically validate the requests and forward them to the
corresponding istSOS. Finally, the responses are parsed, mixed
and sent to the client.
Thanks to the istSOS-proxy REST services, the software is
configured to host the two istSOS instances, installed
respectively on the VM-1 and VM-2, gotten by distributing the
original database of the VM-0. The figure 5 shows an overview
of the configuration.

Figure 5. istSOS-proxy configuration.

The load test is thought to have three load levels: 100, 200 and
500 concurrent users load. In this way, the simulated users are
able to perform the SOS core requests (GetCapabilities,
DescribeSensor and GetObservation) on the basis of a
predefined weight which defines the frequency of executing a
specific request. The GetObservation request is executed 50
times more than a GetCapabilities, the DescribeSensor only 5
times more. The weights assignation helps to create a real
scenario where observations are often requested instead of
service or sensor description. The GetObservation is set to
request a random week of data of a single procedure.
The three load levels are sequentially run both for the VM-0 and
PM for a time interval of about one hour, in order to have
statistically rigorous results.

3. RESULTS AND DISCUSSION

The load test results regard the SOS core requests:
GetCapabilities, DescribeSensor and GetObservation.
While the SOS version 2.0.0 is used for the GetCapabilities and
DescribeSensor requests, the GetObservation is formatted
compliant with the SOS version 1.0.0 because it is seventy

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W2, 2017
FOSS4G-Europe 2017 – Academic Track, 18–22 July 2017, Marne La Vallée, France

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-W2-155-2017 | © Authors 2017. CC BY 4.0 License.

157

times lighter than the version 2.0.0 where observations are
explicitly not aggregated in a time-series object which is lagerly
less verbose. Each GetObservation request gets one casual week
of data of a randomly selected procedure available within the
istSOS instance.

3.1 Results and discussion of VM-0 load test

The tables 2, 3 and 4 give an overview on the performances of
the VM-0 (see the previous section for the configuration of this
machine). In the first scenario using 100 concurrent users, the
total requests have an average time of less than 3.2 seconds. The
DescribeSensor average response time is 0.2 seconds for 100
and around 0.4 both for 200 and 500 data users. It is the fastest
request because the software can easily find the information of
the procedure and send them back to the user, thanks to a
partially pre-processed response. On the other hand,
GetCapabilities and GetObservation are more dynamic
processes. The first has to retrieve the basic information of all
the metadata procedures and the second has to perform queries
on the bigger table of the database where all the procedure
observations are archived.
From 200 concurrent users, the performances begin to
significantly decrease in particular for the GetObservation
request which reaches an average response time of about 14
seconds, in the case of 200 concurrent users, and 43 seconds
with 500 concurrent users.
The GetCapabilities time responses are, as expected, in between
the DescribeSensor and GetObservation results.

Table 2. VM-0 test results with 100 users.

Table 3. VM-0 test results with 200 users.

Table 4. VM-0 test results with 500 users.

3.2 Results and discussion of PM load test

The results of the PM load test are shown in the Tables 5, 6 and
7. The GetCapabilities response time is extremely fast mainly
because, once an istSOS instance is added, deleted or updated, it
is built and stored in-memory by istSOS-proxy. For this reason,
the response is much more reactive and help in decreasing the
shared load over the instances of the other requests.
The DescribeSensor does not show any significant degradation,
thus the mean response time is below 1.3 seconds also during

the test with 500 concurrent users. This procedure does not
require hard processes and calculation to be performed, thus it
maintains a good level of time responses even when the work
load increases.
The GetObservation average time response is 0.6, 6.8 and 19.9
seconds respectively for 100, 200 and 500 users. The
performances consistently decrease up to 500. In this case, the
median is 23 seconds, about 3 seconds higher than the average,
which confirms the high stress reached by the server structure
with the hosted istSOS instances.
As for the VM-0 load test, there are no registered failures,
which means a good software stability both for istSOS and
istSOS-proxy.

Table 5. PM test results with 100 users (using istSOS-proxy).

Table 6. PM test results with 200 users (using istSOS-proxy).

Table 7. PM Test results with 500 users (using istSOS-proxy).

