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ABSTRACT: 

 

In this study, above-ground biomass (AGB) performance was evaluated by PALSAR-2 L-band and Landsat data for bamboo and 

mixed bamboo forest. The linear regression model was chosen and validated for forest biomass estimation in A Luoi district, Thua 

Thien Hue province, Vietnam. A Landsat 8 OLI image and a dual-polarized ALOS/PALSAR-2 L-band (HH, HV polarizations) were 

used. In addition, 11 diferrent vegetation indices were extracted to test the performance of Landsat data in estimating forest AGB 

Total of 54 plots were collected in the bamboo and mixed bamboo forest in 2016. The linear regression is used to evaluate the 

sensitivity of biomass to the obtained parameters, including radar polarization, optical properties, and some vegetation indices which 

are extracted from Landsat data. The best-fit linear regression is selected by using the Bayesian Model Average for biomass 

estimation. Leave-one-out cross-validation (LOOCV) was employed to test the robustness of the model through the coefficient of 

determination (R squared - R2) and Root Mean Squared Error (RMSE). The results show that Landsat 8 OLI data has a slightly better 

potential for biomass estimation than PALSAR-2 in the bamboo and mixed bamboo forest. Besides, the combination of PALSAR-2 

and Landsat 8 OLI data also has a no significant improvement (R2 of 0.60) over the performance of models using only SAR (R2 of 

0.49) and only Landsat data (R2 of 0.58-0.59). The univariate model was selected to estimate AGB in the bamboo and mixed bamboo 

forest. The model showed good accuracy with an R2 of 0.59 and an RMSE of 29.66 tons ha-1. The comparison between two 

approaches using the entire dataset and LOOCV demonstrates no significant difference in R (0.59 and 0.56) and RMSE (29.66 and 

30.06 tons ha-1). This study performs the utilization of remote sensing data for biomass estimation in bamboo and mixed bamboo 

forest, which is a lack of up-to-date information in forest inventory. This study highlights the utilization of the linear regression model 

for estimating AGB of the bamboo forest with a limited number of field survey samples. However, future research should include a 

comparison with non-linear and non-parametric models.

 

 

 

1. INTRODUCTION 

 

Recently, using multi-sources data has become increased to 

evaluate the forest biomass because of the potential improvement 

of the estimated accuracy. Various methods have been developed 

for combining different data, for example, the remotely sensed 

and ground data (Badreldin & Sanchez-Azofeifa, 2015; Zhang et 

al., 2019), or fusion technique between satellite images (Cutler, 

Boyd, Foody, & Vetrivel, 2012; Fayad et al., 2016; Tian et al., 

2017). The combination of optical data and synthetic aperture 

radar (SAR) has been received much attention because it 

provides much better information and improves estimation 

accuracy. The optical images are rich in spectral and spatial 

information, while SAR has several advantages like sensitivity to 

dielectric properties surface roughness (Mahyoub, Fadil, 

Mansour, Rhinane, & Al-Nahmi, 2019), longer wavelength and 

can penetrate through the forest canopy (CEOS, 2018). 

 

Among various optical images, Landsat has been commonly used 

because of the wide range of spectral bands, medium spatial 

resolution, and an open satellite imagery source. There are 

several studies were related to the biomass estimation through the 

relationship between Landsat signals and forest structure 

parameters such as tree height or stand volume (Chrysafis, 

Mallinis, Gitas, & Tsakiri-Strati, 2017; Hall, Skakun, Arsenault, 

& Case, 2006). The sensitivity of spectral bands to biomass 

estimation was mentioned in (Powell et al. 2010; Lu et al. 2012). 

Besides, some vegetation indices (VIs), as an additional feature 

extracted from optical data, were found to be significant variables 

to calculate forest biomass (Foody et al., 2003; Propastin, 2012). 

The success of VIs application on forest biomass estimation 

depends on different forest ecosystems as thoroughly reviewed 

(Sarker & Nichol, 2011). Although VIs are limitedly considered 

for estimating biomass in tropical forests, some VIs are used as 

an approach of reducing saturation in simple spectral bands 

(Zhao, Lu, Wang, Liu, et al., 2016). 

 

Synthetic aperture radar is one of the most promising remote 

sensors to map the global forest biomass (Mermoz et al., 2015). 

