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ABSTRACT:

An Environmental Monitoring System (EMS) is needed not only to prevent many natural risks such as droughts,  flooding and
landslides but also to provide information for a better management of water resources and crops irrigation and finally it helps to
increase the reliability of weather and climatological models. In addition, a monitoring system can directly impact the economic,
social and political spheres. Unfortunately, in most developing and low income countries, due to the high costs of hardware and
software there is a lack of efficient monitoring systems. The aim of the 4onse project (analysis of Four times Open Non-conventional
system for  Sensing the Environment),  funded by the Swiss National  Science Foundation,  is  the development of  a totally  open
solution to monitor the environment. As well as the hardware layer, a monitoring system needs a data management software usually
hosted on a server structure. As a software platform which is SOS OGC compliant, istSOS is chosen to receive, manage, validate and
distribute environmental data. In the following article a solution to support big data is presented to extend the istSOS capabilities. In
fact, a sensors network can hardly stress a data management system because of the several concurrent users and sensors and the long
time series which every weather station can easily produce. Thus, a software called istSOS-proxy is developed as a single access
point over multiple instances of istSOS whose procedures are distributed to balance the total load. First results on the effectiveness of
the solution are proved thanks to load testing simulations of different levels of concurrent users.

1. INTRODUCTION

The systematic sampling of air,  water, soil and biota data, as
well  as  the  development  of  an  Environmental  Monitoring
System  (EMS)  leads  to   information  on  the  state  of  the
environment and knowledge on hazardous processes (Artiola et
al.  2004,  Wierma,  2004).  Thus,  an  EMS  affects  socio-
economical aspects as well as the policy of the decision-makers
(Kiker et al., 2005). 
Most developing and low income countries have a poor, old or
even totally absent monitoring systems mainly due to high costs
of  acquisition  and  maintenance  process  of  hardware  and
software  components  (Snow,  2013).  In  addition,  the
conventional  systems  are  characterized  by  proprietary  and
closed source components which reflect a low interoperability
for  the  data  transmission/exchange  and  poor  flexibility  for
system customization.
The  4onse  project  (analysis  of  Four  times  Open  Non-
conventional  system  for  Sensing  the  Environment)  wants  to
develop  a  non-conventional  solution  with  an  high
interoperability and low cost standards using open hardware and
open source software to monitor and sense the environment for
lowering the impact of natural hazards in developing countries.
The project, funded by the Swiss National Science Foundation
(SNSF) and coordinated by the Institute of Earth Science (IST)
of the the University of Applied Sciences and Arts of Southern
Switzerland  (SUPSI),  in  collaboration  with  the  University  of
Moratuwa (UoM),  Sri  Lanka and other  international  partners
(see http://4onse.ch)  tries to reach the project goal installing a
fully  operating  monitoring  system  composed  by  30  weather
stations distributed  in a test area in Sri Lanka. The Oya basin,
the fourth largest river basin in Sri Lanka, has been selected as
test area. At present, this area suffers from issues like floods and
droughts. Due to the absence of real time, dense and continuous

meteorological data,  disaster warning is truly a challenging task
in this region.
The  EMS  consists  of  different  layers:  the  hardware  layer,
composed by the sensor unit; the service layer, composed by the
server  architecture  to  store,  validate  and  share  data;  the
communication  layer,  which  enables  the  data  transmission
between hardware and the software layer. This article focuses
on  the  problems  and  solutions  found  during  the  design  and
development of the service layer.
The main purpose of this work is to provide a system capable to
support big data within the istSOS management platform. This
software has been developed by SUPSI to manage EMSs and
was selected as a core technology of the 4onse system. Many
simultaneous  user  requests  and  big  database  can  stress  the
istSOS software reducing its performance and causing failures
and  long-time  responses.  While  the  number  of  users  is  not
constant and can increase in specific situations dramatically, the
database size  can be predicted according to  the measurement
frequency  and  the  number  of  sensors  on  the  network.  The
database of a monitoring system can increase its size because of
large  temporal  and/or  spatial  dimensions.  The  temporal
dimension is correlated to database size due to two main factors:
the  frequency  of  the  environmental  measurements  and  the
lifetime of the sensor. The spatial dimension impacts the size by
the number of sensors disseminated on the monitoring area.
In  agreement  with  the  INSPIRE  directive  2007/2/EC  –
regulation (EC) No 976/2009 – an environmental data system
should  provide  good  service  performance,  capacity  and
availability.  A scalable  system can  substantially  improve  the
general performances to handle a growing amount of work. The
solution proposed in this article describes the development of a
new solution, called istSOS-proxy, that works as a single access
point  over  multiple  instances  of  istSOS.  The  proposed
implementation  is  tested  using  a  load  testing  python  tool  to
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prove the effectiveness of the whole system simulating different
levels of concurrent users.
The paper is divided into three sections: 1) the description of the
materials  and  methods  used;  2)  the  presentation  of  the  test
results with the discussion; 3) the conclusions.

