
A CLOUD-BASED ARCHITECTURE FOR SMART VIDEO SURVEILLANCE

Luis Valent́ın∗, Sergio A. Serrano, Reinier Oves Garćıa, Anibal Andrade, Miguel A. Palacios-Alonso, L. Enrique Sucar

Instituto Nacional de Astrof́ısica, Óptica y Electrónica (INAOE)
Sta. Maŕıa Tonantzintla, CP 72840, Puebla, Mexico.

{luismvc, sserrano, ovesreinier, anibalandrade, mpalacio, esucar}@inaoep.mx

KEY WORDS: Smart City, Smart Sensing, Smart Security, FIWARE

ABSTRACT:

Turning a city into a smart city has attracted considerable attention. A smart city can be seen as a city that uses
digital technology not only to improve the quality of people’s life, but also, to have a positive impact in the environment
and, at the same time, offer efficient and easy-to-use services. A fundamental aspect to be considered in a smart city is
people’s safety and welfare, therefore, having a good security system becomes a necessity, because it allows us to detect
and identify potential risk situations, and then take appropriate decisions to help people or even prevent criminal acts.
In this paper we present an architecture for automated video surveillance based on the cloud computing schema capable
of acquiring a video stream from a set of cameras connected to the network, process that information, detect, label
and highlight security-relevant events automatically, store the information and provide situational awareness in order to
minimize response time to take the appropriate action.

1. INTRODUCTION

Ensuring the safety of people should be a priority for ev-
ery city. In order to address this issue some approaches
have been proposed. Monitoring systems are the simplest
solutions, while architectures capable of analyzing human
behavior and determining whether there exists any possi-
ble dangerous scenario, such as fighting, theft, etc, are the
most complex. Even though the development of complex
surveillance schemes constitutes a great challenge, the im-
portance along with the necessity of preserving the safe-
ness of society have played a decisive role as one of the
main incentives for researchers and developers to work on
the integration of some technologies, such as data man-
agement and computer vision, to produce systems that
are reliable and effective enough to serve as solution for
tasks like cities surveillance, video analytics and efficient
video management in order to support city officials and/or
security employees in their duty.

Nowadays, video surveillance systems only act as large-
scale video recorders, storing images from a large number
of cameras onto mass storage devices. From these schemes
users have access to information that must be analyzed by
themselves to detect and react to potential threats. These
systems are also used to record evidence for investigative
purposes. However, people are prone to be affected by
mental fatigue as a consequence of performing the same
task for a long period of time, resulting in a substantial
increase of reaction time, misses and false alarms (Boksem
et al., 2005). This fact has been one of the main reasons
for the development of smart video surveillance systems.

In order to solve the problem of people’s lack of concentra-
tion over long periods of time, one feasible solution might
be the integration of automatic video analysis techniques.
These techniques are based on computer vision algorithms

∗Corresponding author

that are capable of perform tasks as simple as detecting
movement in a scene, to more complex ones such as clas-
sifying and tracking objects. The more advanced the algo-
rithms are, the more sophisticated the system will be, and
so will increase its capability to aid the human operator
on real-time threat detection.

In this paper we present an architecture for automated
video surveillance based on the cloud computing schema.
Besides of acquiring video stream from a set of cameras,
the approach we are proposing is also capable of extract-
ing information related to certain objects within the scene.
The extracted data is interpreted by the system as context
information, from which we are able to detect security-
relevant events automatically. For testing purposes, we
have implemented a prototype of our proposed architec-
ture.

The rest of the paper is organized as follows. Section 2
summarizes the main advances in smart surveillance sys-
tems. In Section 3 we describe the FIWARE platform that
we are using to deploy our architecture. Section 4 describes
the proposed architecture of the smart video surveillance
system based on cloud computing. In Section 5 we de-
scribe the set of computer vision filters that we have im-
plemented. Section 6 explains how the information flows
into the proposed architecture. In Section 7 we describe
our implemented system prototype. Finally in Section 8
the Conclusions and Future work are presented.