Various SAR data were popularly used, such as ERS-1 and -

2, JERS-1, Envisat ASAR, RADARSAT, and ALOS PALSAR-

1 and -2. PALSAR  is an L-band frequency microwave sensor 
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which is a joint project between JAXA and the Japan Resources 

Observation System Organization. With the launch of PALSAR-

2 in 2014, it becomes a unique and highly useful sensor with 

high-resolution, wide swath width and image quality until now 

(EORC). At L-band, the penetration depth exceeds the crown 

layer and mechanism involving the lower part of the canopy 

presented a strong relationship with biomass from the major 

contribution of branches and trunk (Toan, Beaudoin, Riom, & 

Guyon, 1992). Much successful application of PALSAR-1/-2 

data for forest biomass mapping was recognized based on 

backscatter intensities (Suzuki, Kim, and Ishii 2013; Mermoz 

2014) or different techniques such as polarimetry and 

interferometry (Chowdhury, Thiel, Schmullius, & Stelmaszczuk-

Górska, 2013; Neumann, Saatchi, Ulander, & Fransson, 2012; 

Thiel & Schmullius, 2016). A recent approach of tomography 

showed a high potential for biomass estimation through its 

correlation to forest height (Ho Tong Minh et al., 2016; Tebaldini 

& Rocca, 2012). 

 

However, a saturation phenomenon is a constraint in both optical 

and radar data which can lead to underestimating forest biomass. 

Saturation value varies in different satellite images and different 

forest ecosystems. Recent studies were conducted to indicate the 

saturation point which often found in dense canopy forests with 

high biomass values. Some instances identified the saturation 

point at 150 tons ha-1, corresponding to HV backscatter at −11.52 

dB for a semi-evergreen rain forests and savannas (Mermoz et al., 

2015), and for subtropical forests (Zhang et al., 2019), while this 

point can be reached at 100 tons ha-1 for tropical forests (Häme, 

Rauste, Antropov, Ahola, & Kilpi, 2013). For Landsat data, a 

wide range of saturation levels was examined for different 

vegetation types in a subtropical region (Zhao, Lu, Wang, Wu, et 

al., 2016). Methods to eliminate the effects of saturation have 

been discussed in a limited number of studies for Landsat images 

(Avitabile, Baccini, Friedl, & Schmullius, 2012; Phua et al., 

2017), and for SAR images (Carreiras, Vasconcelos, & Lucas, 

2012; Mermoz et al., 2015). The combination of Landsat and 

SAR products is also possible to reduce this effect in some 

instances (Basuki, Skidmore, Hussin, & van Duren, 2013; Cutler 

et al., 2012; Zhao, Lu, Wang, Liu, et al., 2016). 

 

Another issue in forest biomass calculation is the divergence in 

species composition and structure in different vegetation types. 

Therefore they have different data saturation values in Landsat or 

radar data (Zhao, Lu, Wang, Liu, et al. 2016), and require the 

diversity of remote sensing algorithms and datasets that have 

been used to retrieve forest biomass (Lucas et al., 2015). Despite 

the increasing researches on forest aboveground biomass, there 

are a limited number of studies developed biomass estimation for 

bamboo. Bamboo forests are distributed 0.8% of the world’s total 

forested area with total ecosystem carbon in the range of 94– 392 

Mg C.ha-1. With the rapid growth rate, they contribute 

significantly to sequester substantial quantities of carbon with the 

estimated annual carbon accumulation rates of 8–14 Mg C.ha-1,  

thereby helping to mitigate the effects of climate change (Yuen, 

Fung, & Ziegler, 2017). Besides, because of its economic and 

environmental benefits, the bamboo forest is being considered as 

an alternative sustainable land-use strategy in the upland region, 

particular in Vietnam (Ly, Pillot, Lamballe, & de Neergaard, 

2012). Therefore, there is a demand to evaluate the performance 

of satellite sources data for individual bamboo forest which 

provides useful information for our understanding to plan a 

sustainable development strategy. 

 

In this study, we focused on evaluating the performance of 

ALOS/PALSAR-2 and Landsat OLI on forest biomass by using 

a single source and the combined data in order to develop the best 

model for the bamboo and mixed bamboo forest. The paper is 

structured as follows: Section 2 describes the Study area and field 

data; Section 3 explains the methods to process data and estimate 

forest biomass; Section 4 showed the performance of Landsat 

OLI and PALSAR-2 for aboveground biomass estimation and the 

best-fit model selection; Our findings are discussed in Section 5; 

Finally, a conclusion is showed in Section 6. 

