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ABSTRACT:

Generic text-based compression models are simple and fast but there are two issues that needs to be addressed. They cannot leverage
the structure that exists in data to achieve better compression and there is an unnecessary decompression step before the user can ac-
tually use the data. To address these issues, we came up with GMZ, a lossless compression model aimed at achieving high compres-
sion ratios. The decision to design GMZ (Khandelwal and Rajan, 2017) exclusively for GML's Simple Features Profile (SFP) seems
fair because of the high use of SFP in WFS and that it facilitates high optimisation of the compression model. This is an extension of
our work on GMZ. In a typical server-client model such as Web Feature Service, the server is the primary creator and provider of
GML, and therefore, requires compression and query capabilities. On the other hand, the client is the primary consumer of GML, and
therefore, requires decompression and visualisation capabilities. In the first part of our work, we demonstrated compression using a
python script that can be plugged in a server architecture, and decompression and visualisation in a web browser using a Firefox add-
on. The focus of this work is to develop the already existing tools to provide query capability to server. Our model provides the abil-
ity to decompress individual features in isolation, which is an essential requirement for realising query in compressed state. We con -
struct an R-Tree index for spatial data and a custom index for non-spatial data and store these in a separate index file to prevent alter -
ing the compression model. This facilitates independent use of compressed GMZ file where index can be constructed when required.
The focus of this work is the bounding-box or range query commonly used in webGIS with provision for other spatial and non-spa-
tial queries. The decrement in compression ratios due to the new index file is in the range of 1-3 percent which is trivial considering
the benefits of querying in compressed state. With around 75% average compression of the original data, query support in com-
pressed state and decompression support in the browser, GMZ can be a good alternative to GML for WFS-like services.

1. INTRODUCTION

1.1 Motivation

With the increasing number of Internet users, the demand for
WebGIS is on a rise. The most popular WebGIS service Web
Mapping Service (WMS) has been in place since 1999. It serves
information by converting vector data into raster image tiles and
then sending these tiles that can be rendered in a browser (The
Geospatial Web, 2007). The issue with raster images is that the
resolution of images changes due to pan and zoom. Web feature
service (WFS) came later with the promise of improving
WebGIS and providing transactional WebGIS. It serves
information as vector data itself using any of the vector data
formats such as GML (standard), JSON, KML, etc.  It also lets
the client edit data and send it back to the server. Vector solves
the resolution issue as vector data can be zoomed and panned
without change in resolution. But vector data takes up a lot of
space compared to raster data for the same scene. 

Compression seemed like an obvious choice to solve this issue
and therefore, we came up with GMZ. But the issue with
compressed data is that it cannot be used directly. These
additional steps of compression and decompression everytime
we need to use the data increase unnecessary overheads.
Though the compression ratios are high, the compression and
decompression times of GMZ are not even close to that of
simple text based compressors such as zip. Query support is
therefore, a major improvement in usability GMZ. Given that
GML is widely used in WFS, we have designed our query
subsystem to target queries that are widely used in WFS. WFS
supports the bounding-box query and simple attribute queries.

We have used R-tree for building spatial index from compressed
data. The main feature of our query subsystem is its ability to
perform partial decompression. When querying, this enables us
to directly go to the target data and decompress it without
touching the rest of the file. Another issue faced when reading
indexed data from disk is the number of disk I/Os. Random
access is slow because of the way disks are designed. We have
made concrete efforts to reduce random disk accesses and
increase sequential disk accesses wherever possible. 

1.2 Literature Survey

Due to the verbose nature of XML, XML compressors such as
XMill (Liefke and Suciu, 2000) and XMLPPM (Cheney, 2011)
were developed. Later came compressors with query support
such as XGrind (Tolani and Haritsa, 2002), XPRESS (Min et al,
2003) and XQzip (Cheng and Ng, 2004) (Sakr, 2009). These
generic XML compressors performed worse when they were
used for compressing GML. Also, there was no support for
spatial queries. Initial GML compressors such as GPress (Guan
and Zhou, 2007) and others (LI et al, 2008; Weiand Guan, 2010)
borrowed heavily from XML compressors and added separate
coordinate compressors. All these models are based on the
principle of separating data and structure and compressing them
independently using specialized data compressors. The
compression ratios weren’t good enough even though these
were lossy compressors favouring delta encoding for floating-
point compression. GTree (Harshita and Rajan, 2010) was a
lossless compression technique that replaced delta encoding
with incremental encoding by treating coordinates as strings. It
achieved some of the best compression ratios but was restricted
to work with polygons only. GQComp (Dai et al, 2009) was the
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first GML compressor to add spatial and non-spatial query
support using an R*-tree index and a feature structure tree.
GQComp employs a lossless custom encoding for coordinate
compression. It achieves good compression ratios but lags
behind in attribute query performance. There is no way to
compare its spatial query performance. 

