
QUANTIFYING EFFECTS OF CHANGING SPATIAL SCALE ON SPATIAL 

ENTROPY INDEX: USE OF FRACTAL DIMENSION

Chaojun Wang1, 2∗, Hongrui Zhao1, 2 , Dongming Huang1,2

1Department of Civil Engineering, Tsinghua University, Beijing 10084, China - 

(wangcj16@mails.tsinghua.edu.cn, zhr@tsinghua.edu.cn, hdm17@mails.tsinghua.edu.cn) 

23S Center, Tsinghua University, Beijing 10084, China 

Commission IV, ICWG IV/III, WG IV/4

KEY WORDS: Landscape Heterogeneity, Scale Effect, Spatial Entropy, Fractal Dimension 

ABSTRACT: 

Quantifying landscape heterogeneity and its organization at different scales is essential for understanding ecosystems and landscapes. 

Among hundreds of landscape metrics, entropy-related index represents an efficient tool to quantify and characterize landscape 

patterns. A recent development is Spatial Entropy index (Hs), and it has been validated as flexible and effective in landscape pattern 

analysis. However, the effects of changing spatial scale on Hs has not been quantified. This paper applies the fractal method to 

measure the spatial scale (grain size) sensitivity of Hs. Using the initial land-use data of Yanhe watershed, which is located in 

northwest of China, eleven different spatial scales were created in order to investigate the scale effects on Hs. A linear log–log 

regression model was then constructed based on the power law to calculate the coefficient of determination (COD) of the model and 

the fractal dimension (FD) of Hs. The result indicates that Spatial Entropy index shows a robust fractal feature, and it decreases as the 

spatial scale (or grain size) becomes lager in a moderate degree. In total, we believe that this study will help us to get a better 

understanding of Hs, and to facilitate further applications of this entropy-related index. 

 Corresponding author should be addressed to Chaojun Wang, Email: wangcj16@mails.tsinghua.edu.cn. 

1. INTRODUCTION

It is widely recognized that the study of landscape heterogeneity 

and its organization at different scales is essential for 

understanding ecosystems and landscapes (Turner, 1989; Levin, 

1992; Chave, 2013). Landscape features have been identified to 

exist at multiple spatial and temporal scales (Anderson et al., 

2010), these features are presented differently across spatial 

scales (Turner, 1990; Emilio Rafael et al., 2009). The study of 

landscape heterogeneity has progressed in recent decades 

through the use of methods based on the application of 

landscape metrics (e.g., Haines-Young and Chopping, 1996; 

McGarigal et al., 2012) and spatial statistics (e.g., Fortin et al., 

2012). While all these studies have contributed to advance our 

understanding of landscapes, however, various problems still 

exist since most of them do not address the intrinsic causality 

and underlying dynamics of the patterns (see Li, 2000a; Li and 

Wu, 2004; Shao and Wu, 2008).  

To address these persistent challenges of landscape analysis, 

some scholars highlight that holistic and thermodynamic based 

approaches are needed (Muller, 2000; Li, 2000a; Cushman, 

2015; Nielsen, 2019). Since introducing the seminal work of 

Shannon entropy to the field of landscape ecology, entropy-

related metrics have been rapidly developed and represent an 

efficient tool to quantify and characterize landscape patterns 

(Vranken et al., 2015), for example, Shannon diversity index, 

Simpson diversity index, contagion index (Li and Reynolds, 

1994), quadratic entropy index (Díaz-Varela et al., 2016), etc. A 

recent derivation is the Spatial Entropy index (Hs), and it 

incorporates proximity as a key spatial component into the 

measurement of spatial heterogeneity (Wang and Zhao, 2018). 

Hs has been validated as flexible and effective in characterizing 

landscape patterns, however, the effects of changing spatial 

scale (or scale sensitivity) on this index has not been quantified. 

Fractal method offers a general way to quantify the scale effect 

of landscape metrics (Li, 2000b). The term fractal, was coined 

by Mandelbrot (1967), and it stands for complex but self-similar 

shapes that repeat fundamental patterns at ever increasing and 

decreasing scale (Brown et al., 2002). By applying the fractal 

method to measure the length of Britain’s shoreline using 

different rulers, Mandelbrot (1967) shows that the self-

similarity of the shorelines is invariant for some range of scales. 