 

 

2. STUDY AREA AND FIELD DATA 

 

2.1  Description of the study area 

Figure 1.  Location of the study areas (A Luoi district) in Thua Thien-Hue province, Vietnam.
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Bamboo forest has a unique morphological structure that is easily 

identifiable from a distance, a secondary subtype formed on 

natural forest land after exploitation or shifting cultivation. 

Bamboo forests in Vietnam are widely distributed from an 

altitude nearly above sea level to 2,000 m. There are two groups 

of bamboos, including a group of herbaceous bamboos and 

another group of woody species of bamboo. Biomass and carbon 

accumulation are different among these bamboo groups. In the 

context of climate change, bamboo forests provide a number of 

ecosystem services that are beneficial for carbon sequestration. 

Bamboo can isolate significant amounts of carbon from above-

ground biomass (AGB). Therefore, the bamboo forest is an 

important resource to minimize the greenhouse effect of climate 

change. 

A Luoi is a mountainous district of Thua Thien Hue province in 

Central Vietnam (Figure 1). This region covers about 1,224.6 

km² (accounting for 24.17% of the natural land area of Thua 

Thien - Hue province) with an average altitude of 600-800 m 

above sea level, the average slope of 20-250. The west part is steep 

mountains ranging from 500 to 1,700 m, while the east part is 

more flat with an average elevation of 600 m above sea level. A 

Luoi area has the most rainfall compared to other localities in 

Thua Thien-Hue province, the annual precipitation is an average 

of about 3,500 m, and and there is a dense hydrographic network 

with five major rivers flowing through. In general, A Luoi has a 

cool climate throughout the year with the characteristics of 

climate, local weather in the area of A Luoi has favorable for 

developing bamboo forest. 

 

2.2  Field data collection 

 

The forest ground data was provided by the Central Sub Forest 

Inventory and Planning Institute, Thua Thien Hue Province, 

Vietnam (Sub-FIPI). The in-situ measurements were conducted 

in 273 field plots from 16 January to 3 July 2016 over the whole 

Thua Thien Hue Province. The satellite images covered 54 plots 

including the bamboo and mixed bamboo forest. A sample plot 

size had a rectangular shape of 30 m × 33 m with a longer aspect 

in an east-west direction and the shorter aspect in the north-south 

direction. In each plot, there were four sub-plots 5 m × 5 m in 

size. Diameter at breast height (DBH) was measured for all trees 

with a diameter over 6 cm, while total tree height (H) was 

measured for five normal growth trees near the center of the plot. 

Allometric equations were used to estimate the height of the 

remaining trees in the plots. The main ecosystem was the broad-

leaved tropical forest and bamboo forest. The bamboo forest 

includes 21 plots, and the forest mixed bamboo with broad-

leaved species includes 33 plots. 

 

For the bamboo forest, the number of trees, diameter and the 

average height of bamboo in each sub-plot were measured. If the 

bamboo grew like a clump, it was necessary to count the number 

of clumps in a plot and the number of stems per clump. For 

estimating the aboveground biomass (AGB) of bamboo forest, 

we used the formula given by Ly and partner in 2012: 

 

AGB = 0.3002 DBH2 + 0.115 DBH + 1.7632  (1) 

For estimating the biomass of broadleaved species tree, the one-

factor formula to estimate AGB (in tons ha-1) given by Bao Huy 

and colleagues is: 

 

AGB = 0.104189x 𝐷𝐵𝐻2.491453   (2) 

 

3. METHODOLOGY 

 

3.1  Satellite data and pre-processing 

A dual-polarized radar data (HH, HV polarizations) in single look 

complex (SLC) format were comprised in May 2016. The 

preprocessing data was operated to convert the digital number 

value into sigma naught (σo) values. A refined Lee filter was used 

with a window size of 7x7 to reduce the speckle noise. The 

topography effect was eliminated by using Range-Doppler 

Terrain Correction with a digital elevation model (DEM) from 

Shuttle Radar Topography Mission and resampled all of the 

product images to reach 6.5 meters in pixel spacing. 

