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ABSTRACT:

The inconsistency between the freely available remote sensing datasets and crowd-sourced data from the resolution perspective forms
a big challenge in the context of data fusion. In classical classification problems, crowd-sourced data are represented as points that
may or not be located within the same pixel. This discrepancy can result in having mixed pixels that could be unjustly classified.
Moreover, it leads to failure in retaining sufficient level of details from data inferences. In this paper we propose a method that can
preserve detailed inferences from remote sensing datasets accompanied with crowd-sourced data. We show that advanced machine
learning techniques can be utilized towards this objective. The proposed method relies on two steps, firstly we enhance the spatial
resolution of  the satellite  image using Convolutional  Neural  Networks and secondly we fuse the crowd-sourced data  with the
upscaled version of the satellite image. However, the covered scope in this paper is concerning the first step. Results show that CNN
can enhance Landsat 8 scenes resolution visually and quantitatively. 

1. INTRODUCTION

The  current  improvements  in  remote  sensing  data  resolution
provides  more  variety  of  choices  in  extracting  meaningful
information for different kinds of remote sensing applications.
Not only the most appropriate resolution can be obtained, but
also  the  fusion  between  different  resolutions  is  enabled  to
produce better  outcomes.  Utilizing from these improvements,
remote sensing scientists have developed numerous algorithms
(Padarian et al. 2015) (Wu 2016) (Camps-Valls 2009) to extract
features, objects and patterns that helped in data interpretation
and  analysis  operations.  However,  most  of  the  followed
methodologies were developed originally to fit with the recently
launched satellites  e.g.  WorldView-2,  3  and 4 or  Quickbird .
(Gueguen et al. 2017) (Johnson et al. 2013) which are producing
very high resolution satellite images.

Considering global land cover applications, the majority of the
products which available nowadays are using low resolution e.g.
GLC2000 (JRC 2015) and MODIS in order to cover huge areas
which  results  in  inaccurate  results  in  some cases  (See  et  al.
2015).  The  ongoing  movement  towards  producing  higher
resolution global landcover maps is trying to fill the gap of the
accuracy and produce an overall enhanced products which will
take land cover maps to the next level.

However,  whether  used  in  training  or  as  a  reference dataset,
ground data is still critical for remote sensing data processing
algorithms. Insufficient ground data has been the big issue in
remote  sensing  data  processing.  Therefore,  even  though
adopting various advanced image processing techniques, remote
sensing data analysis still requires lots of human interaction and
the  level  of  automation  remains  low.  Concurrently,  crowd-
sourced  data  arose  as  an  auxiliary  factor  that  can  provide
support to the developed algorithms (Ahmed et al. 2015) (Fritz
et al.  2012) (Schmitt & Zhu 2016) as an additional source of
information for enhancing/evaluating the results. 

Nevertheless,  the  inconsistency  between  the  freely  available
remote  sensing  datasets  and  crowd-sourced  data  resolutions
forms a big challenge in the context of data fusion. In classical
classification problems, crowd-sourced data are represented as
points that may be or not located within the same pixel. This
discrepancy  can  result  in  having  mixed  pixels  that  could  be
unjustly  classified  which  leads  to  the  failure  in  retaining
sufficient level of details from data inferences (See Fig.1) 

Since  it  is  difficult  to  update  the  attached  sensors  on  the
launched satellites, post-processing is the most attainable option
that could be achieved to enhance spatial resolution. Research
and development efforts were going towards finding solutions
that can bring out the best of the freely available data sources
altogether. 

Artificial  intelligence  is  one  of  the  computer  science
specializations  that  attempts  to  model  all  facets of  human
intelligence  (Russell  et  al.  1995) .  As  a  sub-field,  Machine
Learning  (ML)  is  concerned  with  creating  systems  that  can
adapt to different situations/problems and giving the computers
the ability  to  think by learning.  Machine learning algorithms
have been used in many applications such as computer vision,
natural  language  processing,  speech  recognition,  and  remote
sensing also. Due to the complexity of information contained in
remote sensing scenes, which demands massive training dataset,
the use of machine learning for remote sensing image analysis is
still at the early stage. However, the increase of access to free
medium-low  resolution  satellite  imagery  motivated  remote
sensing scientists to find advanced processing techniques that
can help in enhancing satellite images spatial resolution.