3.3 The comparison between VM-0 and PM results

Starting from the total number of requests solved by the two
different configurations (Figure 6), it is possible to show that
the PM resolves the SOS requests faster. In one hour, the VM-0
solves from 36000 simulating 100 data users to 42000 requests
simulating 500 users, while the PM from 60000 to over 70000
when 500 concurrent users are simulated. The result is achieved
thanks to the istSOS-proxy capability to scale better over
multiple connections together with the faster request resolution
of the istSOS instances due to the less work load.
The GetCapabilities (Figure 7 and 8) response time is extremely
improved due to the cache system used only for this type of
SOS request on the PM. The comparison between the VM-0 and
PM is definitely won by the new proposed solution.
The Figures 9 and 10 describe similar behaviour between the
two configurations for the DescribeSensor. The PM is slower up
to 200 users while is faster with 100 simulated users. Even if the
differences may not be relevant from a user perspective, the

Method GET GET GET
Name DescribeSensor (ms) GetCapabilities (ms) GetObservation (ms)
requests 3686 790 36775
failures 0 0 0
Median response time 120 2100 3300
Average response time 204 3130 3488
Min response time 19 629 172
Max response time 5739 23572 25634
Average Content Size 7045 390621 121180
Requests/s 1.03 0.22 10.26

Method GET GET GET
Name DescribeSensor (ms) GetCapabilities (ms) GetObservation (ms)
requests 5271 1040 53440
failures 0 0 0
Median response time 52 15 540
Average response time 79 17 640
Min response time 31 9 164
Max response time 588 212 3511
Average Content Size 6247 414920 121252
Requests/s 1.9 0.5 13.3

Method GET GET GET
Name DescribeSensor (ms) GetCapabilities (ms) GetObservation (ms)
requests 5591 1091 55115
failures 0 0 0
Median response time 110 15 950
Average response time 454 18 6876
Min response time 29 9 126
Max response time 5227 212 39952
Average Content Size 6247 414920 121276
Requests/s 1.5 0.3 14.3

Method GET GET GET
Name DescribeSensor (ms) GetCapabilities (ms) GetObservation (ms)
requests 6787 1403 68227
failures 0 0 0
Median response time 1300 15 23000
Average response time 1312 23 19900
Min response time 33 8 137
Max response time 5506 360 41741
Average Content Size 6246 414920 121281
Requests/s 2.4 0.6 23.6

Method GET GET GET
Name DescribeSensor GetCapabilities GetObservation
requests 3435 830 34409
failures 0 0 0
Median response time 210 3900 4800
Average response time 384 9524 14460
Min response time 23 668 664
Max response time 8585 55609 73508
Average Content Size 7045 390621 121176
Requests/s 1.5 0.4 8.5

Method GET GET GET
Name DescribeSensor GetCapabilities GetObservation
requests 3673 945 35991
failures 0 0 0
Median response time 280 8900 45000
Average response time 457 22573 43576
Min response time 30 1089 364
Max response time 16683 114864 102248
Average Content Size 7045 390621 121180
Requests/s 1 0.1 8.5

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W2, 2017
FOSS4G-Europe 2017 – Academic Track, 18–22 July 2017, Marne La Vallée, France

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-W2-155-2017 | © Authors 2017. CC BY 4.0 License.

158

worse results are probably due to the tiny work load needed by
this request. For this reason, the istSOS-proxy, adding its own
algorithm, can decrease the performances of this request, even
if, as previously written, not significance deviation can be
marked.
The GetObservation, together with the GetCapabilities, is the
type of SOS request which take more advantage from the
proposed solution. As shown in the Figure 11 and 12, the
performances are almost doubled. The less work load, due to the
improvements developed with the istSOS-proxy, brings the
response time from 15 for the VM-0 to 6.9 seconds for the PM
with 200 concurrent users. When 500 users are simulated, by
the python load testing tool, the performances are improved by
a factor of two (from 43 seconds average response time to 20).

Figure 6. Number of total requests with 100, 200 and 500
concurrent users both for the VM-0 and PM.

Figure 7. Median response time in milliseconds for the
GetCapabilities request with 100, 200 and 500
concurrent users both for the VM-0 and PM.

Figure 8. Average response time in milliseconds for the
GetCapabilities request with 100, 200 and 500
concurrent users both for the VM-0 and PM.