 

Landsat 8 OLI are used for optical data, which is provided by the 

United States Geological Survey (USGS) with moderate 

resolution and wide spectral coverage. A scene Landsat OLI was 

acquired in April 2016 cover entire the study area with a spatial 

resolution of 15 m in panchromatic and 30 m in the multi-spectral 

band. Landsat digital numbers (DNs) were converted to 

reflectance and atmospheric correction by using the FLAASH 

tool (Fast line-of-sight atmospheric analysis of hypercubes). 

Then, different vegetation indices were extracted from the pre-

processed image (Table 1). 

 

Vegetation indices can be calculated by ratioing, differencing, 

ratioing differences and sums, and by forming linear 

combinations of spectral band data. Vegetation indices are 

intended to enhance the vegetation signal (Jackson & Huete, 

1991) and successfully used for estimating biophysical properties 

(Anderson & Hanson, 1993; Sarker & Nichol, 2011). 

 

In this study, we used vegetation indices calculated using band 

Near-Infrared (0.7-1.1 μm), red (0.6-0.7 μm), blue (0.45-0.52 

μm) and green band (0.52-0.60 μm) in Landsat OLI data.  For the 

Enhanced vegetation index (EVI) formula, L is a soil adjustment 

factor, and C1 and C2 are coefficients used to correct aerosol 

scattering in the red band by the use of the blue band. In general, 

G=2.5, C1=6.0, C2=7.5, and L=1 (Huete, Liu, Batchily, & J., 

1997). 

 

For TSAVI, the equation was developed by (Baret & Guyot, 

1991), where s and a are the soil line parameters with the default 

value of 0.5, and X is an adjustment factor that is set to minimize 

soil noise with value of 0.08. 

 

3.2 Performance of parameters extracted from remotely 

sensed data in forest biomass estimation  

 

Features derived from remotely sensed data using a 5x5 window 

size were identified as variables for AGB estimation. Different 

features for sample areas, such as sigma value of HH and HV 

polarization from PALSAR-2, multispectral data from Landsat 

OLI includes Red and Near-infrared (NIR), and vegetation 

indices (EVI, NRVI, NDVI, TNDVI, GNDVI, RVI, TTVI, TVI, 

RatioNR, SAVI, TSAVI, MSAVI). The linear relationship of in-

situ AGB and these features were determined through analyzing 

the pairwise Pearson’s correlation coefficient. Next, multiple 

linear regression was conducted to identify the best variables for 

accurate AGB estimation. Different sets of variables were used. 

 

A total of 22 models were created from these variables. The best 

multiple linear models were selected through Bayesian Model 

Averaging (BMA). BMA accounts for the model uncertainty 

inherent in the variable selection problem by averaging over the 

best models in the model class according to approximate 

posterior model probability (Raftery et al., 2018). The best-fit 

model is tested for AGB estimation in the study site. 
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Table 1. Predictor variables from PALSAR-2 and LANDSAT 8 OLI used in this study. 

Indepent 

variables 
Explanations/Name Describe/Wavelength Formula/Resulution 

 

LANDSAT 

8 OLI 

Band 2: Blue 0.45 – 0.51 µm 30 m 

Band 3: Green 0.53 – 0.59 µm 30 m 

Band 4: Red 0.64 – 0.67 µm 30 m 

Band 5: Near Infrared 0.85 – 0.88 µm 30 m 

Spectral 

indices from 

LANDSAT 

8 OLI 

EVI Enhanced Vegetation Index 𝐺 ×
𝜌𝑛𝑖𝑟 − 𝜌𝑟𝑒𝑑

𝜌𝑛𝑖𝑟 + (𝐶1 × 𝜌𝑟𝑒𝑑 − 𝐶2 × 𝜌𝑏𝑙𝑢𝑒) + 𝐿
 

RVI 
The simple Ratio Vegetation 

Index 

𝜌𝑟𝑒𝑑

𝜌𝑛𝑖𝑟
 

NRVI 
The Normalized Ratio 

Vegetation index 

𝑅𝑉𝐼 − 1

𝑅𝑉𝐼 + 1
 

NDVI 
Normalized Difference 

Vegetation Index 

𝜌𝑛𝑖𝑟 − 𝜌𝑟𝑒𝑑

𝜌𝑛𝑖𝑟 + 𝜌𝑟𝑒𝑑
 

TNDVI 
Transformed Normalized 

Difference Vegetation Index √𝑁𝐷𝑉𝐼 + 0.5 

GNDVI 
Green Normalized Difference 

Vegetation Index 

𝜌𝑛𝑖𝑟 − 𝜌𝑔𝑟𝑒𝑒𝑛

𝜌𝑛𝑖𝑟 + 𝜌𝑔𝑟𝑒𝑒𝑛
 

TTVI 
Thiam’s Transformed 

Vegetation Index 
√𝐴𝐵𝑆 (

(𝜌𝑛𝑖𝑟 − 𝜌𝑟𝑒𝑑)

