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ABSTRACT:

Temperature is one of the main drivers of ecological processes. The availability of temporally and spatially continuous temperature
time series is crucial in different research and application fields, such as epidemiology and control of zoonotic diseases. In 2010, several
West Nile virus (WNV) outbreaks in humans were observed in Europe, with the largest number of cases recorded in Greece. Human
cases continued to occur for four more years. The occurrence of the 2010’s outbreak in Greece has been related to positive anomalies in
temperature. Currently available remote sensing time series might provide the temporal and spatial coverage needed to assess this kind
of hypothesis. However, the main problem with remotely sensed temperature are the gaps caused by cloud cover. With the objective
of testing the former hypothesis, we reconstructed daily MODIS Land Surface Temperature (LST) data and derived several indices
that are known or hypothesized to be related to mosquito populations, WNV transmission or risk of disease since they might constitute
proxies for favoring or limiting conditions. We present the first results of the comparisons of time series of LST-derived indices among
locations with WNV human cases and municipalities with and without reported WNV infection in Greece between 2010 and 2014.

1. INTRODUCTION

West Nile virus (WNV) is one of the mosquito-borne flavivirus
most widely distributed in the world. The virus causes a vari-
ety of symptoms to humans: from an asymptomatic infection to
severe and even fatal encephalitis (Petersen et al., 2013). Wild
birds are the major reservoirs of the virus and the main transmis-
sion route is through Culex mosquito-vectors. Most patients with
WNV infections do not present any symptoms or only display
mild flu-like symptoms, but in some cases people develop severe
illness involving the central nervous system (Marka et al., 2013).
Human cases have been reported from several countries since the
1960s. However, the frequency of reported outbreaks with severe
symptoms has increased over the last 15–20 years (Calistri et al.,
2010), especially in Europe and the United States.

In 2010, several WNV outbreaks in humans were observed all
over Europe, however the largest number of cases was recorded
in Greece (Danis et al., 2011). After that, human cases were
reported for four more years, during a transmission cycle that
goes from June to September (Hadjichristodoulou et al., 2015).
The first cases in 2010 were reported in northern Greece (central
Macedonia) near the city of Thessaloniki. In subsequent years,
the disease further spread both southwards and eastwards, and
cases were reported even in the highly-populated Greek capital
city of Athens. More than 600 laboratory confirmed cases and 73

∗Corresponding author

deaths were reported between the years 2010 and 2014, making
this outbreak the largest of WNV disease in Europe (Pervanidou
et al., 2014).

Several factors may be involved in the determination of a WNV
outbreak onset. Environmental conditions affecting both avian
reservoir hosts and the mosquito vector populations, as well as
human behavior and habitat modifications, may regulate WNV
amplification and subsequently trigger an outbreak (Gibbs et al.,
2006). The environmental conditions associated with the onset
of WNV human cases in Europe, despite being investigated by
multiple studies, are partly unknown (Paz and Semenza, 2013,
Tran et al., 2014, Marcantonio et al., 2015, Semenza et al., 2016).
The deficiency of complete and homogeneous continental-wide
datasets is one of the underlying reasons for this lack of knowl-
edge. On the contrary, datasets collected at a more local scale,
even though representative of only a fraction of the European
continent, may provide more robust results. These results may,
in certain instance, be transferred to the continental scale.

Some of the variables that have been found to be correlated
with WNV epidemiology and might be considered risk factors
are: positive temperature anomalies in July, high summer tem-
peratures, summer drought, positive anomalies in water index
in June, number of districts with WNV infections the previous
year, presence of wetlands, irrigated croplands and fragmented
forest, type of bird migration route crossing the district under
study, among others (Gibbs et al., 2006, Pradier et al., 2008,
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Paz and Semenza, 2013, Tran et al., 2014, Marcantonio et al.,
2015). These variables, though related to WNV human cases,
might be acting indirectly through their effects over birds or
mosquito populations, and over virus amplification. In the case of
mosquito-borne pathogens such as WNV, higher than usual tem-
peratures are known to influence vector competence, to acceler-
ate virus replication within mosquitoes (extrinsic incubation pe-
riod, EIP), to boost mosquitoes reproduction rates, and to prolong
their breeding season (Gibbs et al., 2006, Paz and Albersheim,
2008). As such, temperature is one of the main environmental
factors addressed when studying vector-borne viruses carried by
mosquitoes (Paz and Albersheim, 2008, Bisanzio et al., 2011, Ros
et al., 2014, Chaskopoulou et al., 2016).