The matrices in play for establishing a comparison are
compression ratio, compression and decompression times, and
spatial and non-spatial query performance. Compression ratios
of GMZ are better than any other GML compression model.
GMZ lags behind in compression and decompression times. We
expect decent query performance for spatial and non-spatial
queries.

1.3 Dataset

We are using the same dataset that we used when we developed
GMZ. Due to the unavailability of compiled SFP compliant
GML 3 datasets, it has largely been prepared by making GML
files SFP compliant or by converting shapefiles into SFP
compliant GML files. QGIS has been used for the conversion
process. We have prepared GML files for 2 countries – India
and USA. The India fi les were downloaded from
mapcruzin.com, a provider of region wise shapefiles, and then
converted to GML. The USA GML files were downloaded from
data.gov, the data portal of the government of US, and then
made SFP compliant. The dataset is combination of point, line
and polygon GML files. The file size ranges from 20 MB to
around 1 GB with most files under 100 MB. 

2. MAIN BODY

2.1 Overview of the compression model

Our compression model is based on the idea of separating
spatial (coordinates) and non-spatial (attributes and structure)
data and applying targeted compression on them. We create a
total of 4 data containers:

1. Attribute container 
2. X-coordinate container
3. Y-coordinate container 
4. Index container 

The attribute container stores attributes as well as GML
structure. We traverse the feature tree and replace each tag by a
pre-defined integer encoding. We get a list of integers
representing the structure of a feature that we convert into a
string. This string acts as another attribute of the feature.  

The coordinate containers go through 3 pre-processing steps –
duplicate removal, sorting and zero-padding. Coordinates are
often repeated among features due to shared boundaries in
polygons, shared ends points in linestrings or in general.
Duplicate removal facilitates storage of a single copy of each
coordinate. Sorting is done on coordinates to make sure we get
minimum difference (delta) between subsequent coordinates.
But we use a custom delta encoding instead of simple floating-
point delta compression. This prevents loss of data and gives
better compression per coordinate. 

The pre-processing on coordinates alters the original order in
which they occur in features. To reconstruct this order, we
create indices that act as placeholders of the original
coordinates. These indices are basically positions of coordinates
in their container. Due to the high value that these indices can
take, we store just the delta of these index values. The value of

this delta tends to be small because adjacent coordinates in a
feature tend to be close in position in the coordinate containers. 

 

Figure 1. Compression model pipeline

2.2 Partial decompression

The ability to partially decompress individual features is the
basis of our query subsystem. To ensure partial decompression,
we have to provide random access to all the data containers so
that data can be extracted from each container without
decompressing the entire container. The smallest unit that we
would ideally like to decompress is a feature. Index container
inherently provides random access to a feature’s coordinate
indices. The modifications made to the attribute container and
the coordinate containers have been discussed below.

The attribute container has been revamped to come up with the
concept of attribute row. This row is loosely similar to a row in
a database. The attributes of a feature are stored as a string
separated by a delimiter as its attribute row. The structure
encoding of the feature is being treated as another attribute of
the feature and stored along with the other attributes. Though it
does not provide random access to individual attributes of a
feature, which is important for non-spatial queries, and demotes
specialized compression on attributes by simply zipping these
strings, the overall query efficiency will increase when dealing
with large datasets.

Our custom encoding for coordinates does not allow random
access to individual coordinates in the coordinate containers
because each coordinate shares partial information about itself
with its preceding coordinate. Therefore, technically a
coordinate stored in the middle of a container cannot be
accessed without decompressing all preceding coordinates in
the container. But we don’t need random access to each
coordinate for any application. The smallest unit that we would
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ideally like to decompress is a feature. Coordinates are stored in
sorted order in containers so if the minimum and maximum X
and Y coordinates or bounding-box coordinates of a feature are
known, we are sure that all other coordinates of that feature will
lie between this minimum and maximum. Therefore, all we
need is random access to the bounding-box coordinates of a
feature to decompress all the coordinates of that feature.