2. MATERIALS AND METHODS

The  following  paragraphs  describe  the  SOS  standard,  tools,
software  and  strategies  used  and  developed  to  extend  the
istSOS capabilities to better handle big data.

2.1 The Sensor Observation Service (SOS)

The SOS is  one  of  the  Open Geospatial  Consortium (OGC)
standards applicable to an EMS. The standard is based on five
key elements (Figure 1): the procedure is the SOS element that
produces  observations which  are  the  values  measured  in  a
specific time instant related to a feature of interest (for example
the position of the related procedure like the geolocalization of a
weather  station);  the  observed  property  defines  the
environmental  parameter  measured  (e.g.  air  temperature,  air
humidity, etc.) and finally the offering, which is usually referred
to a single procedure,  but can be also a group of procedures
with a common domain, specifies summary information.

Figure 1. SOS key objects example.

This standard defines a series of requests, divided in classes, to
manage sensor networks and their observations. The Core main
requirements class (Bröring et al., 2010) is composed by:

• the  GetCapabilities operation: it provides access to
the SOS general information such as the list of the
operations implemented,  the procedures,  offerings,
unit of measures available within the service, etc.;

• the  DescribeSensor: it returns the description of a
specific  sensor  of  the  system formatted  following
the SensorML OGC standard;

• the  GetObservation request:  it allows  to  retrieve
sensor  observations  using  spatial,  temporal  or
thematic filters.

Other  classes  are  optional  and  add  specific  capabilities,  e.g.
transactional operations to insert/delete a sensor or observation.

2.2 istSOS

The istSOS package provides a complete and tested platform to
manage sensors data according to the SOS standard (Cannata et
al.,  2010).  It  is  composed by a server  and a  client  side.  The
server side of the application is entirely written in Python (Van
Rossum,  2003)  and  relies  on  the  Apache  HTTP server  (The
Apache Software Foundation, 2013). The database structure is
based on PostgreSQL with the PostGIS spatial extension. The
client side of the application is completely written in Javascript
and  takes  advantage  of  the  ExtJS  library

(https://www.sencha.com/products/extjs),  the  dygraph  library
(http://dygraphs.com) and CodeMirror 2 (http://codemirror.net). 
The istSOS package comprises a nested architecture (Figure 2)
composed by three main components: 1) the istsoslib, the kernel
of the system, enables the implementation of the SOS standard;
2) the  walib offers the classes and functions required to build
the  web  interface;  3)  the  wainterface is  the  user-friendly
interface to manage the system.

Figure 2. The software architecture of istSOS.

2.3 Scaling techniques

Big data are a great challenge to face off both for hardware and
software components. For this reason, a system needs to adapt
itself  to  increasing requests  incorporating scaling in  different
forms  (Singh  et  al.,  2015).  Two  types  of  scaling  could  be
considered:   vertical  and  horizontal  scaling.  Vertical  scaling
means, basically, increasing the hardware specifications of the
server  (more and faster  CPUs,  RAM and storage units).  The
horizontal  scaling  is  characterized  by  the  distribution  of  the
workload  across  many  server  machines  to  improve  the
processing capability. 
For  the  deployment  of  the  future  4onse  EMS  it  has  been
considered  to  apply  both  scaling  types:  vertical  by  new
hardware configuration acquired and horizontal by applying a
sharding  method  to  split  massive  time-series  across  multiple
instances of istSOS.

2.4 IstSOS-proxy

While  istSOS  has  demonstrated  to  be  a  solid  platform  for
managing  environmental  data  with  good  stability  and
performances,  its  ability  of  supporting  big  data  is  still  not
guaranteed. To this end, in view of having a system capable to
support large number of concurrent users and massive datasets
while maintaining good performances, a lighting fast cascading
proxy  server,  named  istSOS-proxy,  for  multiple  instances  of
istSOS is designed and developed. This solution integrates big
data  support  with  the  abilities  to  scale  horizontally  over
distributed databases of time series.  It  basically consists in a
layer capable to redirect SOS requests and collect the responses
to and from different istSOS instances in a cloud. The solution
offers  a  unique  access  point  to  retrieve  observations  and
metadata of different Wireless Sensor Networks (Figure 3). In
addition,  thanks to this layer,  it  is  possible  to  handle  several
concurrent  users by using non-blocking network I/O (solving
tasks  asynchronously)  to  scale  many open connections.  As a
requirement, at this stage of development the mandatory SOS
requests are supported.
The istSOS-proxy is totally written in python using the Tornado
web framework (http://www.tornadoweb.org) to build the web
services and take advantage of the async programming feature.
PostgreSQL/PostGIS  is  the  chosen  database  to  store  basic
information harvested from the registered istSOS instances.
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The istSOS-proxy is composed by two main services:
• api  :  a  RESTful  service  which  can  be  used  to

configure  the  database  connection  and  add  istSOS
instances;