The occurrence of the 2010’s emergence of WNV in Greece has
been indeed related to positive anomalies in temperature that
year (Danis et al., 2011). Even though some attempts have been
made to test this hypothesis, they have been based on either sparse
data from meteorological stations (Paz et al., 2013) or on data de-
rived from coarse spatial and temporal temperature models that
do not match the time frame of Greece WNV outbreaks (Vali-
akos et al., 2014). Currently available remote sensing time series,
however, might provide the temporal and spatial coverage needed
to better assess the previous hypothesis.

The MODIS LST sensor, on board of Terra and Aqua satellites,
registers temperature four times a day with a spatial resolution of
approximately 1 km. Recently, NASA made publicly available
a new re-processed version 6 of their products, providing sev-
eral improvements with regards to previous versions. However,
the main problem with remotely sensed temperature is the occur-
rence of gaps, mostly caused by cloud cover. Hence, data must
be reconstructed, i.e. gap filled in order to be useful (Neteler,
2010, Metz et al., 2014). In this sense, long standing FOSS4G
such as GRASS GIS (Neteler et al., 2012, GRASS Development
Team, 2017) provides at present more tools than ever to easily
handle and process hundreds of thousands of maps and fill gaps
in remote sensing time series (Gebbert and Pebesma, 2014, Geb-
bert and Pebesma, 2017, Metz and GRASS Development Team,
2017a, Metz and GRASS Development Team, 2017b, Metz and
GRASS Development Team, 2017d).

Given that temperature is one of the main drivers of ecological
processes related to vector-borne viruses carried by mosquitoes
and that we have the data and tools available to get temporally and
spatially continuous temperature time series, our question is then:
Can MODIS LST (and derived LST indices) inform us about spa-
tial and temporal trends or changes in temperature that might have
contributed to the occurrence of WNV outbreaks in Greece? Here
we present a first approach to the problem, however our ultimate
goal is to study and model the relationship of different environ-
mental variables and the incidence of human WNV infections in
Greece. In this first paper, we present a yearly analysis of LST
and derived related variables in sites with reported cases, with the
intention of identifying temperature related differences in the pe-
riods before and after the first outbreak and municipalities with
and without reported cases.

2. MAIN BODY

2.1 Materials and Methods

2.1.1 Data used: Our study area is Greece which has a
surface of 131.957 km2. For the reconstruction of satellite

data however, we used a larger area which boundaries are:
North: 42°1’12”N, East: 15°24’6”E, South: 34°41’47”N, West:
34°23’53”E. We used the daily LST Day and Night from
MOD11A1 and MYD11A1 version 6 products (1 km of spa-
tial resolution) from January 1st, 2003 to December 31st, 2016.
The emissivity band in the MODIS LST products and the 30
arc-seconds Global Multi-resolution Terrain Elevation Data 2010
(GMTED2010) were used as covariates. Greek meteorological
stations from the public database Global Summary of the Month
(GSOM1) were used as validation set for the obtained recon-
structed LST.

The epidemiological dataset was obtained by the European Cen-
tre for Disease Prevention and Control (ECDC). The data con-
sisted of the geo-location (latitude and longitude coordinates) of
all WNV fever and encephalitis human cases reported in Greece
from July 2010 to September 2014.

2.1.2 LST data processing: The raw data downloaded from
MODIS LP DAAC site (4 images per day) were mosaicked and
reprojected to Lambert azimuthal equal area (EU LAEA, EPSG
code 3035) with nearest neighbor as the resampling method.
Nearest neighbor sampling was chosen in order to preserve the
bit pattern in the quality assessment (QA) band. The reprojected
MODIS LST values were then filtered with the mandatory and
LST QA band allowing for an LST error lower than 3 K. Our
LST reconstruction method consisted of temporal interpolation to
partially reconstruct Day and Night daily LST (fill short gaps in
time) followed by spatial interpolation with covariates and outlier
filtering to fill remaining gaps in space. This was done for each
time series separately (MOD11A1 Day and Night, MYD11A1
Day and Night). Finally, we aggregated the four reconstructed
time series into a daily time series in order to obtain average, min-
imum and maximum temperature estimates. To asses the quality
of the reconstruction, we compared our reconstructed monthy ag-
gregated time series with data from Greek meteorological stations
from the GSOM database.