2.3 Optimizing disk I/Os

Random access to individual features is the first step towards
achieving a query subsystem. But pure random access creates
the issue of multiplying disk I/Os as the number of features to
be decompressed increases. Decompression of one feature
requires 4 random disk I/Os, one for each container. Similarly, 2
features would require 8, 3 would require 12 and N features
would require 4N random disk I/Os. Thus, number of random
disk I/Os is a function of number of features to be
decompressed. There is a need to minimize the number of
random disk I/Os and maximize the number of sequential disk
I/Os for optimal performance. To increase sequential disk I/Os,
we need our data to be sequential according the query results.
The queries that we are worried about are range query, nearest
neighbour query and simple non-spatial attribute query. There is
no way to arrange our data sequentially for all attribute queries.
But range query and nearest neighbour query results are features
that are nearby geospatially. This enables us to add good amount
of sequentiality to our data for range queries and nearest
neighbour queries. Therefore, we have made range query and
nearest neighbour query our primary queries and we have
designed our query subsystem with the aim of optimizing these
queries.

We have added enough sequentiality already to our coordinate
containers by sorting them. This sequentiality is also relevant to
our target queries as sorting brings coordinates of nearby
features closer in the coordinate containers. To understand how
this sequentiality helps in reducing the number of random disk
I/Os, assume that a range query output is 4 nearby features. If
we were to extract coordinates of these features individually
using their bounding-box coordinates, we will need to 2 random
disk I/Os per feature and therefore, 8 random disk I/Os.
Alternately, we can merge the bounding-box coordinates simply
by finding the minimum and maximum X and Y coordinates of
the bounding-box coordinates. Extracting all coordinates
between this new minimum and maximum ensures that the
coordinates of output features will definitely lie within these
coordinates. Though we are decompressing some coordinates of
other features not in our output set, we are making number of
random disk I/Os independent of the number of features to be
decompressed. Be it any number of features, we will always
need 2 random disk I/Os for decompressing all coordinates of
that feature. 

Unlike coordinate containers, index and attribute containers do
not have any sequentiality to assist efficient nearby feature
decompression. We can employ various pre-sorting methods to
add significant sequentiality to index data of geospatially nearby
features. A simple method would be to sort these containers
based on the minimum X-coordinates or Y-coordinates of the
features. Adding such sequentiality to attribute container will
have a minor effect on performance because compared to the
amount of data in coordinate containers and index container,
attribute container is very small. Infact, decompressing the
entire attribute container for each query will not affect query
performance to a lot of extent. Moreover, this will add
convenience for executing attribute queries, as the attribute

rows will be in memory. We are also using the attribute rows for
storing other crucial data about features. In addition to feature
ID and attributes, we are storing 2 other feature relevant things:

1. Start byte position of a feature’s coordinate indices
stored in the index container.

2. Byte positions of a feature’s bounding-box
coordinates.

A thing to note is that this added sequentiality helps only in
optimization of primary queries. Secondary queries will still
perform poorly because there is essentially no way to add
sequentiality in such a way that it improves efficiency for each
attribute query.

2.4 R-tree indexing and querying

R-tree is a space partitioning tree data structure widely used for
indexing spatial data. It is designed to be serializable on disk.
They key idea of the data structure is to group nearby objects
and represent them with their minimum-bounding rectangle
(MBR). The R-tree is a balanced search tree that organizes data
into pages; each page can have a variable number of entries.
Each entry within a non-leaf node stores two pieces of data: a
way of identifying a child node, and the bounding box of all
entries within this child node. Leaf nodes store the data required
for each child, often a point or bounding box representing the
child and an external identifier for the child. Construction of R-
tree is a huge optimization problem which is beyond the scope
of this paper. In a classic R-tree, objects are inserted into the
subtree that needs the least enlargement. When the node starts
overflowing, it is broken down into 2 nodes again by
minimizing the area. Better heuristics have arrived to help
optimize issues associated with tree construction. Bulk-loading
is one such optimization that we have used in our work.
Geometries are sorted by their X-coordinate or Hilbert distance
and then split into pages of desired sizes.  