Since then, this method has been applied to address the scaling 

issues of both social and natural phenomena (Wu and Qi, 2000; 

Li, 2000b). In particular, the spatial scale used to measure 

landscape patterns is similar to the ruler length in measuring the 

length of the shoreline. The relations between the landscape 

metrics and the corresponding grain sizes, represented by the 

coefficients in the power law relations (Wu, 2004; Feng and Liu, 

2015), can be transformed into fractal dimensions, which can be 

used to investigate the scale effects of landscape metrics. 

The primary aim of this study is to evaluate effects of changing 

spatial scale on Spatial Entropy index (Hs). Our interest 

specifically concerns the following aspects: (a) to what extent is 

Hs sensitive to changes in spatial scales; and (b) how to use 

fractal dimension to quantify the scale effects of Hs. The 

remainder of this paper is structured as follows. Section 2 

briefly illustrates the case study area and experimental data used 

in this research, and introduces the notion of Spatial Entropy 

index, and fractal dimension method in general. Section 3 

demonstrates the results and provides a discussion. Finally, 

Section 4 concludes the paper and outlines some further work. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W20, 2019 
ISPRS and GEO Workshop on Geospatially-enabled SDGs Monitoring for the 2030 Agenda, 19–20 November 2019, Changsha, China

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-4-W20-83-2019 | © Authors 2019. CC BY 4.0 License. 83



 

 

2. MATERIALS AND METHODS 

2.1 Study Area and Data 

Yanhe watershed is located in the hinterland of the Loess 

Plateau in China with a total area of approximately 7,725 km2 

(Fig. 1). The area follows a southeast-northwest gradient, with 

elevation ranging from 491 to 1787 m, and it belongs to semi-

arid continental climate zone, with an annual average 

precipitation of 520 mm, and annual average temperature is 

about 8.8-10.2 ℃ (Wang, 2016). 

 
Figure 1. The location of study area. 

 

A land-use map of Yanhe watershed for 2015 depicting 

different landscapes was used in this study (see Fig. 2), and it 

was provided by Resource Data Center of Chinese Academy of 

Sciences (http://www.resdc.cn). The main land-use types of this 

region include arable land (31.2%), grassland (52.4%), and 

woodland (14.9%). The rest (1.5%) contains urban, water 

bodies and other land-use types. The initial land-use map has a 

spatial resolution of 30 m, and then was resampled to other ten 

different spatial scales, which were defined as an increase by 30 

m at each scale level. Therefore, the eleven spatial scales 

include 30 m, 60 m, 90 m, 120 m, 150 m, 180 m, 210 m, 240 m, 

270 m, 300 m and 330 m. The resampling of the initial map was 

conducted on ArcGIS 10.2, and the Majority method was 

applied during this process. It should be kept in mind that some 

small land patches, especially the linear features such as rivers, 

disappeared at coarse spatial scales (Turner et al., 1989). 

Fortunately, as the number of such cells is low compared to 

other land-use types, this does not substantially change the 

composition of the land-use pattern of the region. 

 
Figure 2. Land-use map of Yanhe watershed for 2015. Three 

different (a-c) grain sizes are represented. 

 

 

2.2 Spatial Entropy Index as Heterogeneity Metrics 

Entropy-related metrics represent an efficient tool to quantify 

and characterize landscape patterns. In particular, indices 

derived from information theory (i.e., Shannon entropy) have 

been extensively used to analyse the diversity of landscape 

heterogeneity (Vranken et al., 2015). The most widely used one, 

is Shannon diversity index (aka. Shannon-Wiener index), which 

is defined as: 

 
(1) 

where pi is the proportion of the landscape occupied by the class 

type i, and n is the total number of classes. 

 

However, as many scholars pointed out, Shannon diversity 

index only reflects the compositional (i.e., richness and 

evenness), and it ignores the configurational information of 

landscape heterogeneity (Cushman, 2016). To address this 

problem, Claramunt (2005; 2012) highlighted that the 

fundamental properties that space generates and conveys should 

be considered when Shannon entropy is applied to spatial 

analysis. Following this perspective, a recent further derivation 

is the Spatial Entropy index (Hs) proposed by Wang and Zhao 

(2018). Hs, as Equation 2 shows, integrates proximity as a key 

spatial component into the measurement of spatial diversity. 