• sos : a web service compliant with the SOS version
1.0.0 and 2.0.0 core profiles.

Figure 3. Schema of how istSOS-proxy works.

2.5 Load testing configuration

The  solution  proposed  to  support  big  data  within  istSOS  is
preliminary validated performing a number of load tests.  The
open  source  load  testing  python  tool,  called  Locust.io
(http://locust.io/), provides  an effective way to simulate several
simultaneous users and figure out how many concurrent users  a
system can handle.
As shown in Figure 4, three Virtual Machines (VMs) (VM-0,
VM-1 and VM-2) with Ubuntu 16.04 64bit are built with the
same  hardware  specifications  (Table  1)  and  software
components (Apache 2.4.18, PostgreSQL v9.5/PostGIS v2.2.1 ,
istSOS v2.3.1).

Hardware component Number/Size

CPUs 12

RAM 12 GB

Hard Disk 300 GB SSD

Table 1. Virtual machines hardware characteristics.

The  first  VM  (VM-0)  has  a  database  composed  by  130
procedures, 1 offering, 13 observed properties and 25 years of
data for a total of 1.4 Billions of observations and 167 GB of
database size. A copy of the database is then distributed into two
more databases each hosted on a different virtual machine.
The configuration process has, as result,  the virtual machines
VM-1 and VM-2 with 65 procedures each one and the same
amount  of  offering  and  observed  properties  registered  in  the
VM-0. The resulting databases have different sizes because the
procedure  created  does  not  have  the  same  amount  of
observations. The VM-1 has about 0.6 Billions of observations,
the  VM-2  0.7  Billions.  This  situation  represents  a  real  case
study where even if the procedures are equally distributed on
the istSOS instances, the amount of observations will be most
probably  different  due  to  the  heterogeneity  of  the  sensors
specifications (frequency of measures, lifetime interval, etc.).

Figure 4. Schema of the VMs built to run the load test.

Finally, the istSOS-proxy is installed on a fourth Proxy Machine
(PM)  using Ubuntu 14.04 64bit as operating system, an Intel®
Core™ i7-5820k processor and 32 GB of RAM. Even if this is a
very powerful machine, as described in the previous paragraph,
istSOS-proxy does not require such powerful  resources because
it is composed by a light database and simple processes which
basically  validate  the  requests  and  forward  them  to  the
corresponding istSOS. Finally, the responses are parsed, mixed
and sent to the client.
Thanks  to  the  istSOS-proxy  REST services,  the  software  is
configured  to  host  the  two  istSOS  instances,  installed
respectively on the VM-1 and VM-2, gotten by distributing the
original database of the VM-0. The figure 5 shows an overview
of the configuration.

Figure 5. istSOS-proxy configuration.

The load test is thought to have three load levels: 100, 200 and
500 concurrent users load. In this way, the simulated users are
able  to  perform  the  SOS  core  requests  (GetCapabilities,
DescribeSensor and  GetObservation)  on  the  basis  of  a
predefined weight which defines the frequency of executing a
specific  request.  The  GetObservation request  is  executed  50
times more than a  GetCapabilities, the  DescribeSensor only 5
times  more.  The  weights  assignation  helps  to  create  a  real
scenario  where  observations  are  often  requested  instead  of
service  or  sensor  description.  The  GetObservation is  set  to
request a random week of data of a single procedure.
The three load levels are sequentially run both for the VM-0 and
PM for  a  time  interval  of  about  one  hour,  in  order  to  have
statistically rigorous results.

3. RESULTS AND DISCUSSION

The  load  test  results  regard  the  SOS  core  requests:
GetCapabilities, DescribeSensor and GetObservation.
While the SOS version 2.0.0 is used for the GetCapabilities and
DescribeSensor  requests,  the  GetObservation is  formatted
compliant  with  the  SOS  version  1.0.0  because  it  is  seventy
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times  lighter  than  the  version  2.0.0  where  observations  are
explicitly not aggregated in a time-series object which is lagerly
less verbose. Each GetObservation request gets one casual week
of data of a randomly selected procedure available within the
istSOS instance.