2. RELATED WORK

Video surveillance and video analysis constitute active ar-
eas of research. In general, a video surveillance system in-
cludes the following stages: modeling of the environments,
detection of motion, classification of moving targets, track-
ing, behavior understanding and description and fusion of
information from multiple cameras (Brémond et al., 2006,
Ko, 2008, Hu et al., 2004, Wang et al., 2003).

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W3, 2017
2nd International Conference on Smart Data and Smart Cities, 4–6 October 2017, Puebla, Mexico

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-W3-99-2017 | © Authors 2017. CC BY 4.0 License. 99

Figure 1. General video surveillance schema (Ko, 2008).

Figure 1 shows the way that all the different stages de-
scribed above are connected. This general representation
can be seen as an active video surveillance system. Cur-
rently, there is a wide range of video surveillance systems
that have been implemented to address problems such as
intrusion detection or traffic surveillance. In works like
(Mukherjee and Das, 2013) and (Connell et al., 2004), for
example, the authors propose systems which perform hu-
man detection and tracking. Also, systems like the one
proposed by (Calavia et al., 2012) are capable to detect
and identify abnormal situations based on an analysis per-
formed on object movement, then, they use semantic rea-
soning and ontologies to fire alarms.

On the other hand, there is an emerging research topic
related to the integration of cloud-based services to video
surveillance systems. In the work presented in (Xiong et
al., 2014), for instance, the authors have proposed a gen-
eral approach for implementing cloud video surveillance
systems. Another example of the integration of cloud-
based services is presented in (Rodŕıguez-Silva et al., 2012),
in where the authors optimize video streaming transmis-
sion based on the network requirements, process and store
videos based on cloud computing.

However, most of the work developed so far is focused
on solving specific tasks in the context of smart security,
either integrate cloud-based services or develop computer
vision algorithms, moreover, very few of them propose a
model for a complete surveillance system that takes care
of both aspects.

For this reason, due to the incapability classic surveillance
systems present on monitoring and processing data gener-
ated by large scale video surveillance applications, in this
paper we propose a general architecture for a smart video
surveillance system which integrates cloud-based services
and image processing algorithms.

3. FIWARE PLATFORM

FIWARE1 or FI-WARE is a middleware platform, driven
by the European Union. FIWARE was created with the
idea of facilitating the development and global deployment
of applications for Future Internet. According to its web-
site, FIWARE provides a set of APIs that facilitate the de-
sign and implementation of smart applications at several
levels of complexity. The API specification of FIWARE
is open and royalty-free, where the involvement of users
and developers is critical for this platform to become a
standard and reusable solution.

FIWARE offers a catalogue that contains a rich library of
components known as Generic Enablers (GEs), along with
a set of reference implementations that allow developers
to instantiate some functionalities such as the connection
to the Internet of Things or Big Data analysis.

FIWARE is supported by the Future Internet Public-Private
Partnership (FI-PPP) project of the European Union.

4. SYSTEM ARCHITECTURE

Web Browser

Video Stream

Figure 2. System Architecture.

In this work a system architecture for smart video surveil-
lance based on the idea of cloud computing is proposed.
The architecture is composed by five main functional blocks:
Access control, Context Broker, Event Storage, Video Stor-
age and Processing module, in Figure 2 the overall archi-
tecture of the smart video surveillance system is presented,
each block has a unique role in the process of synthesiz-
ing data from real-time video stream into a human under-
standable format.

Access control: The role of this module is to establish a
secure connection between the user and the system, while
it prevents strangers of gaining access. In other words, here

1https://www.fiware.org

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W3, 2017
2nd International Conference on Smart Data and Smart Cities, 4–6 October 2017, Puebla, Mexico

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-W3-99-2017 | © Authors 2017. CC BY 4.0 License.