2.1.3 Data analysis: We aggregated the daily reconstructed
LST time series into months, seasons and years by means of
arithmetic average. This yielded the average temperature, the av-
erage minimum temperature and the average maximum temper-
ature for each period (i.e.: month, season, year). Seasons were
defined as follows: winter (December, January, February), spring
(March, April, May), summer (June, July, August) and autumn
(September, October, November). We then estimated a series
of biologically meaningful variables that are known or hypoth-
esized to affect mosquito populations, WNV transmission or dis-
ease risk. The thresholds used for deriving LST-related variables
were drawn from bibliography on both mosquitoes survival and
development and virus amplification (Rueda et al., 1990, Vino-
gradova, 2000, Reisen et al., 2006, Tachiiri et al., 2006, Gong et
al., 2011, Ciota et al., 2014). The following list of annual indices
were derived from reconstructed daily LST:

• Annual averages of minimum, maximum and average tem-
perature.

• Annual standardized anomalies for average, maximum and
minimum temperature: estimated as the difference between
the yearly value and the long-term average, divided by the
long-term standard deviation of the corresponding variable.
For example: (Tavi - Average(Tav)) / sd(Tav), where i is
2003, 2004... 2016 and Tav is the average temperature.

1https://www.ncdc.noaa.gov/cdo-web/datasets/GSOM/

locations/FIPS:GR/detail
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• Annual spring warming: estimated as the slope of the linear
regression of daily average temperature from February 1st to
June 30th.

• Annual autumnal cooling: estimated as the slope of the lin-
ear regression of daily average temperature from October 1st

to December 31st.
• Annual number of days with minimum temperature ≤ 0° C.
• Annual absolute minimum temperature.
• Annual first day with minimum temperature ≤ 0° C.
• Annual number of summer days: estimated as the count of

days with average temperature ≥ 25° C.
• Annual number of tropical nights: estimated as the count of

days with average minimum temperature ≥ 20° C.
• Annual number of days with average temperature ≥ 20 and

≤ 30° C, which is assumed to be the optimal development
temperature for mosquitoes.

• Maximum annual number of consecutive summer days (av-
erage temperature ≥ 25° C).

• Maximum annual number of consecutive freezing days (av-
erage minimum temperature ≤ 0° C).

• Average temperature of mosquito growing season: esti-
mated as the average of daily average temperature between
April 1st and October 31st each year.

• Average temperature of WNV transmision season: esti-
mated as the average of daily average temperature between
June 1st and October 31st each year.

• Length, start and end dates of mosquito growing season:
following literature we chose a threshold of 10° C to iden-
tify annually the potential mosquito growing season and ob-
tain the corresponding length, start and end dates (Metz and
GRASS Development Team, 2017c).

• Length, start and end dates of WNV transmision season: fol-
lowing literature we chose a threshold of 14.3° C to annually
identify the potential WNV transmission season and obtain
the corresponding length, start and end dates (Reisen et al.,
2006, Metz and GRASS Development Team, 2017c).

• Number of potential mosquito cycles per year and start and
end date of each cycle: These indices were estimated by ac-
cumulating biologically effective degree days (BEDD) from
the 4 maps per day reconstructed LST time series. Thresh-
olds used for accumulation were 10° C and a cutoff of
34° C (Rueda et al., 1990, Vinogradova, 2000). After the
accumulation was done, the next step was to identify the po-
tential occurrence of mosquito cycles (from egg hatching to
adult emergence), following Culex mosquitoes degree days
(DD) requirements (Tachiiri et al., 2006), obtain length,
start and end date. Finally, we aggregated the time series
containing indicators of each cycle, to get the maximum
number of potential cycles per pixel.

• Number of potential EIP per year and start and end date
of each cycle: These indices were estimated as described
above, but using different base and cutoff temperatures:
14.3° C and 32° C, respectively (Reisen et al., 2006, Kil-
patrick et al., 2008). The identification of potential EIPs was
done following (Reisen et al., 2006), who propose a median
EIP of 109 DD.

In the case of annual number of days with minimum tempera-
ture ≤ 0° C, the annual absolute minimum temperature and the
first day of the year with minimum temperature below 0° C, the
aggregation is performed considering a year starting in July and
finishing in June of the following calendar year, since we were
interested in catching the first colds in autumn that might affect
the end of growing season in mosquitoes and their survival.