Proximity contains two aspects, i.e., total edge length and 

distance, and by including both aspects gives richer information 

about spatial pattern than metrics that only consider one aspect. 

 

 

(2) 

 

(3) 

 

(4) 

where Li is the total amount of edges between class i and other 

different classes (or patch types), and it equals to the sum of 

lengths of all edge segments involving the corresponding class 

(McGarigal et al., 2012). di denotes the sum of average 

distances between the different class centers. It should be noted 

that the distance that is considered in Hs might be any form that 

fulfils the metric properties of distance (e.g., Manhattan 

distance, Euclidean distance, contextual distance, cognitive 

distance). When different class centroids coincide, di can be 

taken as a relatively small constant (such as 0.5-unit length) in 

order to avoid the “noise” effect of null values in the 

calculations. 

 

Hs has been validated as a flexible and objective measure in 

distinguishing and characterizing landscape patterns (cf. Wang 

and Zhao, 2018). However, the effects of changing spatial scale 

on Hs has not been quantified. 

 

2.3 Fractal dimension for measuring scale effect 

Fractal dimension offers a general way of investigating the scale 

effect of landscape metrics. Using the power law identified by 

Wu (2004), a linear log–log regression model was defined as: 

 
(5) 

where M is the value of the landscape metrics, R denotes the 

spatial resolution (or grain size) of the land-use map, a is the 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W20, 2019 
ISPRS and GEO Workshop on Geospatially-enabled SDGs Monitoring for the 2030 Agenda, 19–20 November 2019, Changsha, China

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-4-W20-83-2019 | © Authors 2019. CC BY 4.0 License.

 
84



 

 

slope, and b denotes the intercept of the linear log–log 

regression model. 

 

Slope a is then transformed into a fractal dimension measure, 

which indicates to what extent a certain landscape metric is 

sensitive to changes of the spatial scales. This is written as: 

 
(6) 

where FD denotes the fractal dimension, and it quantifies the 

extent a certain landscape metric changes its value due to the 

change of spatial scales. 

 

Given that the slope a in most linear log–log regression models 

of landscape ecology is in the range of [−1, 1], the value of FD 

falls within the range of [−2, 2]. A negative FD (a > 0) indicates 

that the value of the metrics increases as the cell size becomes 

larger (i.e., coarser scale), whereas a positive FD (a < 0) 

indicates that the value of the metrics decreases as the cell size 

becomes larger. 

 

The coefficient of determination (COD, or R2) of the linear log–

log regression model, measures the degree the landscape 

metrics at different spatial scales accord with the log–log 

regression model. A COD value close to 1 means a robust 

fractal feature of the metrics, this is to say, this landscape metric 

exhibits a power law that is highly consist and robust over a 

range of scales (Wu, 2004). 

 

According to the values of FD and COD, Feng and Liu (2015), 

in their comprehensive studies, defined four nominal scales to 

describe different degree of influence of spatial scales on the 

landscape metric respectively (see Table 1). For example, a 

“robust” fractal feature indicates the metric exhibits an obvious 

power law, while “none” means the metric does not exhibit a 

clear power law effect. 

 

Fractal 

feature 

COD 

range 

Degree of 

influence 

FD range 

Robust [0.7, 

1.0] 

Strong [1.3, 2.0] & [-2.0, -

1.3] 

Moderate [0.5, 

0.7) 

Moderate [1.1, 1.3) & (-1.3, -

1.1] 

Weak [0.3, 

0.5) 

Weak [1.05, 1.1) & (-1.1, -

1.05] 

None [0. 

0.3) 

None [1.0, 1.05) & (-1.05, -

1.0] 

Table 1. Nominal categories of fractal feature and degree of 

influence of spatial scales on the landscape metric based on 

COD and FD (based on Feng and Liu, 2015) 

 

 

3. RESULTS AND DISCUSSION 

Taking Yanhe watershed as an example, the CODs and FDs of 

Shannon diversity index (H) and Spatial Entropy index (Hs) 

were calculated; the corresponding fractal features and scale 

influences were assessed (Fig.3; Table 2). 

 
Figure 3. The results of Shannon diversity index and Spatial 

Entropy index. 