100

is where the system grants predefined specific permissions
to each user according to its role. The implementation was
made using the KeyRock2 GE, which is an identity man-
ager, developed by FIWARE, that takes care of a variety of
tasks related to cyber security, such as users’ access to the
network and services, private authentication from users to
devices, user profile management, etc.

Context Broker: To implement this module we use the
Orion Context Broker3 (OCB) from FIWARE. The OCB
component is a context information manager, thus, it en-
ables the creation, update and deletion of entities, it is also
possible to register subscriptions in order for other appli-
cations (context consumers) to retrieve the latest version
of all the variables that constitute an entity when some
event occurs. This component can be seen as the moder-
ator that carries out the communication process between
the other modules, so that, once a module has defined the
entities it will send and receive, the OCB takes care of the
rest.

Event Storage: This module persists the data related
to the context information, this information might be an
alarm from the system or a simple notification. By saving
this information, we can retrieve it for later analysis. In or-
der to implement this block we have used two GE, Cygnus4

and Cosmos5. The first one is in charge of the data persis-
tence, it handles the transfer of information from a given
source to a third-party storage, serving as a connector,
which is a great feature that increases the flexibility of the
system and its scalability if required. While the second
one provides a means for BigData analysis, so their users
avoid the deployment of any kind of infrastructure.

Video Storage: This block is employed to storage raw
video data, so that users have access to the video related
to an event detected/stored according to the processing
module.

Processing module: This block is conformed by two
submodules: Kurento and Computer Vision Filters. The
Kurento sub-module provides video streaming from IP cam-
eras through the Kurento Media Server (KMS)6. The KMS
is based on Media Elements (ME) and Media Pipelines.
Media Elements are the modules that perform a specific ac-
tion on a media stream by sending or receiving media from
other elements, while a Media Pipeline is an arrangement
of connected ME’s, that can either be a linear structure
(the output of every ME is connected to a single ME) or a
non-linear one (the output of a ME might be connected to
several ME’s). The ME’s used in the implemented process-
ing module were four: WebRtcEndpoint, PlayerEndpoint,
Vision Filters and RecorderEndpoint. Figure 3 shows the
Media Pipeline we implemented for our architecture proto-
type, i.e., the logic arrangement in which we connected the
four ME. In this pipeline, we get the video stream with the
PlayerEndpoint through a rtsp url, after that, the output
goes to to the computer vision filters, then, the output of

2https://catalogue.fiware.org/enablers/identity-
management-keyrock

3https://catalogue.fiware.org/enablers/publishsubscribe-
context-broker-orion-context-broker

4http://fiware-iot-stack.readthedocs.io/en/latest/cygnus/
5https://fiware-cosmos.readthedocs.io/en/latest/index.html
6http://www.kurento.org/

this ME is sent to the WebRTCEndpoint, after that, the
processed video is ready to be visualized. Additionally,
by using the RecorderEndpoint we are able to store video
from the PlayerEndpoint and thus, we give the user the
capability to play stored videos any time in the future.

Figure 3. Kurento’s Media Pipeline implemented.

Among all of our system’s modules, the processing module
could be considered as the most relevant one, since it is
here where we develop the set of filters required to detect
all sort of events. In the following section we specify the set
of events our system is capable of detecting, by describing
the computer vision filters we have implemented so far.

5. COMPUTER VISION FILTERS

In order to extract relevant information about monitored
scenes from the incoming video streams, Kurento provides
a set of tools that enable the integration of computer vision
algorithms to a Media Pipeline. For the implementation
of any computer vision procedure, Kurento uses OpenCV
(Bradski and Kaehler, 2008) libraries.

In our video surveillance application, we have implemented
a set of submodules that are capable of detecting peo-
ple and vehicles. To do so, three filters were designed, a
background subtraction, classification and tracking filters,
which are described below.