Satellite image resolution enhancement is one of the problems
that  machine  learning  has  a  big  potential  to  contribute  in.
Decreasing the GSD “Ground Sampling Distance” aka Super-
Resolution is the process in which we synthesize the sub-pixel
information  in  one  image  to  increase  its  resolution.  Machine
learning algorithms contribute here by learning the construction
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process  of  the  detailed  sub-pixel  level  in  the  super-resolved
image.

Figure 1. Single Landsat 8 pixel 30x30m that contains tens of
crowd-sourced data points (Blue=>water,

Green=> vegetation, Red=>built-up) and all resides within same
pixel which leads to confuse the

classifier and gives false predicted values.

Several  Super-Resolution  techniques  gained  attention  mostly
from computer scientists  (Dong et al. 2015) (Bevilacqua et al.
2012) (Hong Chang et  al.  2004) yet  to  have  the  same from
remote  sensing  communities.  Some  recent  research  done  on
remote  sensing  data  e.g.  (Al-shabili  et  al.  2015) but  still
focusing on gray scale images and didn't provide ground truth
images to be used in comparison to the up-scaled results. While
(Huang et al. 2015) applied DNN “Deep Neural Networks” for
pansharpening purpose by learning the high resolution features
from  the  panchromatic  bands  available  from  commercial
satellites such as  Ikonos and Quickbird and MS “Multi Spectral
” containing RGB and NIR “Near InfraRed”. 

In this paper, we adopt the super-resolution algorithm written by
(Dong  et  al.  2015) which  is  developed  originally  for  non-
satellite  images.  The  contribution  here  is  modifying  the
algorithm  to  work  with  high  dimensional  remote  sensing
datasets  and  retaining  the  state-of-the-art  performance  with
smaller  training  datasets.  The  structure  of  the  paper  is  as
follows: In Section II, we describe super-resolution state-of-the-
art techniques available right now with focus on the example
based methodologies. We then give a detailed explanation of the
followed methodology and  the  processing  phases  we  carried
out.  In  Section  III,  we  discuss  the  results  visually  and
quantitatively.  Finally,  we  conclude  the  paper  and  show  the
future work directions in Section IV.

2. SUPER-RESOLUTION

Super-resolution  “SR”  technology  is  the  construction  of  HR
“High Resolution” image from LR “Low Resolution” images.
(Yang  et  al.  2015).  This  technique  is  breaking  through  the
limitation  of  updating  the  attached  imaging  sensors  on  the
launched  satellites.  Back  to  1960s,  (Harris  1964) was  the
pioneer in constructing HR image from a LR one. After some
time,  SR  became  more  sophisticated  and  developed  with
innovative approaches of inferring the HR details from the LR
input.  During  1980s,  (Huang  &  Tsay  1984) enhanced  the
resolution of scenes received from Landsat TM satellite. 
Until recently,  (Romano et al. 2016) ,  (Dong et al.  2016) and
(Dong et al. 2015)  the trend of SR evolved totally towards the
example-based  methods.  Example-based  methods  use  a

dictionary  of  mapping  between  LR  and  HR  to  infer  the
unknown HR details  (Bevilacqua  et  al.  2012) It  exploits  the
self-similarity and generate patches from the input images.

2.1 Super-Resolution  Convolutional  Neural  Network
(SRCNN)

Convolutional  Neural  Networks  “CNN”  are  inspired by  the
biological brain.  It  simulates the way of thinking that human
brain  is  using  to  identify  or recognize  any  patterns  (Arbib
2003).  Given  that  training  dataset  incorporates  X  and  Y, X
represents  the  synthesized  LR  patches  while  Y  is  the  HR
(original)  patches.  (Dong  et  al.  2015) used  CNN  to  learn
constructing a HR image from the LR patches coming from the
training dataset. This operation has 3 phases/layers as follows:

2.1.1 Patch extraction:  The first  layer designed to extract
features from the input patches according to a 9x9 convolution
(filtering) process. The filter (aka kernel) here is created with
initiated  random  values  that  represent  pixel's  weight.  These
weights are to be changed according to the importance of the
feature to be extracted. In order to extract the features, we slide
the filter over the input image patch (64x64) by one pixel a time
(stride). Matching pixel per pixel from the input image and the
kernel,  multiplication  is  done  first  before  we  accumulate  the
total from multiplication and divide it by 81 which is 9x9 (the
number of pixels in the kernel). This process is done per band
per feature. At the end of this step, feature maps created for all
the input images and ready to be passed to the second layer.
After creating the convolution layer, an activation function is set
to run over the feature map. ReLu or Rectified Linear Unit is
one of  the most  used activation functions that  represents  the
non-linearity  in  the  model.  Most  of  the  real-world  data  that
could be learnt from CNN are non-linear. Hence, ReLU is used
to introduce non-linearity in the proposed model.

The first layer can be expressed in equation (1):

(1)
F1(Y) = max(0,W1  Y+B1)∗

where W1 represents the filters
      B1 represents the biases
      max(0,x) is the ReLu activation function

2.1.2 Non-linear mapping: Having the output from the first
layer as an input to the second layer, the second layer function is
mapping  the  features  from the  low resolution  input  (feature
maps from first layer) to another feature map that will be used
for  producing  the  high  resolution  image.  This  non-linear
mapping is reducing the dimensionality of the data. Having 64
features from first layer, after mapping it to the high resolution
data, only 32 features will be used to create the high resolution
patches. These 32 features are the most efficient in constructing
the final output in the third layer. 

Second layer operation represented in equation (2):

(2)
F2(Y) = max (0,W2  F1(Y)+B2)∗

where F1(Y) is the output (feature maps) from the first layer,
W2 is the number of filters
B2 is 32dimensional bias
max(0,x) is the ReLu activation function
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2.1.3 Output construction: The third layer is responsible of
constructing  the  final  output  (high  resolution  image)  after
applying the last convolution process which takes the average of
the overlapped pixels (from generated high resolution patches).
The  construction  process  achieved  by  converting  the  n2
dimensional  vector  representation  to  the  original  patch  or
image.
This operation represented in equation (3):

(3)
F(Y) =W3  F2(Y)+B3∗

where W3 is the convolutional filter
B3 is the corresponding dimensional vector 
F2(Y) is the output feature maps from second layer

2.2 Landsat8 Super-resolution

In this section, the processing phases are discussed starting from
data preparation till output construction. 

2.2.1 Data  preprocessing:  Unlike  SRCNN,  preprocessing
step here  is  of  vital  importance.  Before creating  the  training
dataset, to avoid geometric distortions, geometric correction has
to be achieved on the selected scenes.  Moreover, very much
alike  any  remote  sensing  data,  there  could  be  some missing
pixel values or NO DATA for pixels. In this case, some of the
machine learning techniques can ignore the missing values and
others can replace the missing value with median value.

2.2.2 Dataset  creation:  At  this  phase,  the  chosen  scenes
need to be checked against any missing or corrupted values that
have been obtained while capturing them. Moreover, as a very
common  issue  with  tropical  areas,  the  captured  scenes  are
always  having  cloud  coverage  that  affects  the  quality  of  the
final output. The selected scenes were filtered against the cloud
coverage to get the least  percentage of cloud (< 5%) via the
continuously  updated  scenes  list  from  AWS  “Amazon  Web
Services” (AWS 2017). Following the rule of thumb in creating
machine learning datasets, scenes are split into training and test
sets. The selected scenes are path 126 and row 58 for training
and 127,58 for validation which are covering Malaysia.  Using
fully open source libraries e.g. Gdal, QGIS, Fiona and Scipy,
the training and validation datasets are created to reflect the SR
objective. Patch extraction achieved by cropping 64x64 patches
from training scene. To synthesize the LR patches, we applied
Gaussian blur with .5 sigma, then sub-sample x2 and then up-
scale x2 using Bicubic interpolation. While the HR patches will
be a copy from the extracted patches without any processing.
Figure 2 shows an example from the HR and LR patches. Our
target is to train the model to retrieve the original image from
the synthesized patches.

