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ABSTRACT: 

 

Remote sensing is going through a basic transformation, in which a wide array of data-rich applications is gradually taking the place 

of methods interpreting one or two imageries. These applications have been greatly facilitated by Google Earth Engine (GEE), which 

provides both imagery access and a platform for advanced analysis techniques. Within the field of land cover classification, GEE 

provides the ability to create fast new classifications, particularly at global extents. Despite the role of indices and other ancillary data 

in classification, GEE platform pixel-based supervised classification (GEE-PBSC), as a relatively fast and common classification 

method in remote sensing, was not directly analysed and assessed about accuracy in current researches. We ask how high the 

classification accuracy of GEE-PBSC is, and which type of land cover is more suitable to be classified by GEE-PBSC method with a 

credible accuracy. Here we adopt GEE-PBSC method to classify Landsat 5 TM imageries in Shandong province in 2010, and 

compare the result with GlobeLand30 product in 2010 from three aspects: type composition, type confusion and spatial consistency 

to assess the classification accuracy. Before the comparison, multiple cross-validation, which shows that the overall average test 

accuracy is about 74%, is required to ensure the reliability. The comparison experiment shows that the spatial consistency ratio of 

artificial surface, cultivated land and water is about 99.30%, 85.78% and 73.02% respectively. The pixel purity of artificial surface 

and cultivated land is about 90.26% and 81.45% respectively. The overall spatial consistency ratio is about 82.04%. Although the 

GEE-PBSC method can achieve high test accuracy, the result is still far from GlobeLand30 product in 2010. Because the GEE-PBSC 

only uses the pixel information of imageries and does not integrate other multi-source data to assist classification. In addition, 

classification result also shows that using GEE-PBSC to classify artificial surface and cropland has obvious advantages over other 

land classes, and their classification results is close to GlobeLand30. 
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1. INTRODUCTION 

Land cover refers to the material synthesis with different 

natural properties and characteristics on the earth's surface, 

which represents the differences in surface hydrothermal and 

material balance, biogeochemical circulation and other 

processes. Its spatial distribution and changes also reflect the 

interaction process between nature and humans to a certain 

extent (Turner et al., 1993). Land cover change alters the 

land-atmosphere moisture, energy and carbon cycle, 

contributing to global climate change (Foley et al., 2005). For 

example, the change of land cover will significantly change the 

characteristics such as surface albedo and emissivity, so as to 

affect the surface hydrothermal process budget and generate 

strong feedback on the climate system (Weng et al., 2007). 

Deforestation and other land cover changes are also a major 

source of increased greenhouse gas (CO2) concentrations 

(Stocker, 2014). In addition, changes in land cover can directly 

affect the stability and diversity of ecosystems (Naidoo et al., 

2008). Information on land cover and its changes has been 

recognized as an indispensable and important basic data in the 

research fields of global environmental change, geographical 

country (world) situation monitoring, sustainable development 

planning and land resource management (Feddema et al., 2005; 

Xian, Crane, 2006; Reid et al., 2010; Pereira et al., 2013). For 

example, The intergovernmental Group on Earth Observation 

(GEO) lists land cover as one of the key parameters for the 

study of surface processes (Zell et al., 2012). Therefore, a 

scientific and accurate measurement of the spatial distribution 

and dynamic change of global land cover is of great 

significance for the study of energy balance, carbon cycle and 

other biogeochemical cycles, climate change and biodiversity 

of the earth system. 