(i) Background subtraction: Background subtraction
is a major preprocessing step in many vision based applica-
tions. However, detecting motion based background sub-
traction is not as trivial nor easy as it may appear at a first
glance. In order to cope with such challenge, we integrated
to our system SuBSENSE (St-Charles et al., 2015), one
of the state of the art background subtraction algorithms.
SuBSENSE can be considered as a foreground/background
segmentation algorithm, based on the adaption and inte-
gration of features known as local binary similarity patterns
in a background model that, as time goes by, is adjusted
using a feedback loop at a pixel level. In other words, what
this filter really does is that it takes the incoming video
stream from a camera and yields another video stream of
binary images, where the white pixels are part of a fore-
ground object (blob) and the pixels colored in black are
considered to be part of the background scene.

(ii) Object classification: In the context of computer
vision, a classification algorithm enables a system to take
actions that require discrete information about a real world
scene, such as the identity or category of every entity inside
it. In our case, to be able to detect vehicles and people,
we have implemented a variation of K-nearest neighbor

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W3, 2017
2nd International Conference on Smart Data and Smart Cities, 4–6 October 2017, Puebla, Mexico

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-W3-99-2017 | © Authors 2017. CC BY 4.0 License.

101

(Peterson, 2009) algorithm. Once the foreground objects
(blobs) have been segmented from the scene by the back-
ground subtraction filter, this filter starts by extracting
a set of shape features (constituted by the area, aspect
ratio and compactness) from every blob in the scene. Af-
ter this, the features of every object are stacked to form
vectors. These vectors are passed to the classification algo-
rithm (KNN) which queries a database in order to assign
a class label. Contrary to the classical KNN which assigns
an object to the class of the best match, our variation of
KNN has an extra criteria that must be satisfied. That is,
the similarity value between an input vector and its best
match must surpass a threshold value, otherwise, it will be
classified as an unknown object. This condition was inte-
grated to reduce the amount of false positive detections by
our system. One of the main reasons we integrated KNN
for the classification task is that if we want to add new
classes of objects we only need to modify the database file,
thus, no retraining is required. Moreover, this classifica-
tion algorithm has turned to be efficient enough for our
real-time processing requirements.

(iii) Object tracking: In order for a system to be able to
monitor what is going on among a set of entities in a scene
within a period of time, this system must have the capa-
bility to gather information and persist it so as to relate
it to data of following iterations, and so, create context
information. In addition to the information extracted on
each instant of time, with context information, it is pos-
sible to query the system about actions, temporal events
and other high level concepts. For this task, we imple-
mented a multi target tracking algorithm, which has no
limit on the amount of objects it can track simultaneously
and takes as input the binary image provided by the back-
ground subtraction sub-module. The algorithm extracts a
set of features from each blob (a different set from the one
used in the classification filter), and establishes a relation
between the blobs in the current frame and those in the
previous one. The most important feature this filter adds
to our surveillance system is the ability to generate infor-
mation about objects along time, this could be seen as a
description of behavior.

Once we have designed our set of filters, we have to con-
nect them to build logic arrangements so that a specific
processing task is performed over the video stream. In
Figure 4 we show these logic arrangements.

Figure 4. Example of filter logic arrangements based on
Kurento’s pipeline..

Any filter in the processing module is able to communicate

with the OCB. The communication between Kurento’s fil-
ters and the OCB goes in both directions. The filters send
information about objects and events they detect and also
perform queries onto variables controlled by other mod-
ules or even by the user. Rebroadcasting data from one to
many, is one of the context broker’s greatest features.

6. SYSTEM WORKFLOW

So far we have described each of the elements that con-
stitute our architecture and what their role is within the
system. However, part of the definition of an architecture,
in addition to its components, is the description of the rela-
tion between each element and the environment. In terms
of our model, an internal interaction is when two compo-
nents of the system are involved, and there is the external
one, where an element within the system interacts with an
entity that is outside the system, which in our case is the
user. In this way, we can fully define the architecture.