All the described variables were extracted for the geo-locations
with reported WNV human cases, to obtain annual time series of
each variable and compare the environment before and after the
first WNV outbreak. We spatially aggregated the environmental
LST-derived indices (average, median, standard deviation, mini-
mum and maximum) by municipalities to compare conditions in
areas with and without reported WNV infection.

2.1.4 Software: MODIS data was dowloaded by means of
pyModis library2. All the remote sensing processing and analysis
was done in GRASS GIS (GRASS Development Team, 2017).
For plots and comparisons, GRASS vector maps were read into
R (R Core Team, 2017) through the rgrass7 and sp packages (Bi-
vand, 2016, Bivand et al., 2013). Further plots were done with
ggplot2 and spacetime packages (Wickham, 2016, Bivand et al.,
2013).

2.2 Results

2.2.1 Comparison of LST with GSOM: We used a linear
model to address the relation between monthly reconstructed av-
erage LST and and average monthly temperature from GSOM
meteorological stations in the period 2003-2016. The global R2

was 0.97 (Figure 1).

Figure 1. Linear regression model between monthly
reconstructed average LST [° C] and monthly average

temperatures [° C] from meteorological stations in Greece
(GSOM database). Period 2003-2016.

Since the average temperature in GSOM data is estimated as:
TAV G = (TMAX − TMIN)/2, GSOM TAVG should be
lower in the summer months and higher in winter because in sum-
mer, days are longer than nights, and in winter, days are shorter
than nights. Monthly average MODIS LST therefore, based on
4 values should thus be more accurate than GSOM based on 2
values. Besides, for summer months average reconstructed LST
shows higher values than GSOM data and for winter months, the
opposite, as expected (Figure 2).

2.2.2 WNV human cases: In 2010, Greece underwent an
epidemic of WNV infection, with 262 clinical human cases. The
virus overwintered and spread across the country in the following
years (2011-2014) resulting in more than 600 confirmed human
infections (Chaskopoulou et al., 2016). Figure 3 shows the the
temporal distribution of the total number of cases per year and
per month (years aggregated) between 2010 and 2014.

2.2.3 LST-derived indices: Time series of LST-derived in-
dexes in localities with reported WNV human infections showed
(in most cases) high variability among localities when split per

2http://www.pymodis.org/
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Figure 2. Monthly differences between monthly reconstructed
average LST [° C] and monthly average temperatures [° C] from

meteorological stations in Greece (GSOM database). Period
2003-2016.

(a) Number of WNV human cases per year
(2010-2014).

(b) Number of cases per month (years
2010-2014 aggregated).

Figure 3. WNV human cases in the period 2010-2014 in Greece.
Source: European Centre for Disease Prevention and Control

(ECDC).

year of onset of the infection. Especially in the cases of 2012 and
2013 infections, a bimodal distribution was observed, coinciding
with the fact that during those years there were two main different
areas in which the outbreaks took place (Central-East Macedonia
and Attica). When aggregated by municipality, no clear pattern
was observed either. For example, Figure 4 shows average LST
in municipalities with more than 25 human cases.

Yearly LST indexes (average, minimum average, maximum av-
erage) did not show any notorious difference in localities with
reported human cases, nor when spatially aggregated in munici-
palities. However, when considering the standardized anomalies,
we observed that 2010 showed positive anomalies in the average

Figure 4. Yearly average LST [° C] in municipalities with more
than 25 human cases. References: 17: Nestos, 20: Avdera, 22:

Topeiros, 23: Thessaloniki, 38: Alexandrias, 44: Pella.

minimum temperature during 2010, i.e.: minimum temperatures
were higher that year (Figure 5). This trend was consistent and
continuous from 2012 onwards and it is also evident when re-
viewing individual points, i.e: the locality with the highest num-
ber of cases (Figure 6).

The slope of spring warming was steeper in 2010, compared to
that in 2009, being highest (steepest) in 2012, year of the second
most important number of reported WNV human cases (Figure
7). Autumnal cooling in 2010 (slope of September, October and
November average temperatures, after the main outbreak) was the
steepest cooling observed, both in time and space (not shown).

The number of days with average temperature higher than 20 and
lower than 30° C was higher in 2010 in Pella municipality (the
municipality with the highest number of reported cases). This
index also showed higher values for Pella municipality the year
before the main outbreak. On the other hand, the number of trop-
ical nights (days with minimum temperature higher than 20° C)
appeared to be higher in 2010 in localities in which the first out-
break took place. This was also visible at municipality level both
for 2010 and 2012. Moreover, the number of freezing days and
the maximum number of consecutive freezing days in 2009-2010
(July 2009 - June 2010) appeared to be lower in the localities
and municipalities where the main outbreak was observed later
in 2010 (Figure 8).