𝜌𝑛𝑖𝑟 + 𝜌𝑟𝑒𝑑
+ 0.5) 

RatioNR Ratio of Near-infrared and Red 
𝜌𝑛𝑖𝑟

𝜌𝑟𝑒𝑑
 

SAVI Soil Adjusted Vegetation Index 
𝜌𝑛𝑖𝑟 − 𝜌𝑟𝑒𝑑

𝜌𝑛𝑖𝑟 + 𝜌𝑟𝑒𝑑 + 𝐿
× (1 + 𝐿) 

MSAVI 
Modified Soil Adjusted 

Vegetation Index 

1

2
(2(𝜌𝑛𝑖𝑟 + 1) − √2(𝜌𝑛𝑖𝑟 + 1)2 − 8(𝜌𝑛𝑖𝑟 − 𝜌𝑟𝑒𝑑) 

TSAVI 
Transformed Soil Adjusted 

Vegetation Index 

𝑠(𝜌𝑛𝑖𝑟 − 𝑠 × 𝜌𝑟𝑒𝑑 − 𝑎)

𝑎 × 𝜌𝑛𝑖𝑟 + 𝜌𝑟𝑒𝑑 − 𝑎 × 𝑠 + 𝑋 × (1 + 𝑠2)
 

 

 

PALSAR-2 

HH   HH polarization (σ, dB) 6.5 m 

HV HV polarization (σ, dB) 6.5 m 

*𝜌𝑛𝑖𝑟, 𝜌𝑟𝑒𝑑 , 𝜌𝑏𝑙𝑢𝑒, and 𝜌𝑔𝑟𝑒𝑒𝑛: reflectance values of Near-Infrared, Red, Blue, and Green band.

 

3.3 Assessment of model accuracy 

 

Leave-one-out cross-validation (LOOCV) was obtained to test 

the robustness of the model through the coefficient of 

determination (R2) and Root Mean Squared Error (RMSE). 

LOOCV is a special case of k-fold cross-validation, in which the 

number of folds equals the number of observations (Wong, 2015). 

This type of estimate is obtained by carrying out N repetitions of 

a lear+test cycle, where n is the size of the given data set. On each 

repetition one of the n observations is left out to serve as a test 

set, while the remaining n-1 cases are used to obtain the model. 

The process is repeated n times by leaving aside each of the n 

given observations (Torgo, 2015).  

 

To assess the accuracy of models, a correlation coefficient (R) 

and RMSE were used. The ratio of R2 is so called the coefficient 

of determination, and varies between a range of 0 and 1. With the 

predicted values of the estimator (�̂�) and the observed values of 

y, the ratio R2, and RMSE are explained as: 

 

R2 = 
∑(�̂�−�̅�)2 

∑(𝑦−�̅�)2 
   RMSE = √

1

𝑛
∑ (𝑦𝑖 − �̂�𝑖)2𝑛

𝑖=1   

 

 

 

 

4. RESULT 

 

4.1 Correlation results between parameters extract from 

remotely sensed data and aboveground biomass 

 
Figure 2 shows the linear correlation between forest AGB and 

various parameters derived from satellite images. For Landsat 

OLI data, the weak correlation was observed in NIR band (R of 

0.6) while this correlation showed stronger in other bands (R of 

0.73-0.77). The reflectance in Red band showed the best 

performance for AGB estimation (R of 0.77). Some of vegetation 

indices (NDVI, RatioNR) were not defined in the model, 

basically there were other variables in whose linear combination 

can fulfill their contribution to models. Therefore, nine out of 

eleven VIs were retained to evaluate the linear correlation with 

forest biomass. Generally, VIs provided similar results to single 

spectral bands and had no improvement in correlation with AGB. 