Figure 9. Median response time in milliseconds for the
DescribeSensor request with 100, 200 and 500
concurrent users both for the VM-0 and PM.

Figure 10. Average response time in milliseconds for the
DescribeSensor request with 100, 200 and 500
concurrent users both for the VM-0 and PM.

Figure 11. Median response time in milliseconds for the
GetObservation request with 100, 200 and 500
concurrent users both for the VM-0 and PM.

Figure 12. Average response time in milliseconds for the
GetObservation request with 100, 200 and 500
concurrent users both for the VM-0 and PM.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W2, 2017
FOSS4G-Europe 2017 – Academic Track, 18–22 July 2017, Marne La Vallée, France

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-W2-155-2017 | © Authors 2017. CC BY 4.0 License.

159

4. CONCLUSIONS

The 4onse research project is focused on setting up a fully
accessible, royalty free and low cost climate monitoring system
based on open hardware, software and standards to study if non-
conventional systems can empower developing countries with
EMS.
Since and EMS is composed by three layer (hardware, service
and communication layer), a solution to extend the istSOS
capabilities is presented within the service layer. Large amount
of sensors and several concurrent users may characterize an
EMS. Thus, istSOS, while demonstrating good stability, needs
to improve its ability to scale on increased amount of work
caused by massive datasets and several I/O requests. To this
end, the istSOS-proxy has been implemented. The tests
conducted demonstrated that the adopted solution contributes in
increasing EMS performance by distributing massive time-
series database over different server machines. In addition, the
used cache system can offer fast access to the static information
and help in the decreasing of the general work load.
More tests are required, particularly to better understand the
scaling gain under different configurations. Nevertheless, these
preliminary results are very promising and confirm the
effectveness of the adopted approach. This solution does not
prevent the development of the istSOS itself, which needs to
update the core component in order to effectively use new
software technologies that better fit massive data processing.
Next future developments of istSOS-proxy include a web user-
friendly interface as well as some new features to further
improve the performances and the strategy used to better handle
big data. Once the stable version will be released, the istSOS-
proxy source code is going to be published under the GNU
General Public License (GPL).

5. REFERENCES

Artiola, J., Pepper, I. L., & Brusseau, M. L., 2004.
Environmental monitoring and characterization. Academic
Press.

Bröring, A., Stasch, C., & Echterhoff, J., 2010. OGC ® Sensor
Observation Service Interface Standard. Open Geospatial
Consortium.

Cannata, M., & Antonovic, M., 2010. istSOS: investigation of
the sensor observation service. In WebMGS 1st international
workshop on pervasive web mapping, geoprocessing and
services, Como, Italy (pp. 26-27).

Cannata, M., Antonovic, M., Molinari, M., & Pozzoni, M.,
2013. istSOS sensor observation management system: a real
case application of hydro-meteorological data for flood
protection. In Proceedings of International Workshop of The
Role of Geomatics in Hydrogeological Risk, Padua, Italy (pp.
27-28).

Kiker, G. A., Bridges, T. S., Varghese, A., Seager, T. P., &
Linkov, I., 2005. Application of multicriteria decision analysis
in environmental decision making. Integrated environmental
assessment and management, 1(2), 95-108.

Singh, D., & Reddy, C. K., 2015. A survey on platforms for big
data analytics. Journal of Big Data, 2(1), 8.

Snow, J. T., 2013. Non-Traditional Approaches to Weather
Observations in Developing Countries.

Van Rossum, G., & Drake, F. L., 2003. Python language
reference manual (p. 144).

Wiersma, G. B. (Ed.)., 2004. Environmental monitoring. CRC
press.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W2, 2017
FOSS4G-Europe 2017 – Academic Track, 18–22 July 2017, Marne La Vallée, France

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-W2-155-2017 | © Authors 2017. CC BY 4.0 License. 160

	1. INTRODUCTION
	2. Materials and methods
	2.1 The Sensor Observation Service (SOS)
	2.2 istSOS
	2.3 Scaling techniques
	2.4 IstSOS-proxy
	2.5 Load testing configuration

	3. RESULTS and discussion
	3.1 Results and discussion of VM-0 load test
	3.2 Results and discussion of PM load test
	3.3 The comparison between VM-0 and PM results

	4. CONCLUSIONS
	5. References

