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ABSTRACT: 

The aim of this paper is to measure the spatial accessibility to public health care facilities in Greece. We look at population groups 

disaggregated by age and socioeconomic characteristics. The purpose of the analysis is to identify potential spatial inequalities in the 

accessibility to public hospitals among population groups or service areas. The data refer to the accessibility of all residents to public 

hospitals in Greece. The spatial datasets include the location of settlements (communities), the administrative boundaries of 

municipalities and the location of public hospitals. The methodology stems from spatial analysis theory (gravity models), economics 

theory (inequalities) and geocomputation practice (GIS and programming). Several accessibility measures have been calculated using 

the newly developed R package SpatialAcc, which is available in CRAN. The results are interesting and tend to show an urban-rural 

and social class divide: younger, working age population as well as people with the highest educational attainment have better 

accessibility to public hospitals compared to older or low educated residents. This finding has serious policy making implications 

and should be taken into account in the future spatial (re)organisation of hospitals in Greece. 

* Corresponding author

1. INTRODUCTION

1.1 The importance of spatial accessibility 

Despite the development of the internet that reduced a certain 

number of trips to shops and service providers (including public 

administration), the spatial accessibility to health services 

remains vital. This is the case for regular as well as emergency 

visits to doctors, especially large health facilities such as 

hospitals. 

This paper aims to look at inequalities in spatial accessibility to 

public hospitals in Greece while presenting the R package 

SpatialAcc (Kalogirou, 2017a) that has been developed to assist 

this analysis. The recent literature (Kalogirou and Mostratos, 

2004; Kalogirou, 2017b; Santana, 2000; Christie and Fone, 

2003), suggests that such inequalities exist and refer to an 

urban-rural divide as well as to an age and a social class divide. 

It appears that hospitals are more accessible for children and 

younger people compared to older people. This is not only the 

result of urbanisation that took place in Greece from the late 

1950s to the early 2000s. The Greek population ages but most 

of the older people live in rural and remote areas. Thus, these 

people have to travel long distances to receive the necessary 

care. 

Another downturn of the current hospital network is that it is 

unable to serve touristic areas that are visited by millions of 

tourists each year, especially on Greek islands and in 

Chalkidiki. 

2. DATA AND METHODOLOGY

2.1 Data 

The data used in this work are publicly available from the 

Hellenic Statistical Authority and the Ministry of Hearth. Two 

datasets analysed during this study have been included in the R-

package SpatialAcc. The first dataset refers to the population 

weighted centroids of the 325 Municipalities and the Holly 

Mountain in Greece as well as their total population in 2011. 

The second dataset refers to the locations and other 

characteristics of the 132 General and Specialised Hospitals in 

Greece.  The available data and R code (see below) allows the 

reproducibility of the analysis presented in this paper. 

2.2 Methodology 

The most commonly used types of spatial accessibility measures 

refer to the distance and/or travel time to the nearest health 

service; the population-to-provider ratios (PPR); the gravity 

theory based accessibility; the two-step floating catchment area 

(2SFCA); and then kernel density estimation (KDE) (Neutens, 

2015).  

2.2.1 Spatial Accessibility Measure (SAM) 

Here we will present one such measure that is based on the 

gravity theory. This is the Spatial Accessibility Measure (SAM) 

proposed by Kalogirou and Foley (2006). SAM can be 

computed as follows: 
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where k = the number of hospitals 

nj = the number of beds in hospital j 

pi = the population at location i 

dij = the distance between locations i and j 

β = a distance decay parameter that usually takes 

the value of 2. 

Higher values of Ai suggest better accessibility. 
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2.2.2 Spatial Inequalities  

 

In order to assess spatial inequality among the values of the 

above measure we computed the Gini coefficient, which is 

widely used in economics and demography. Rey and Smith 

(2013) presented a spatial decomposition of the traditional Gini 

coefficient (Eq. 2) into two components: the Gini of neighbour 

observations and the Gini of non-neighbour observations. The 

“neighbourhood” is defined by a matrix of weights.  

 

Formally, the Gini coefficient and its two spatially defined 

components can be computed as follows:  
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where  xi = the value of the variable at location i 

 xj = the value of the variable at any alternative 

location j 

 n = the number of observations 

 
i ix

n
x

1  = the mean value of the variable 

 wi,j = the weights that are usually 1 for  

neighbour observations and 0 for non-

neighbour observations.  

 

The values a Gini coefficient can get is from 0 to +1. Values 

near 0 suggest equality while values near 1 suggest strong 

inequality. The interpretation of the spatial decomposition of 

the Gini coefficient is made separately for the two components. 