 

With petabyte-scale archives of remote sensing data available 

for free, a new era in remote sensing has been launched, 

characterized by free data and multi-temporal analysis methods 

for tracking land cover change (Coppin, Bauer, 1996; 

Verbesselt, 2012; Wulder et al., 2012; Zhu, 2017; Wulder et al., 

2018; Sidhu et al., 2018). There are now many potential 

sources of satellite-based imagery spanning more than 40 years 

(Woodcock et al., 2008; Wulder et al., 2012). Landsat is the 

longest running time series, but additional sensors also provide 

free imageries (Yüksel et al., 2008; Giri et al., 2013). In recent 

years, sentinel-2 satellites launched in 2015 and 2017 have 

higher spatial resolution and return visit time (Drusch et al., 

2012; Li, Roy, 2017). The increase in fine resolution and 

temporal data adds to the potential benefits of algorithms that 

incorporate evidence form a large number of satellite imageries 

into useful maps that monitor changes in the landscape. 

 

Unfortunately, taking full advantage of these resources still 

requires considerable technical expertise and effort. These 

requirements are meted by GEE, which is a cloud-based 

platform that make it easy to access high-performance 

computing resources for processing very large geospatial 

datasets (Gorelick et al., 2017). GEE integrates multi-source 

and multi-scale remote sensing data from MODIS, Landsat 

TM/OLI and other remote sensing data around the world. With 

the powerful computing power of cloud platform, many 

researches based on GEE were carried out in recent years, 

including: Vegetation Mapping and Monitoring (Robinson et 

al., 2017; Goldblatt et al., 2017; Tsai et al., 2018), Land cover 

Mapping (Lee et al., 2018; Mahdianpari et al., 2018; Tsai et al., 

2018), agricultural applications (Xiong et al., 2017; He et al., 

2018) and disaster management and earth science (Sproles et 

al., 2018; Liu et al., 2018).  

 

However, GEE-PBSC, as a relatively fast and common 

classification method in remote sensing, is only one step of the 

above works. There is no literature that directly analyses and 

evaluates the information classification ability of GEE-PBSC. 

Therefore, this paper takes the classification of land cover 

information of Shandong province as an example, and through 

the accuracy analysis of GEE platform classification result 

acquired by applying GEE-PBSC, determines the land cover 

type suitable for classification, and provides certain references 

and suggestions for the use of platform’s land cover mapping. 

 

2. METHODS 

2.1. Study Area 

Located on the eastern coast of China, Shandong Province is 

located in the lower reaches of the Yellow River, between 114°

36′E~122°43′E, 34°25′N~38°23′N, with a total 

land area of 1.571×107hm2. In the middle of the terrain, the 

mountains are prosperous, the eastern hills are undulating and 

gentle, and the west and the north are low and flat. Plain basins, 

mountainous hills and waters account for 63%, 34% and 3% of 
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the total land area, respectively. The study area has a mix of 

grasslands, forest, water and artificial surface and extensive 

agricultural areas. The variety of land cover types and less 

complex terrain make this area a good location to test the 

classification accuracy of GEE-PBSC. 

 

2.2. Land Cover Categories 

For this study, in order to ensure the comparability of 

classification results, the definitions of land cover type refer to 

the classification results of GlobeLand30 in Shandong province 

in 2010. We identify seven fundamental land cover categories: 

Cropland; Forest; Grassland; Wetland; Water; Artificial surface 

and Bare land. Referring to Sentinel high-resolution imagery 

and GlobeLand30 data products, 835 sample points are selected 

through manual interpretation, among which 60% are the 

training samples and the rest are the test samples for 

subsequent calls of GEE. The distribution of sample points and 

the statistics of various categories are shown in figure 1 and 

table 1 respectively. 

 

Figure 1. The distribution map of sample points in 2010 

Table 1. The statistics of sample points 

code categories number 

0 cropland 216 

1 forest 149 

2 grassland 86 

3 wetland 59 

4 water 117 

5 artificial surface 157 

6 shrubland 51 

Total  835 

 

2.3. Classification and Validation 

2.3.1 Random Forest Classifier 

Random forest (RS) algorithm is an ensemble learning 

algorithm proposed by Breiman in 2001 (Beriman, 2001). It is 

an ensemble of classification trees, which are used to train and 

predict the samples with multiple trees, and the final 

classification result is decided by the vote of multiple tree 

classifiers. First, N training sets are classified from the original 

data set by bootstrap sampling technology, and the size of each 

training set is about 2/3 of the original data set. Then, 

classification trees are established for each training set to 

generate a forest composed of N classification trees. During the 

growth process of each tree, m attributes (m≤M) are randomly 

selected from all M characteristic variables, and the optimal 

attribute is selected for internal node branch according to the 

Gini coefficient minimum principle among these M attributes. 