Figure 2. Set of rectangles indexed by an R-tree (top) and the
corresponding R-tree structure (bottom) 

Range queries and nearest neighbour queries can be performed
with R-tree. In a range query, a bounding box is fed as input to
the R-tree. Starting from the root node, this bounding box is
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evaluated for overlap with the MBR of that node. If there is
overlap, the child nodes are also evaluated for overlap until we
reach the leaf nodes. To perform a nearest neighbour search,
nodes (leaf and non-leaf) are inserted into a priority queue
according to their distance from the search point. Depending on
the number of nearest neighbours required, the priority queue is
now used popped and the encountered leaf nodes are returned.

2.5 Query processing

We have used the R-tree python library to index spatial data. We
initiate the index object and add feature ID and MBR of each
feature into the index. The library provides bulk-loading that
takes all feature IDs and MBRs as input, pre-sorts them to
create groups or pages and inserts them into the index. When
compressing a GML file, we serialize this index to a file on
disk. Therefore, we now get 2 files after compression – a GMZ
file and an index file. One advantage of this 2-file system is that
the GMZ file can be used independently if querying is not
required. 

For a range query, we get a bounding-box as input and we
return a list of features as output. We follow these steps:

1. The first step is reading the index file to get the
python index object. 

2. The library provides the intersection method of the
index class for searching geometries that lie within
this bounding-box. The method takes the query
bounding-box and returns a list of feature IDs that lie
within that box.

3. Read the GMZ file and decompress the attribute
container. Filter out attribute rows of features that lie
in the feature IDs list.

4. Get the byte positions of feature’s bounding-box
coordinates for each feature and merge these
bounding-boxes to get query level bounding-box
coordinates. Decompress X and Y coordinates for the
bigger bounding-box.

5. Get the start byte position of a feature’s coordinate
indices stored in the index container from the attribute
row of each feature. Get the minimum and maximum
of these byte positions and decompress all indices that
lie within minimum and maximum.

6. Reconstruct GML/GMZ for the output features.

3. CONCLUSION

3.1 Results

The size increase due to changes made in the compression
model and the creation of a new index file is almost negligible.
The same can be said about the compression and decompression
times. This makes sense as we make minimal changes in the
compression model. 

We list down queries that we ran on some of the files with the
times it took to execute those queries. Features decompressed is
the number of features decompressed after the query, total query
time is the total time it takes to decompress all the features in
the query and query time per feature just total query time
divided by features decompressed. The time is in milliseconds.

Features decompressed
( To t a l n u m b e r o f
features)

Total query time Query time per
feature

2 (37) 360 180

10 (37) 920 92

33 (37) 1180 35.75

46 (667) 810 17.3

128 (667) 900 7.03

344 (667) 1050 3.05

617 (667) 1120 1.8

25 (2340) 710 28.4

505 (2340) 1530 3.03

2015 (2340) 2140 1.06

284 (32563) 2950 10.38

6681 (32563) 3810 0.57

15122 (32563) 4330 0.29

25772 (32563) 5100 0.2

Table 1. Decompression performance

The query performance is reasonable. We can see that as
features decompressed increases for the same data file, the
query time per feature decreases. This was expected as disk read
time per feature decreases significantly due to sequential access.
These results are preliminary. Extensive testing needs to be
done on various GMZ files with various spatial and non-spatial
queries.

3.2 Conclusion and future work

The preliminary results presented in this work demonstrate that
querying a GMZ file in compressed state is feasible. With an
efficient indexing mechanism, support for partial
decompression and optimized I/O operations, GMZ with query
support fits well in the context of webGIS. The two bottlenecks
of webGIS, bandwidth and query efficiency have been dealt
with convincingly. 

Future work will mainly focus on implementing GMZ support
in an open-sourced WFS server. FeatureServer is an
implementation of a RESTful Geographic Feature Service using
standard HTTP method. It is lightweight, WFS compliant and
written entirely in python. It supports usage of any of the OGR
datasources, including GML, as backend data providers. It will
be worthwhile to compare the performance of GMZ with GML
using both as data backends. Another comparison we would like
to make is pitting GMZ against PostGIS/PostgreSQL. We would
like to use GMZ throughout the entire pipeline of a WFS server
and test its capabilities in data storage, querying and data
transfer over the Internet. We would also work on improving
query performance for primary queries by coming up with
better techniques of sorting data for increased sequentiality.
Query performance for secondary queries can also be improved.
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