When the first component of Equation 3 -which refers to the 

Gini of the neighbours- is near 0, we have a strong indication 

that the observations of the variable in question exhibit positive 

spatial autocorrelation. This means that there are spatial clusters 

of neighbour geographical areas (in this case Municipalities) 

that exhibit similarly high or similarly low accessibility to 

hospitals. Thus, most of the inequality is due to the unequal 

accessibility of non-neighbour municipalities. The Gini 

coefficient and its components can be computed using another 

R-package, the lctools (Kalogirou, 2016).  

 

3. ANALYSIS AND RESULTS 

 

The following R code computes the SAM measure for the 326 

administrative areas in Greece (325 Municipalities and the 

Holly Mountain) to the 132 Hospitals in Greece and plots it 

using scalable circles (Figure 1). 

 
library(SpatialAcc) 

 

data("PWC.Municipalities") 

 

data("GR.Hospitals") 

 

p <- PWC.Municipalities$Pop 

 

n <- GR.Hospitals@data$Beds15 

 

p.coords <- PWC.Municipalities[,2:3] 

 

h.coords <- GR.Hospitals@data[,4:5] 

 

D <- distance(p.coords, h.coords) 

 

SAM.d2 <- ac(p, n, D, d0, power=2, family="SAM") 

 

Results <- 

data.frame(PWC.Municipalities[,c(1,5,6)], p, 

SAM.d2) 

 

library(leaflet) 

 

m= leaflet(Results) %>% addTiles() %>%  

setView(23, 39, zoom = 6) %>% 

addCircles(lng= ~Lon, lat= ~Lat, weight= 1, 

radius = ~sqrt(SAM.d2) * 200000000, 

popup = ~KallCode) 

m 

 

It is apparent from Figure 1, that Athens and Thessaloniki 

Metropolitan areas exhibit high accessibility to public hospitals 

while most of the rest of the country does not. The high SAM 

value in Kos is due to the large psychiatric hospital in the 

nearby island of Leros. 

 

 

Figure 1. Spatial Accessibility to public hospitals 

We then compute the Gini coefficient. Since there is no optimal 

number of nearest neighbours, we try six different numbers and 

report the results (Table 1). The code below allows for the 

calculation of the global Gini, its spatial components and their 

statistical significance using the R-package lctools. 

 

library(lctools) 

 

bw <- c(4, 5, 6, 9, 12, 20) 

 

Gini <- matrix(data=NA, nrow=6, ncol=8) 

 

colnames(Gini) <- c("ID", "k", "Gini",  

"Gini of neigh.",  

"Gini of non-neigh.",          

"% Gini of neigh.",  

"% Gini of neigh.",  

"p-value") 

 

counter<-1 

 

for(b in bw){ 
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  gini <- spGini(p.coords,b,Results$SAM.d2) 

 

  gini.Sim99 <- mc.spGini(Nsim= 99, b,  

Results$SAM.d2,  

p.coords$pwX,  

p.coords$pwY) 

 

  Gini[counter,1] <- counter 

 

  Gini[counter,2] <- b 

 

  Gini[counter,3] <- gini[[1]] 

 

  Gini[counter,4] <- gini[[2]] 

 

  Gini[counter,5] <- gini[[3]] 

 

  Gini[counter,6] <- 100*gini[[4]] 

 

  Gini[counter,7] <- 100*gini[[5]] 

 

  Gini[counter,8] <- gini.Sim99[[3]] 

 

  counter<-counter+1 

} 

 

round(Gini,3) 

 

Table 1 below shows the Gini coefficient and its spatial 

components. The first column shows the number of nearest 

neighbours. The second column shows the global Gini 

coefficient while the third and fourth columns show the Gini of 

the neighbour and the Gini of the non-neighbour municipalities, 

respectively. The fifth and sixth columns show what proportion 

(%) of the overall Gini is the Gini of the neighbour and the Gini 

of the non-neighbour municipalities, respectively. Finally, the 

last column shows the p-value which is the result of a Monte 

Carlos simulation with 99 iterations. If the p-value is lower or 

equal to 0.05 then we can argue that the spatial components of 

the Gini coefficient are statistically significant at the 95% level 

of significance. 

 

Table 1. Sensitivity analysis of the Gini coefficient for SAM 

 

k Gini Gini of 

neigh. 

Gini of 

non-

neigh. 

% Gini 

of 

neigh. 

% Gini 

of 

neigh. 

p-value 

4 0.799 0.006 0.793 0.8 99.2 0.01 

5 0.799 0.009 0.790 1.1 98.9 0.03 

6 0.799 0.011 0.788 1.4 98.6 0.01 

9 0.799 0.018 0.781 2.3 97.7 0.04 

12 0.799 0.025 0.774 3.1 96.9 0.04 

20 0.799 0.045 0.754 5.6 94.4 0.13 

 

The global Gini coefficient value is 0.799 suggesting strong 

inequalities in the spatial accessibility to public hospitals in 

Greece among municipalities. The Gini of the neighbour areas 

accounts between 0.8% and 5.6% of the overall Gini for a list of 

different numbers of nearest neighbours (4, 5, 6, 9, 12 and 20). 