3.1 Results and discussion of VM-0 load test

The tables 2, 3 and 4 give an overview on the performances of
the VM-0 (see the previous section for the configuration of this
machine). In the first scenario using 100 concurrent users, the
total requests have an average time of less than 3.2 seconds. The
DescribeSensor average response time is 0.2 seconds for 100
and around 0.4 both for 200 and 500 data users. It is the fastest
request because the software can easily find the information of
the  procedure  and  send  them  back  to  the  user,  thanks  to  a
partially  pre-processed  response.  On  the  other  hand,
GetCapabilities and  GetObservation are  more  dynamic
processes. The first has to retrieve the basic information of all
the metadata procedures and the second has to perform queries
on  the  bigger  table  of  the  database  where  all  the  procedure
observations are archived. 
From  200  concurrent  users,  the  performances  begin  to
significantly  decrease  in  particular  for  the  GetObservation
request  which reaches an average response time of  about  14
seconds,  in the case of 200 concurrent users,  and 43 seconds
with 500 concurrent users.
The GetCapabilities time responses are, as expected, in between
the DescribeSensor and GetObservation results.

Table 2. VM-0 test results with 100 users.

Table 3. VM-0 test results with 200 users.

Table 4. VM-0 test results with 500 users.

3.2 Results and discussion of PM load test

The results of the PM load test are shown in the Tables 5, 6 and
7. The  GetCapabilities  response time is extremely fast mainly
because, once an istSOS instance is added, deleted or updated, it
is built and stored in-memory by istSOS-proxy. For this reason,
the response is much more reactive and help in decreasing the
shared load over the instances of the other requests.
The DescribeSensor does not show any significant degradation,
thus the mean response time is below 1.3 seconds also during

the  test  with  500  concurrent  users.  This  procedure  does  not
require hard processes and calculation to be performed, thus it
maintains a good level of time responses even when the work
load increases.
The GetObservation average time response is 0.6, 6.8 and 19.9
seconds  respectively  for  100,  200  and  500  users.  The
performances consistently decrease up to 500. In this case, the
median is 23 seconds, about 3 seconds higher than the average,
which confirms the high stress reached by the server structure
with the hosted istSOS instances.
As  for  the  VM-0  load  test,  there  are  no  registered  failures,
which  means  a  good  software  stability  both  for  istSOS and
istSOS-proxy.

Table 5. PM test results with 100 users (using istSOS-proxy).

Table 6. PM test results with 200 users (using istSOS-proxy).

Table 7. PM Test results with 500 users (using istSOS-proxy).

3.3 The comparison between VM-0 and PM results

Starting from the total  number of requests solved by the two
different configurations (Figure 6), it is possible to show that
the PM resolves the SOS requests faster. In one hour, the VM-0
solves from 36000 simulating 100 data users to 42000 requests
simulating 500 users, while the PM from 60000 to over 70000
when 500 concurrent users are simulated. The result is achieved
thanks  to  the  istSOS-proxy  capability  to  scale  better  over
multiple connections together with the faster request resolution
of the istSOS instances due to the less work load.
The GetCapabilities (Figure 7 and 8) response time is extremely
improved due to the cache system used only for this type of
SOS request on the PM. The comparison between the VM-0 and
PM is definitely won by the new proposed solution.
The Figures 9 and 10 describe similar behaviour between the
two configurations for the DescribeSensor. The PM is slower up
to 200 users while is faster with 100 simulated users. Even if the
differences  may not  be relevant  from a user  perspective,  the

Method GET GET GET
Name DescribeSensor (ms) GetCapabilities (ms) GetObservation (ms)
# requests 3686 790 36775
# failures 0 0 0
Median response time 120 2100 3300
Average response time 204 3130 3488
Min response time 19 629 172
Max response time 5739 23572 25634
Average Content Size 7045 390621 121180
Requests/s 1.03 0.22 10.26

Method GET GET GET
Name DescribeSensor (ms) GetCapabilities (ms) GetObservation (ms)
# requests 5271 1040 53440
# failures 0 0 0
Median response time 52 15 540
Average response time 79 17 640
Min response time 31 9 164
Max response time 588 212 3511
Average Content Size 6247 414920 121252
Requests/s 1.9 0.5 13.3

Method GET GET GET
Name DescribeSensor (ms) GetCapabilities (ms) GetObservation (ms)
# requests 5591 1091 55115
# failures 0 0 0
Median response time 110 15 950
Average response time 454 18 6876
Min response time 29 9 126
Max response time 5227 212 39952
Average Content Size 6247 414920 121276
Requests/s 1.5 0.3 14.3