The RVI poorly correlated to AGB with R of 0.48 although it 

represents the simple ratio of Red and NIR band which have good 

relationship to AGB. SAVI correlated well to AGB (R of 0.73), 

however, its transformed index TSAVI was found no sensitivity 

to AGB (R of 0.04). Apart from TSAVI and RVI, the remaining 

of VIs are inversely proportion to AGB in the range of 0.7-0.76. 

For SAR data, the biomass sensitivity for L-band backscattering 

was weaker than for optical data due to the presence of saturation, 
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as shown in Figure 3c. The sigma value of HV (R of 0.7) 

polarization has a better correlation than HH (R of 0.63). 

 

 
Figure 2. Pearson’s correlation coefficient (R) between 

aboveground biomass and different remotely sensed parameters. 

 

Figure 3 shows the parameters extracted from Landsat data and 

PALSAR-2 response to AGB in the entire samples. VIs did not 

show a clear saturation to biomass, but the saturation was 

considered in the NIR band. For PALSAR-2, the backscattering 

saturates at around 200 tons ha-1 which is corresponding at -13 

dB for HV and -8 dB for HH. 

 

 

4.2  Selection of the best-fit model for AGB estimation 

 

In an attempt to improve accuracy for AGB estimation, multiple 

linear regression was developed by various sets of variables. The 

selection of variable sets and the best-fit model was conducted 

based on the Bayesian model averaging algorithm. Consequently, 

the best-fit models were chosen for AGB estimation based on the 

high value of the coefficient of determination, Bayesian 

information criterion (BIC), and posterior model probability 

(Table 2). Comparatively, multiple linear models are slightly 

better than univariate models with improving R2 values from 0.58 

to 0.60. This table shows that the increasing number of variables 

in models performed higher R2, however it led to increase value 

of BIC and therefore, increase the risk of overfitting. 

 

Table 3 provides a comparative analysis of models using only 

SAR data, only Landsat data and the combination of SAR and 

Landsat based on R2 and RMSE. In the table, each cell has two 

values, the first is the evaluation using the entire data, and the 

second is the Leave-one-out cross-validation value. It indicates 

that the combination of multisource data considerably improved 

compared to the models using only PALSAR-2 data. The R2 

value increased from 0.49/0.44 for the models using HH and HV 

backscattering to 0.60/0.56 for the combined data. The error 

showed a decreasing in the multisource with the difference of 4 

tons ha-1 compared to the models using PALSAR-2. However, 

the combination of SAR with Landsat (NIR band) or vegetation 

index (EVI) has no significant improvement in comparison with 

the model using the single Landsat (Red band). Besides, the 

comparison between two approaches using the entire data set and 

LOOCV showed no significant difference with R2 of 0.59 and 

0.56 (p<0.05), respectively. The biomass RMSE values also 

showed nearly similar in two approaches with 29.66 tons ha-1 for 

the entire data and 30.06 tons ha-1 for LOOCV.  

 

 
Figure 3. Linear regression between aboveground biomass and  Landsat reflectance in Green, Red, and NIR (left panel); Vegetation 

indices in TNDVI and NRVI (middle panel); and PALSAR-2 backscattering in HH and HV (right panel). 

 

Table 2. The result of selecting the best fit model using Bayesian model averaging. 
 

p!=0 EV SD model 1 model 2 model 3 model 4 model 5 model 6 model 7 

Intercept 100 3.84E+02 438.49 -11.73 680.23 757.24 289.46 292.50 372.61 288.09 

HV 16.5 6.10E-01 1.70 . . . . 4.88 6.27 4.10 

TNDVI 19.7 -1.37E+02 478.18 . . -616.53 . . . . 

SAVI 9.7 -2.55E+01 260.39 . . . . . . -263.55 

NRVI 16.7 -4.36E+01 190.26 . . . -296.00 . . . 

TVI 21.1 -1.07E+02 296.70 . -447.71 . . . . . 

NIR 9.9 1.55E+01 172.70 . . . . . -486.61 . 

Red 28.2 4.54E+02 804.65 1635.97 . . . . . . 