Figure 2. An example of HR 64x64 on the left and LR patch on
the right after applying the Gaussian blur, sub-sampling and up-

scaling.

The  created  dataset  contained  5000  64x64  patches  with
overlapping  8  pixels  per  patch  then  divided  to  training  and

validation with 3500 and 1500 respectively. The validation test
will be used to validate the model predictions of the HR output.

2.2.3 Training the model: As mentioned above, the model
has 3 layers that used to extract the features that can construct
the  HR  output.  However,  unlike  SRCNN,  we  have  more
channels/bands to be fed as input for the model.  RGB is not
sufficient enough when it comes to satellite images. Landsat8
has 11 bands to be utilized. We included the RGB in addition to
the NIR, SWIR 1 and SWIR 2. The 6 bands are passed to the
model  layer  by  layer  sequentially.  The  open  source  deep
learning  framework  Theano  has  been  used  for  the  training
process with 8 CPU cores and 16 GB RAM server running on
Ubuntu OS. 
The  required  processing  time  relies  on  many  factors.  The
number of image patches “training dataset” and the number of
extracted features affects how fast the processing can be done.
We initiated the number of features to be extracted in the first
layer to be 128 then 64 in the second layer. Also the average of
time to complete a full presentation of the data “aka epoch” to
be learned differs from 4 to 5 hours per epoch. We tested the
model with 10 epochs which took around 2 days of processing
the training and validation datasets. 

3. RESULTS

In  order  to  evaluate  the  model  accuracy  quantitatively,
evaluation matrices like MSE (Mean Squared Error) function
can compare the actual pixels values with the predicted ones.
MSE is  measuring the mean of  the squares  of  the errors  for
those  existing  between  estimator  and  the estimated  values.
However, to measure image restoration quality, MSE got one
problem since it relies strongly on the pixel intensity. This leads
to having inconsistent MSE values according to the bit depth of
the images  (Joshi et al. 2016). Hence, PSNR (Signal-to-Noise
Ratio) is used as it scales the MSE according to the image range
(Veldhuizen 2016) see equations 4 and 5. PSNR will compare
between the original image and the generated one. In order to
have a reference to compare our results with,  testing the up-
scale process will be done by downscaling the original image by
factor of 2 then we use the model to up-scale it by same factor.
Hence, PSNR could be calculated between the original and the
up-scaled version of the image. 

(4)

where ĝ(n,m) and g(n,m) are the two images

(5)

where S represents the maximum pixel value

Table  1  shows  the  achieved  PSNR  values  from training  the
model on up-scaling factor of 2. As mentioned before in section
2.2.2,  the  training  set  contains  3500 while  the  validation  set
contains  1500 images.  The model tested to  up-scale different
sizes  of  images  from  200x200  to  600x600.  The  up-scaling
process took few seconds between 2 to 10 second depending on
the size of the image to be up-scaled.
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Patches Training PSNR Validation PSNR

64x64 40.523 dB 39.112 dB

32x32 41.214 dB 41.003 dB

Table 1. Different patches training and validation scores of
PSNR in dB

Table  1  shows  that  the  achieved  accuracy  from  the  32x32
patches was slightly higher than the 64x64 ones.  However, it
depends on the dimensions of the up-scaled output image and
the representation of the image in the training samples. While
figure 3 shows a visual comparison between the original image
and the up-scaled one.

Figure 3.a: Example for 660x660 pixels original image

Figure 2.b: A 2x up-scaled version of the 330x330 pixels to
match with 660x660 original image.  

4. CONCLUSIONS

We have presented the first step of two steps framework that
will help in increasing the automation level of satellite image
understanding applications e.g. landcover maps. Example-based
super-resolution  methodology  adopted  to  enhance  Landsat  8
scenes  with  Deep  Convolutional  Neural  Networks  to  infer
details from image patches and generate HR output. Different
model parameters need to be explored e.g. filter size, number of
features and number of layers. 
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