Both the number of potential mosquito cycles and WNV EIPs, as
well as the length of the mosquito growing season and the WNV
transmission season were higher in 2012 and 2013. The differ-
ences in the length of seasons are visible in both the localities
with reported human cases and when aggregated by municipali-
ties. For the localities with reported cases in 2010, however, there
seems to be three groups that depict different season lengths (Fig-
ure 9).

2.3 Discussion

This work constitutes a first approach to the study of WNV out-
breaks in Greece as a function of remotely sensed environmental
variables. Since temperature is one of the main drivers of insects
life cycles and the WNV is a mosquito-borne pathogen, the oc-
currence of the disease (given that hosts, vectors and pathogens
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(a) Standardized anomalies in the average minimum LST for
locations with WNV reported cases split by year of onset.

(b) Standardized anomalies in the average minimum LST per
municipality (2003-2016). Standardized anomalies per pixel were

aggregated with the arithmetic average by municipality.

Figure 5. Standardized anomalies in the average minimum LST.

Figure 6. Yearly average LST [° C] in the locality with the
highest number of reported WNV human cases between 2010

and 2014.

coexist in the same area) should be related to temperature, too.
It is well-known that higher than usual temperatures might in-

Figure 7. Spring warming slope for locations with WNV
reported cases split by year of onset.

fluence vector competence, accelerate virus replication within
mosquitoes (shortening the extrinsic incubation period, EIP),
boost mosquito reproduction rates, and extend their breeding sea-
son (Gibbs et al., 2006, Paz and Albersheim, 2008).

Remotely sensed temperatures come handy when resources are
limited and meteorological stations scarce (most of the times).
Sensors such as MODIS on board of Terra and Aqua satellites
provide temporally and spatially continuous data. However, re-
motely sensed LST is not free of problems, the main issue is
the occurrence of gaps in the data due to cloud cover. Hence,
LST needs to be gap-filled first to become fully useful (Neteler,
2010, Metz et al., 2014). A general evaluation of our recon-
struction showed good global relationship between air temper-
ature from meteorological stations in Greece and reconstructed
MODIS LST. Since it was previously suggested that climatic con-
ditions (higher temperatures, especially) might have favored the
occurrence of the 2010 WNV outbreak in Greece (Danis et al.,
2011) and Europe in general (Paz and Semenza, 2013), our main
objective was to identify temperature-related variables that might
show temporal differences in localities with reported human cases
and spatio-temporal differences in areas with and without WNV
infection. To this aim we estimated diverse indices that are known
or hypothesized to represent limiting or favoring conditions for
either mosquito or pathogen development and survival based on
thresholds reported in the literature (Rueda et al., 1990, Vino-
gradova, 2000, Reisen et al., 2006, Tachiiri et al., 2006, Gong et
al., 2011, Ciota et al., 2014).

Annual LST summaries, such as average, minimum and max-
imum did not show important spatio-temporal variations, how-
ever a trend towards higher temperatures was observed when con-
sidering the annual standardized anomalies in average and mini-
mum LST. These differences, especially in minimum temperature
anomalies, were particularly evident in the year 2010, when the
first outbreak was recorded. These findings, though preliminar,
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(a) Median number of days with average LST between 20 and
30° C.

(b) Median number of days with average minimum LST higher
than 20° C.

(c) Maximum number of consecutive days with average
minimum LST below 0° C.

Figure 8. Indices showing number of days with average LST
between 20 and 30° C, number of days with average minimum
LST higher than 20° C and maximum number of consecutive

freezing days aggregated by municipality.

are consistent with the hypothesis that higher temperatures might
have favored the onset of the WNV outbreak (Danis et al., 2011).
In the same line, we observed that the slope of spring warming
was steeper in 2010 compared to the previous years. Further-
more, indices that depict counts of days with conditions supposed
to be limiting (number of consecutive freezing days) or favorable
(number of tropical nights and number of days with temperature
between 20 and 30° C) for mosquitos and WNV, also showed
differences consistent with the former hypothesis. Moreover, the
number of days with average temperature between 20 and 30° C
showed higher values in Pella municipality the year before the
main outbreak (i.e.: 2009), when bird surveys in hunting areas al-
ready detected WNV antibodies (Valiakos et al., 2014). The num-
ber of potential mosquito cycles and EIPs as well as their median
length however, only showed marked differences for years 2012
and 2013. Meanwhile 2012 showed more than 150 human cases,

(a) Length of mosquito growing season.