Finally, the prediction results of N classification trees are set, 

and the category of new samples is determined by voting. 

About 1/3 of the data in each sampling was not selected, and 

the OOB error was generated by using the out-of-bag data to 

estimate the internal error. 

2.3.2 Spatial consistency validation method 

Type confusion analysis. It can give the degree of confusion 

between two sets of products and the same type, and assess the 

similarity of the area composition of the two sets of products. 

By using the spatial overlay method, the spatial correspondence 

relation of two sets of products pixel by pixel is obtained. 

When the local type is consistent, the local type is regarded as 

pure; otherwise, the local type is regarded as confused. Firstly, 

one set of products is determined as the reference data and the 

other set as the evaluation data, and the type purity Ai of two 

sets of products with different land types is defined, as shown 

in equation (1): 

  

  𝐴𝐴𝑖𝑖 = 𝑁𝑁𝑖𝑖
𝑀𝑀𝑖𝑖

× 100%   (1) 

 

where Mi = pixel number of the ith category in the reference 

data 

 Ni = pixel number of the ith category in the same 

position as Mi in the evaluation data. 

 

Spatial consistency analysis. Type confusion analysis is based 

on statistical results, which is not intuitive, while spatial 
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consistency analysis can directionally analyse the spatial 

correspondence between different products pixel by pixel. The 

spatial consistency ratio Bi of two different products land cover 

categories and the overall space consistency ratio Ci of two sets 

of products are defined, as shown in equations (2) and (3): 

  

  𝐵𝐵𝑖𝑖 = 𝑍𝑍𝑖𝑖
(𝑋𝑋𝑖𝑖+𝑌𝑌𝑖𝑖)/2

× 100%   (2) 

  𝐶𝐶𝑖𝑖 = ∑ 𝑍𝑍𝑖𝑖𝑘𝑘
1
𝑆𝑆

× 100%   (3) 

 

where Xi、Yi = pixel numbers of the ith category in our 

product X and product Y respectively 

 Zi = pixel number of the ith category of two products 

in the same position 

 k = the number of different land cover categories 

 S = the total pixel number of any one of two sets of 

products under the same spatial range and resolution. 

 

3. RESULTS 

By applying RS algorithm, we classify Landsat 5 TM imageries 

data in Shandong province in 2010. 

 

3.1. Cross-validation 

In order to minimize the impact of training sample differences 

on classification accuracy, 60% of the samples are randomly 

selected each time as the training set, and the remaining 40% as 

the test set for 10 times of cross-validation experiments. The 

result shows that the overall average test accuracy is about 

74%. 

 

3.2. Spatial consistency experiment 

We analyse the classified product with the highest test accuracy 

(Figure 2) with GlobeLand30 product in 2010 (Figure 3) from 

three aspects: type composition, type confusion and spatial 

consistency, so as to evaluate the classification accuracy of 

GEE platform. 

 

Figure 2. Our classified product with highest test accuracy in 

Shandong in 2010 

 

Figure 3. The GlobeLand30-2010 product in Shandong 

 

3.2.1 Type composition analysis 

The area ratio of each land cover type of the two sets products 

is calculated (Figure 4). The result shows that except for the 

underestimation of 8.05% of cultivated land area and 

overestimation of 7.84% of grassland area, the difference in the 

proportion of other land types is within 3%, and the proportion 

is roughly the same. 