 

 

 

Metrics 

 

COD (R2) FD 

Value Feature Value Feature 

H 0.0038 None 1.0004 None 

Hs 0.9485 Robust 1.256 Moderate 

Table 2. The CODs and FDs of Shannon diversity index and 

Spatial Entropy index 

 

As mentioned above, a COD indicates the fractal feature while a 

FD indicates the influence of spatial scale on the metric being 

assessed. It is clear that the Spatial Entropy index (Hs) shows a 

robust fractal feature, and it decreases as the spatial scale (or 

grain size) becomes lager in a moderate degree. However, 

Shannon diversity index (H) exhibits no fractal feature, and it 

either scale-independent or randomly affected by spatial scale. 

 

Generally speaking, the effects of changing spatial scale on 

landscape metrics are determined by three aspects, including the 

nature of the metrics, the experimental data and the landscape 

structure of the study area (Wu 2004; Feng and Liu, 2015). 

These factors may provide us a better understanding of the scale 

effects on H and Hs. First, the very nature (or the characteristic) 

of the landscape metrics, which plays the most important role in 

determining the scale effects of the landscape metrics. H 

quantifies the compositional information (i.e., richness and 

evenness) of a certain landscape; as grain size becomes larger, 

some small land patches and the linear features would be 

disappeared, however, these small patches are relatively low 

compared with other patches and then they do not substantially 

change the composition of the land-use pattern. Hs integrates 

proximity as a key factor, which contains total edge length and 

distance; as spatial scale becomes coarse, edge length between 

different classes (or patch types) decreases, and hence Hs has a 

positive fractal dimension. Second, the experimental data, that 

is to say the re-sampling method and the range of grain sizes (or 

the number of sampling points) used in the regression model, 

would affect the quantify of scale effects. The effects of re-

sampling method have been demonstrated by Urban (2005). In 

this study, we applied Majority re-sampling method to create 

eleven changing spatial scales, and then constructed the log-log 

regression model. However, it should be noted that, on one hand, 

other re-sampling methods need to be further investigated; on 

the other hand, spatial scales ranging from 30 m to 330 m were 

used to establish the fractal law, however, this result may be not 
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suitable for all scale ranges. The scale-independent interval in 

experimental data needs to be further discussed and explored. 

Future research should also develop multi-scale fractal methods 

to evaluate scale effects in order to avoid the uncertainty caused 

by the use of a single fractal dimension and its coefficient of 

determination (see Li 2000b). Third, the landscape structure of 

the study area, in some degree, also affect the results. The 

landscape data of Yanhe watershed only contains six categories 

with three main components; more complex landscapes should 

be investigated to assess the scale effects of Hs. 

 

4. CONCLUSION 

Quantifying the effects of changing spatial scale on landscape 

metrics is essential for landscape heterogeneity analysis. Spatial 

Entropy index (Hs) has been proposed as a flexible and efficient 

measure to characterize landscape heterogeneity. This study 

presents a fractal method to quantify the scale effects of Hs, and 

it rests on the generally accepted power law effect of landscape 

metrics to spatial scales reported in relevant literature (please 

refer to Wu, 2004; Forzieri and Catani, 2011). Two qualitative 

terms were used to summarize the scale effects of the landscape 

metrics: the fractal feature (i.e. coefficient of determination) 

which was used to quantify the extent that the landscape metrics 

accord to the power law, and the fractal dimension which was 

used to quantify the extent the landscape metrics change in 

response to change in spatial scales (Li, 2000b).  

 

Application of the fractal method in the Yanhe watershed, 

China shows that the effects of changing spatial scale on Spatial 

Entropy index (Hs) accord to power law, and the fractal 

dimension value indicates Hs decreases as spatial scale becomes 

larger. The factors that may impact this result have been 

discussed and clarified. In total, through quantifying spatial 

scale effects on Hs, we believe it will help us to get a better 

understanding of Hs, and to facilitate the further application of 

this entropy-related index. 

 

Our future studies will focus on the following aspects: (a) more 

complex landscapes should be incorporated to assess the scale 

effects; (b) different re-sampling methods need to be further 

investigated; and (c) multi-scale fractal methods should be 

applied to evaluate scale effects. 
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