This suggests a very strong positive spatial autocorrelation in 

the SAM for the Municipalities in Greece. Indeed, most of the 

inequality is due to differences in SAM between non-neighbour 

municipalities. These findings are statistically significant in 

most cases. 

 

The next step is to look how spatial accessibility varies across 

certain population groups with different demographic and 

socioeconomic characteristics. The simplest way to check for 

this is by computing the distance to the nearest hospital for each 

population subgroup. Figures 2-4 present cumulative 

proportions of population by distance to the nearest hospital. 

The population has been disaggregated by age, socioeconomic 

characteristics and educational attainment. 

 

The R code below computes the Euclidian distance to the 

nearest hospital from the population weighted centroid of each 

municipality.  

 
PopByAge <- read.csv("PopByAge.csv", sep=";", 

 dec=",") 

 

PopByEconEdu <- read.csv("PopByEconEdu.csv",  

sep=";", dec=",") 

 

PWC.Municipalities$CodeN <- 

as.numeric(PWC.Municipalities$KallCode) 

 

MbyAge <- merge(PWC.Municipalities, PopByAge,  

by.x = "CodeN",  

by.y = "area_code") 

 

MbySocEco <- merge(PWC.Municipalities, 

PopByEconEdu, by.x = "CodeN",  

by.y = "AreaCode") 

 

pbyage.coords <- MbyAge[,3:4] 

pbysoc.coords <- MbySocEco[,3:4] 

 

D.age<-distance(pbyage.coords, h.coords)/1000 

D.soc<-distance(pbysoc.coords, h.coords)/1000 

 

MbyAge$Min.Dist.Hosp <- apply(D.age, 1, min)  

MbySocEco$Min.Dist.Hosp <- apply(D.soc, 1, min) 

 

Due to several missing values in the demographic and 

socioeconomic characteristics, the spatial accessibility statistics 

have been computed for 321 municipalities in the case of age 

groups and 316 municipalities in the case of socioeconomic 

groups. 

 

The R code below provides an example on how the above 

findings can be summarised and plotted using the R package 

ggplot2. This example results in Figure 2. 

 
breaks= c(0,5,10,15,20,25, 30, 35, 50, 100, 130) 

 

distance = MbyAge$Min.Dist.Hosp 

distance.cut = cut(distance, breaks) 

 

MbyAge <- cbind(MbyAge,distance.cut) 

df <- data.frame(dist=breaks[2:11]) 

 

for(var in MbyAge[,9:12]) 

{ 

  xt <- as.data.frame(xtabs(var~distance.cut, 

MbyAge)) 

  df <- data.frame(df, cum_pc=cumsum(round( 

100*xt$Freq/sum(xt$Freq),3))) 

} 

names(df) = c("Distance", names(MbyAge)[9:12]) 

 

df.m <- melt(df, id="Distance") 

 

library(ggplot2) 

 

ggplot(df.m, aes(x= Distance, y= value, colour= 

variable)) + 

  geom_line(size = 1) + 

  geom_point(size = 1) + 

  xlab("Distance to nearest hospital (Km)") +  

  ylab("Cumulative % of Population") 

 

It is apparent from Figure 2 that children aged 0 – 14 years old 

and the working age population (aged 15 – 64 years old) reside 
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closer to hospitals compared to older people, especially the very 

old aged 85 years old and over. This is confirmed also in the 

analysis by economic activity where the retired live longer 

distance to the nearest hospital compared to the students and the 

unemployed. Please note that most unemployed persons in 

Greece are young people (Figure 3). 

Figure 2. Spatial accessibility to hospitals for age groups 

Figure 3. Spatial accessibility to hospitals for socioeconomic groups 

Figure 4. Spatial accessibility to hospitals for groups by educational 

attainment 

It is very clear from Figure 4 that the highly educated are closer 

to public hospitals compared to those with average educational 

attainment. People with low educational attainment reside the 

furthest away from the hospitals compared to the other groups 

in the category. The findings are similar when road network 

distance and time are considered instead of Euclidian distance 

(Kalogirou, 2017b). 

4. CONCLUTIONS

The analysis presented in this paper showed inequalities in 

spatial accessibility to public health services among 

geographical areas as well as among the population 

disaggregated by age and socioeconomic characteristics. 

Certainly, the current locations of public hospitals do not reflect 

the demographic structure of the country and are far away from 

the locations older people reside and those most tourists visit. 

There are serious policy-making implications, especially if we 

consider that Greece has a population that is rapidly ageing and 

the country welcomes about 25-30 million tourists every year. 

We hope that our work will motivate further research on this 

topic. 
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