(b) Length of WNV transmission season.

Figure 9. Length (in days) of mosquito and WNV seasons.

in 2013 the number of human cases was reduced to approximately
one half of the previous year. This reduction in the number of
cases, while conditions seem favorable might be highly likely re-
lated to human behaviour, control measures over mosquito pop-
ulations (Papa et al., 2013, Chaskopoulou et al., 2016) and in-
munization of the bird and human population (Papa et al., 2013,
Hadjichristodoulou et al., 2015, Chaskopoulou et al., 2016).

The inspection and analysis of annual LST-derived indices for
localities and municipalities (spatially aggregated) with reported
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WNV human cases showed that a higher temporal resolution
(i.e.: monthly or weekly) might be needed to better understand
the relationship of outbreak onset and number of cases (or inci-
dence) with temperature derived indices. Furthermore, if these
indices are intended to be used to trigger early warnings and pub-
lic health campaigns, higher temporal resolution is necessary to
detect more specific and relevant differences. Notwithstanding
this, reconstructed LST and the derived indices allowed us to
identify likely meaningful differences that support the hypothe-
sis of a favorable environment (even when spatially aggregated
by municipalities with the average or the median).

Though some differences in LST-derived indices were observed
both when considering localities and municipalities, some others
are only (or better) observed in one or the other spatial scale. Not
only that but there seems to be also an important level of variabil-
ity in time series of localities and municipalities with reported
cases (Figure 4). Furthermore, it might be possible as well that
different variables or combination of variables might have trig-
gered the onset of cases each year. The absence of reported WNV
human cases in 2015 and 20163, even though the environmental
conditions seemed to be propicious, remain an open question.

On the other hand, some other variables relevant for mosquito
populations such as humidity, amount of sun hours, availability
of breeding sites and vegetation, might interact with temperature
and should be included in models as well. For example, the area
in which the first outbreak started in the region of Central Mace-
donia is characterized by many wetlands, rivers and lakes that
serve as stopping areas for migratory birds during their migration
from overwintering areas in Africa to breeding sites in northern
Europe and viceversa (Chaskopoulou et al., 2016). The relative
importance of different variables has not yet been evaluated.

The lack of differences in some indices at municipality level
might be due to the loss of detail caused by the spatial aggrega-
tion of already rather coarse data, a phenomenon known as mod-
ifiable area unit problem (MAUP) (Atkinson and Graham, 2006).
However, since the exact infection sites are unknown and only
localities are reported, a resolution of 1 km might compensate for
the mismatch between mosquito habitats and uncertainty in the
precise identification of the infection sites. On the other hand, it
might be as well that the thresholds used to derive some of the
variables were not the optimal ones, since most of them (if not
all) were obtained under laboratory conditions. This is an aspect
that requires further investigation and especially, field surveys or
experiments.

3. CONCLUSIONS

This study highlights the usefulness of remote sensing, and es-
pecially LST, for the characterization and quantification of tem-
perature changes. The major advantage of MODIS LST is that
it captures climatic conditions with short revisit time and global
coverage. This might reduce the need of meteorological field
data, especially when resources are limited. Satellite tracking of
LST is indeed useful and might be complementary to mosquito
and virus surveillance and monitoring activities. Furthermore, the
set of LST indices derived might be extended to other areas and
vector-borne pathogens whose ecology and biology is strongly
connected to temperature variations. Besides the application and
the results per se, which are yet preliminar, the relevance of this

3http://ecdc.europa.eu/en/healthtopics/west_nile_

fever/West-Nile-fever-maps/Pages/historical-data.aspx

study is also related to the use of open data and free and open
source software that provide the advantage of automatization and
reproducibility.

Further research is planned to actually relate this environmental
information with WNV cases occurrence and incidence, in order
to identify the temporal windows relevant to enhance the monitor-
ing and early warning systems to trigger vector control programs
and public education campaigns. We intend to continue working
in this topic by using higher temporal resolution in response and
independent variables, other remotely sensed variables and mod-
els that allow the inclusion of spatial and temporal dependencies.
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