 

Figure 4. Area ratio of land cover types 
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3.2.2 Type confusion analysis 

The pixel and pixel corresponding relationship of our classified 

product and GlobeLand30-2010 product is obtained by 

overlaying them in ArcMap. Then we calculate the land cover 

type confused degree by using equation (1), where M = 

GlobeLand30 product, N = Our classified product, as shown in 

figure 5. The results show that the degree of land cover type 

confusions of artificial land, cultivated land, grassland, forest 

and water are relatively low (i.e. high purity), and the pixel 

purity is about 90.26%, 81.45%, 67.10%, 62.76% and 60.04%, 

respectively. The purity of wetland and bare land is lower than 

50% (40.43% and 18.84% respectively). It can also be shown 

from the figure that the mixture of forest and grassland, 

wetland and water is relatively obvious. Besides water bodies, a 

large proportion of artificial surface is also mixed in the 

wetland. In addition, bare land and other types of mixed is also 

serious. 

 

Figure 5. The confused degree of land cover types between our 

classification and GlobeLand30-2010 products (The abscissa in 

the figure represents the land cover type of globeland30-2010, 

and the ordinate represents the percentage of pixels in our 

classified product in a certain land cover type of 

globeland30-2010. When the abscissa is consistent with the 

land type of the ordinate, the land cover type is regarded as 

pure; otherwise, the ground type is regarded as confused). 

 

3.2.3 Spatial consistency analysis 

Spatial consistency ratio of land cover types (Figure 6) is 

calculated by using equation (2). As it can be shown from the 

figure that cultivated land and water was higher (99.30%, 85.78% 

and 73.02%, respectively), while that of forest, grassland, 

wetland and bare land was lower (55.34%, 25.45%, 10.46% 

and 3.72%, respectively).  

 

Figure 6. Spatial consistency ratio of land cover types 

According to equation (3), k = 7. Since the spatial range and 

resolution of the two sets of products are the same, S is the total 

pixel number of any one of our classified products and 

GlobeLand30-2010 products. The calculated result shows that 

the overall spatial consistency ratio between our classified 

products and GlobeLand30-2010 product is about 82.04%, high 

consistency. 

 

4. DISCUSSION 

After the above comparative analysis, the following 

speculations can be made :(1) the GEE-PBSC method can be 

used to classify the artificial ground surface from the remote 

sensing images easily, because the classified results have higher 

spatial consistency with GlobeLand30 and higher pixel purity; 

(2) the results overestimated the area of cropland, but it still 

have good purity and good spatial consistency, which indicates 

GEE-PBSC method is a friendly to the classification of 

cropland; (3) although the classification results of water bodies 

are in good spatial consistency with GlobeLand30, water 

bodies and wetlands are badly mixed, and it is difficult to 

distinguish water bodies and wetlands from remote sensing 

images only by pixel information; (4) the mixture of forest and 

grassland is relatively obvious, and the spatial consistency of 

the results with GlobeLand30 is also low, indicating that it was 

not easy to distinguish by GEE-PBSC method alone; (5) bare 

land is badly mixed with other land, and the spatial consistency 

is the worst. 

 

5. CONCLUSTION 

Using GEE-PBSC method, we classify Landsat 5 TM 

imageries in Shandong in 2010, and compare our classified 

product with GlobeLand30-2010 to analyses the accuracy of 

GEE-PBSC method. The GEE-PBSC method can achieve a 
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higher test accuracy and our product can maintain a high spatial 

consistency with GlobeLand30, but there is still a big gap 

between them. In our classification, we only used the pixel 

information of the imageries, and the index-based classification 

method and other auxiliary data are not adopted. As a result, 

some land cover types with similar pixel information are 

difficult to be classified by GEE-PBSC method or the purity of 

classification results is not high enough. In addition, the 

GEE-PBSC’s ability to classify artificial land surface and 

cropland deserves attention, which can provide a preliminary 

and reliable result for higher accuracy land cover mapping. 
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