As shown in Figure 2, the processing module interacts with
other three elements: storage, context broker and cam-
eras. Although the context broker has an important role
by managing the data coming in and out the system, due
to the context of video surveillance, the processing module
could be considered the core module of the architecture.

Every time an entity in the OCB, which is how objects are
called, is updated or modified, the context broker sends a
notification to every client that has previously subscribed
to this entity. In this way, every module keeps track on the
information it needs. In Figure 5 we show an example of
modules communication, in this case the processing mod-
ule (through the GE Kurento) sends the event detection to
the OCB, while the OCB sends commands to processing
modules, such as start recording, add labels to video, etc.,
this communication is done through JSON messages.

Figure 5. Processing module and OCB communication
through JSON messages.

In addition to being in charge of the management of real-
time data, the OCB persists information by sending it to
the notifications storage module (Cygnus). The data per-
sistence is a necessary step in order for the system to pro-
vide a means for the user to query data with respect events
that occurred at a given time. In this way, it turns a very

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W3, 2017
2nd International Conference on Smart Data and Smart Cities, 4–6 October 2017, Puebla, Mexico

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-W3-99-2017 | © Authors 2017. CC BY 4.0 License.

102

easy task to find in a video a specific event within a defined
span of time.

As a final step, our system sends all the detected events
as well as the video stream of each camera to the user.
In other words, by using this approach we have a video
surveillance system as a service.

7. PROTOTYPE

Figure 6. The implemented prototype consists of a set
of cameras connected to the network, a couple of desk-
top computers for pre-processing and a processing system
implemented on FIWARE.

We have designed and implemented a prototype to test our
system. For this prototype we are using four ip cameras
and two desktop computers for video pre-processing tasks.
Functionalities of the prototype are complemented on the
cloud through FIWARE GEs.

The proposed prototype can be separated in three stages.
The first stage includes the sensors, which in this case are
cameras, however, we can include other kind of input de-
vices such as fire and movement detectors, for instance. In
this stage, we get the video stream, which is the informa-
tion we send to the next phase. In the second stage, we
proceed to compute the background subtraction, motion
detection and object tracking, from this process we get in-
formation as position, speed, number of objects, etc. In
the last stage, we perform the analysis of the video, which
from all the video processing tasks, it is the one that re-
quires the greatest processing capacity. At the end of this
process, we get an interpretation of what is happening in
the scene; furthermore, in this stage we also store both
the video stream and the relevant information for poste-
rior analysis if necessary.

We have also implemented a graphical user interface (see
Figure7). The GUI was implemented in Web2Py. Four
different tabs are at the user’s disposal in order for him to
interact with the set of functionalities our system offers.
The main tab is used for visualizing a single camera and
a historical view of events detected so far. In the multiple
tab, the user may visualize all of the cameras integrated in
the surveillance system. Within the video search tab, the
system allows the user to query videos previously stored by
defining a search criteria based on different attributes such
as date, type of event, camera id, etc. The management
tab, displays the options available for customizing the way
detected events are highlighted. It also enables the user to
register new cameras.

(a) Main tab.

(b) Multiple tab.

(c) Search tab

(d) Management tab

Figure 7. GUI for the video surveillance system prototype.

8. CONCLUSIONS AND FUTURE WORK

To achieve more intelligent video surveillance systems, large
amounts of data need to be collected at each instant, and
then analyzed to extract useful information to make deci-
sions and create an intelligent response. In this work we
have proposed a video surveillance architecture based on

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W3, 2017
2nd International Conference on Smart Data and Smart Cities, 4–6 October 2017, Puebla, Mexico

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-W3-99-2017 | © Authors 2017. CC BY 4.0 License.