EVI 8.2 -2.74E+00 31.54 . . . . -123.15 . . 

nVar    1.00 1.00 1.00 1.00 2.00 2.00 2.00 

r2    0.59 0.58 0.58 0.58 0.60 0.60 0.60 

BIC    -44.00 -42.98 -42.72 -42.24 -41.21 -41.09 -41.04 

post prob    0.09 0.05 0.05 0.04 0.02 0.02 0.02 
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Table 3. The correlation of determination (R2) and Root mean 

squared error (RMSE) in biomass estimation models using the 

entire data and Leave-one-out cross-validation (LOOCV). 

Models R_squared RMSE 

Red 0.59/0.56 29.66/30.06 

HV+EVI 0.60/0.56 29.62/30.27 

HV+NIR 0.60/0.55 29.65/30.32 

HV+HH 0.49/0.44 33.27/34.01 

 

4.3  Aboveground biomass prediction and mapping 

 

Figure 4 illustrates the relationship between actual AGB and 

predicted AGB using LOOCV in some linear regression models. 

The distribution of AGB values in different models are quite 

similar. Analyzing the density distribution of AGB showed that 

overestimation occurs in the AGB range from 75 to 130 tons ha-

1, however, the remaining showed an underestimation. For the 

predicted AGB using LOOCV, a high density is considered in 

values from 85-150 tons ha-1, and the highest density 

concentrates in the range of 100-125 tons ha-1. For the actual 

AGB, its density distributes more equally and mainly 

concentrates between 50-170 tons ha-1, with the highest density 

in 125-150 tons ha-1. 

 

Based on the different sets of variables in regression models, the 

AGB was predicted for the Bamboo and mixed bamboo forest in 

the study site. Figure 5 showed the predicted AGB maps which 

focus on a small area in this site using the Red band, and the 

combination of HV with NIR band and EVI. For all three models, 

RMSE of biomass showed similar values with around 29.6 tons 

ha-1 for the entire data and 30 tons ha-1 for LOOCV. However, 

the AGB maps showed the differences in the range of AGB 

values. The model using Red band has the highest value with 262 

tons ha-1. The appearance of negative biomass values was in all 

three models with the lowest in the map using HV and EVI with 

-87 tons ha-1. The proportion of negative AGB varied in different 

models, particularly it accounts for 3.92% for the model using 

Red band, 0.37% for the model of HV and EVI, and 2.67% for 

the model of HV and NIR. 

 

In summary, the linear regression produces negative AGB 

because of the extrapolation of very low values of parameters 

extracted from remotely sensed data. Using the combination of 

HV and EVI or NIR enables to decrease the portion of negative 

values, however, as analyzed above, the increasing number of 

variables can increase the risk of overfitting. The model using the 

Red band has the best performance for AGB estimation in the 

Bamboo and mixed bamboo forest with the good regression 

evaluation in R2 and RMSE, but it still has the presence of 

negative AGB with the proportion of 3.92%. Therefore, other 

regression models, such as non-linear or non-parametric models 

should be studied in the future with the expectation of finding a 

sufficient model for AGB estimation in the Bamboo and mixed 

bamboo forest. 

 

5. DISCUSSION 

 

This study focused on evaluating the performance of Landsat 

OLI and PALSAR-2 on above-ground biomass estimation. The 

linear regression was selected to train the ground data and was 

developed in the bamboo and mixed bamboo forest.  

The results indicated that Landsat OLI has a slightly better 

relationship to AGB than PALSAR-2 for the bamboo and mixed 

bamboo forest. The reason is that the sensitivity of L-band 

backscattering to AGB had a trend of decreasing after the 

saturation point for the dense canopy forest (Mermoz et al., 2015; 

Suzuki et al., 2013), while the reflectance of Red band did not 

show a clear saturation to biomass and was sensitive to higher 

AGB. Visually, the saturation threshold in bamboo was found 

higher than other ecosystems with 100 tons ha-1 for the 

subtropical area (Häme et al., 2013), or 150 tons ha-1 for dense 

rainforest and savanna (Mermoz et al., 2015). This discrepancy 

confirms that saturation threshold widely fluctuates in different 

types of forest, therefore, it has  different impacts on biomass 

estimation accuracy. The sensitivity of satellite imagery data to 

biomass should be examined separately to develop regression 

models for improving the prediction accuracy.  