Method GET GET GET
Name DescribeSensor (ms) GetCapabilities (ms) GetObservation (ms)
# requests 6787 1403 68227
# failures 0 0 0
Median response time 1300 15 23000
Average response time 1312 23 19900
Min response time 33 8 137
Max response time 5506 360 41741
Average Content Size 6246 414920 121281
Requests/s 2.4 0.6 23.6

Method GET GET GET
Name DescribeSensor GetCapabilities GetObservation
# requests 3435 830 34409
# failures 0 0 0
Median response time 210 3900 4800
Average response time 384 9524 14460
Min response time 23 668 664
Max response time 8585 55609 73508
Average Content Size 7045 390621 121176
Requests/s 1.5 0.4 8.5

Method GET GET GET
Name DescribeSensor GetCapabilities GetObservation
# requests 3673 945 35991
# failures 0 0 0
Median response time 280 8900 45000
Average response time 457 22573 43576
Min response time 30 1089 364
Max response time 16683 114864 102248
Average Content Size 7045 390621 121180
Requests/s 1 0.1 8.5
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worse results are probably due to the tiny work load needed by
this request. For this reason, the istSOS-proxy, adding its own
algorithm,  can decrease the performances of this request, even
if,  as  previously  written,  not  significance  deviation  can  be
marked.
The  GetObservation, together with the  GetCapabilities, is the
type  of  SOS  request  which  take  more  advantage  from  the
proposed  solution.  As  shown  in  the  Figure  11  and  12,  the
performances are almost doubled. The less work load, due to the
improvements  developed  with  the  istSOS-proxy,  brings  the
response time from 15 for the VM-0 to 6.9 seconds for the PM
with 200 concurrent users. When 500 users are simulated, by
the python load testing tool, the performances are improved by
a factor of two (from 43 seconds average response time to 20).

Figure  6.  Number  of  total  requests  with  100,  200  and  500
concurrent users both for the VM-0 and PM.

Figure  7.  Median  response  time  in  milliseconds  for  the
GetCapabilities request  with  100,  200  and  500
concurrent users both for the VM-0 and PM.

Figure  8.  Average  response  time  in  milliseconds  for  the
GetCapabilities request  with  100,  200  and  500
concurrent users both for the VM-0 and PM.

Figure  9.  Median  response  time  in  milliseconds  for  the
DescribeSensor request  with  100,  200  and  500
concurrent users both for the VM-0 and PM.

Figure  10.  Average  response  time  in  milliseconds  for  the
DescribeSensor request  with  100,  200  and  500
concurrent users both for the VM-0 and PM.

Figure  11.  Median  response  time  in  milliseconds  for  the
GetObservation request  with  100,  200  and  500
concurrent users both for the VM-0 and PM.

Figure  12.  Average  response  time  in  milliseconds  for  the
GetObservation request  with  100,  200  and  500
concurrent users both for the VM-0 and PM.
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4. CONCLUSIONS

The  4onse  research  project  is  focused  on  setting  up  a  fully
accessible, royalty free and low cost climate monitoring system
based on open hardware, software and standards to study if non-
conventional systems can empower developing countries with
EMS.
Since and EMS is composed by three layer (hardware, service
and  communication  layer),  a  solution  to  extend  the  istSOS
capabilities is presented within the service layer. Large amount
of  sensors  and  several  concurrent  users  may  characterize  an
EMS. Thus, istSOS, while demonstrating good stability, needs
to  improve  its  ability  to  scale  on  increased  amount  of  work
caused by massive datasets  and several  I/O requests.  To this
end,  the  istSOS-proxy  has  been  implemented.  The  tests
conducted demonstrated that the adopted solution contributes in
increasing  EMS  performance  by  distributing  massive  time-
series database over different server machines. In addition, the
used cache system can offer fast access to the static information
and help in the decreasing of the general work load.
More  tests  are  required,  particularly  to  better  understand  the
scaling gain under different configurations. Nevertheless, these
preliminary  results  are  very  promising  and  confirm  the
effectveness  of  the adopted approach.  This  solution  does  not
prevent the development of the istSOS itself,  which needs to
update  the  core  component  in  order  to  effectively  use  new
software technologies that better fit massive data processing.
Next future developments of istSOS-proxy include a web user-
friendly  interface  as  well  as  some  new  features  to  further
improve the performances and the strategy used to better handle
big data. Once the stable version will be released, the istSOS-
proxy source  code  is  going  to  be  published  under  the  GNU
General Public License (GPL).
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