103

the idea of cloud computing. By using this approach it is
possible to provide the video surveillance as a service, this
gives us the possibility of having a portable and scalable
system that can be used in different scenarios. Further-
more, as a result of the video analysis it is possible to
obtain a description of what is happening in a monitored
area, and then take an appropriate action based on that
interpretation. In addition, with this approach we are also
able to add different kind of sensors besides cameras, this
gives us the possibility to manage digital devices as in a
IoT framework. Our system is based on the middleware
FIWARE and has been implemented in a real scenario.

As a future work we want to implement more filters to
incorporate them to the processing module. We also want
to incorporate another type of sensors such as motion de-
tection sensor, temperature sensor, etc., which we believe
would improve the understanding the system has of a given
situation. From scalability point of view, as the number
of cameras and algorithms increase more computing re-
sources are required. For this, we are also exploring a
distributed approach.

ACKNOWLEDGEMENTS

This work was supported in part by FONCICYT (CONA-
CYT and European Union) Project SmartSDK - No. 272727.

REFERENCES

Boksem, M. A., Meijman, T. F. and Lorist, M. M., 2005.
Effects of mental fatigue on attention: an erp study. Cog-
nitive brain research 25(1), pp. 107–116.

Bradski, G. and Kaehler, A., 2008. Learning OpenCV:
Computer vision with the OpenCV library. ” O’Reilly Me-
dia, Inc.”.

Brémond, F., Thonnat, M. and Zúniga, M., 2006. Video-
understanding framework for automatic behavior recogni-
tion. Behavior Research Methods 38(3), pp. 416–426.

Calavia, L., Baladrón, C., Aguiar, J. M., Carro, B. and
Sánchez-Esguevillas, A., 2012. A semantic autonomous
video surveillance system for dense camera networks in
smart cities. Sensors 12(8), pp. 10407–10429.

Connell, J., Senior, A. W., Hampapur, A., Tian, Y.-L.,
Brown, L. and Pankanti, S., 2004. Detection and tracking
in the ibm peoplevision system. In: Multimedia and Expo,
2004. ICME’04. 2004 IEEE International Conference on,
Vol. 2, IEEE, pp. 1403–1406.

Hu, W., Tan, T., Wang, L. and Maybank, S., 2004. A sur-
vey on visual surveillance of object motion and behaviors.
Trans. Sys. Man Cyber Part C 34(3), pp. 334–352.

Ko, T., 2008. A survey on behavior analysis in video
surveillance for homeland security applications. In: AIPR,
IEEE Computer Society, pp. 1–8.

Mukherjee, S. and Das, K., 2013. Omega model for human
detection and counting for application in smart surveil-
lance system. arXiv preprint arXiv:1303.0633.

Peterson, L. E., 2009. K-nearest neighbor. Scholarpedia
4(2), pp. 1883.

Rodŕıguez-Silva, D. A., Adkinson-Orellana, L., Gonz’lez-
Castano, F., Armino-Franco, I. and Gonz’lez-Martinez, D.,
2012. Video surveillance based on cloud storage. In: Cloud
Computing (CLOUD), 2012 IEEE 5th International Con-
ference on, IEEE, pp. 991–992.

St-Charles, P.-L., Bilodeau, G.-A. and Bergevin, R., 2015.
Subsense: A universal change detection method with local
adaptive sensitivity. IEEE Transactions on Image Process-
ing 24(1), pp. 359–373.

Wang, L., Hu, W. and Tan, T., 2003. Recent develop-
ments in human motion analysis. Pattern Recognition
36(3), pp. 585 – 601.

Xiong, Y.-H., Wan, S.-Y., He, Y. and Su, D., 2014. Design
and implementation of a prototype cloud video surveil-
lance system. Journal of Advanced Computational Intelli-
gence and Intelligent Informatics pp. 40–47.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W3, 2017
2nd International Conference on Smart Data and Smart Cities, 4–6 October 2017, Puebla, Mexico

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-W3-99-2017 | © Authors 2017. CC BY 4.0 License. 104