 

Another result was found that VIs also is potential for AGB 

estimation, except for the simple ratio of Red and NIR. However, 

the combination of VIs in the multivariable model was not 

effective because they have highly correlation (Foody et al., 

2001) and the contribution of a VI can be substituted by another 

one (for example, NDVI can replaced by EVI in this case study). 

The application of VIs for biomass calculations needs to be 

careful, although they are considered a solution in reducing 

saturation in some studies (Gasparri, Parmuchi, Bono, 

Karszenbaum, & Montenegro, 2010; Zhu & Liu, 2015), others 

have demonstrated the inefficiency in applying VIs for biomass 

calculations (Sarker & Nichol, 2011). An example indicated that 

the sensitivity of NDVI to variation in land surface properties 

varies in space and time (Foody et al., 2003). 

 

Previous studies pointed out the improvement of the combination 

of optical and SAR data for biomass estimation compared to 

single data sources (Häme et al., 2013; Hoan, Tateishi, Bayan, 

Ngigi, & Lan, 2011; Shao & Zhang, 2016; Zhao, Lu, Wang, Liu, 

et al., 2016). 

 
(a) Red  (b) HV+NIR  (c) HV+ EVI (d) HV+HH 

Figure 4. Comparison between the actual aboveground biomass and the predicted aboveground biomass using Leave-one-out cross-

validation in different models (a) Red, (b) HV+NIR, (c) HV+EVI, and (d) HV+HH. 
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Figure 5. The predicted biomass using different models with sets of variables: (a) Red, (b) HV+EVI, and (c) HV+NIR

 

On the contrary, this study indicated the combination of 

multisource remotely sensed data has a better performance 

compared to SAR data, but this is no significant improvement 

compared to using the single optical band. The reason is maybe 

the fusion technique of Landsat and SAR data cannot effectively 

incorporate radar information into the newly fused data (Zhao, 

Lu, Wang, Liu, et al., 2016). 

 

Another finding is  the effort of using multivariate regression did 

not provide an improvement in model accuracy as expected. The 

increasing number of variables showed slightly higher R2 values 

than univariate models, but they also increased the risk of 

overfitting with the gain of BIC. The reason might be increasing 

number of variables is likely to lead to overfitting with the limited 

number of training samples (54 samples). More study is needed 

to assess the possibility of multivariate regression with larger 

samples to enhance the estimation accuracy of forest biomass. 

 

Finally, the Landsat Red band provided the best correlation to 

AGB in linear regression with R2 of 0.59 and RMSE of 29.66 

tons ha-1. However, the problem of linear regression is that the 

extrapolation of very low values (Neumann et al., 2012) in 

spectral signaled to the presence of negative values. The 

integration of PALSAR-2 and Landsat or VIs reduced the portion 

of negative values, but it widens the range of negative values with 

the minimum value from -30 tons ha-1 to -87 tons ha-1. 

Furthermore, the overestimation and underestimation in the 

predicted AGB indicated that the linear regression may be an 

insufficient approach to perform the AGB estimation. However, 

the proportion of negative values is small and the Red band has 

an important potential for AGB estimation in the bamboo and 

mixed bamboo forest. 

 

6. CONCLUSION 

 

This study examined AGB estimation in bamboo and mixed 

bamboo forest in the mountainous district of Vietnam using 

PALSAR L-band and Landsat 8 OLI. The linear regression was 

used to train the entire data set, and then compare the trained 

model with the Leave-one-out cross-validation model.  

 

In general, the result showed that the simple linear regression 

using the Red band gave the best performance for AGB 

estimation with R2 of 0.59 and RMSE of 29.66 tons ha-1. The 

biomass sensitivity for optical bands is better than L-band SAR 

data due to the presence of the saturation phenomenon. 

Furthermore, the combination of optical band and SAR data did 

not indicate better performance than a single spectral of Red band. 

Besides, the attempt using multivariate regression was not 

successful because the increasing number of variables can lead to 

overfitting caused by the constraints of ground samples. Despite 

this limitation, this study provided the evaluation of behavior of 

remotely sensed data on biomass sensitivity and performed the 

potential of using PALSAR-2, Landsat OLI, as well as vegetation 

indices on AGB estimation. This study contributed to fill the gap 

in our understanding of biomass inventory for the bamboo and 

mixed bamboo forest. More studies should be further analyzed 

by adding more samples with other approaches, such as nonlinear 

and nonparametric models. 
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