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ABSTRACT: 

Soil moisture is an important parameter that affects several environmental processes. This parameter has many important functions in 

numerous sciences including agriculture, hydrology, aerology, flood prediction, and drought occurrence. However, field procedures 

for moisture calculations are not feasible in a vast agricultural region territory. This is due to the difficulty in calculating soil moisture 

in vast territories and high-cost nature as well as spatial and local variability of soil moisture. Polarimetric synthetic aperture radar 

(PolSAR) imaging is a powerful tool for estimating soil moisture. These images provide a wide field of view and high spatial resolution. 

For estimating soil moisture, in this study, a model of support vector regression (SVR) is proposed based on obtained data from 

AIRSAR in 2003 in C, L, and P channels. In this endeavor, sequential forward selection (SFS) and sequential backward selection 

(SBS) are evaluated to select suitable features of polarized image dataset for high efficient modeling. We compare the obtained data 

with in-situ data. Output results show that the SBS-SVR method results in higher modeling accuracy compared to SFS-SVR model. 

Statistical parameters obtained from this method show an R2 of 97% and an RMSE of lower than 0.00041 (m3/m3) for P, L, and C 

channels, which has provided better accuracy compared to other feature selection algorithms. 

1. INTRODUCTION

Due to the abundance of aerial measurement data from different 

sources, application of remote sensing data has gained a great 

deal of domain. Vast data distribution in remote sensing in 

comparison to field data has helped develop remote sensing 

technology in different fields (Tabatabaeenejad et al., 2015; 

Narvekar et al., 2015; Oh et al., 1992). One of such fields is an 

estimation of soil moisture from radar data. Scientists have 

proven that there is a significant effect in soil moisture anomaly 

and local weather condition, thus, providing accurate soil 

moisture data helps better understanding of the local weather 

condition. 

Radar potential with synthetic aperture radar (SAR) for 

calculating soil parameters has been known for more than thirty 

years (Tabatabaeenejad et al., 2015; Narvekar et al., 2015; Oh et 

al., 1992). Therefore, finding better solutions in predicting soil 

moisture based on radar data with synthetic aperture is of 

significant importance. Polarimetric synthetic aperture (PolSAR) 

images in both vast territory and high spatial resolution has made 

it an effective tool for calculating soil moisture compared to 

passive data (Narvekar et al., 2015). Effects of vegetation and 

intensity of signals affect the intensity of active data more 

significantly than passive data, and this characteristic is used for 

predicting soil moisture (Narvekar et al., 2015). Besides, lack of 

databases for these parameters on calculating soil moisture data, 

soil effects decomposition, and vegetation on redistribution 

coefficient (σ0) is considered as a major hindrance for varied 

applications (Ahmad et al., 2010). To achieve accurate soil 

moisture estimation and avoid above-mentioned difficulties, a 

data-driven model is needed that can efficiently relate the inputs 

to the desired output and that is not computationally intensive 

(Ahmad et al., 2010).  

Artificial neural networks (ANN) are models assimilated based 

on humans learning the ability. These models are more powerful 

than noise data and they are able to provide a nonlinear 

multivariable relation between variables (Twarakavi et al., 

2006). 

Lately, another data-oriented model such as support vector 

machine (SVM), which has a considerable popularity in the area 

of ANN, has gained popularity among researchers (Lin et al., 

2009; Kalra and Ahmad, 2009). The SVM has been recognized 

as a basic kernel learning method and has been utilized broadly 

after successful application in the model identification and 

regression in different fields such as bioinformatics and artificial 

intelligence (Barh et al., 2015). 

Lyn et al. used SVM model for predicting windstorms and hourly 

rains in catchment basins in northern Taiwan and compared 

obtained data with ANN model. They demonstrated the 

superiority of SVM model over the ANN model (Lin et al., 

2009). Carla and Ahmad used SVM model for predicting long-

term sailing ship guidance with regards to oceans fluctuations in 

Colorado Riverfront (Kalra and Ahmad, 2009).  

Gail et al. applied SVM model to data over four and a half days 

for predicting soil moisture based on aerial variables, and 

compared the results with ANN model. Also, in their research, 

they concluded that SVM model has obtained a higher degree of 

accuracy in prediction compared to ANN model (Gill et al., 

2006).  

Ahmad et al. have studied soil moisture downstream of Colorado 

River in the western United States based on data obtained from 

remote sensing using SVM regression technique for ten sites and 

compared results with forwarding and backward ANN model. 

They demonstrated that SVM model provides a better prediction 

for soil moisture compared to ANN and multivariate linear 

regression (MLR) models (Ahmad et al., 2010).  

Sarti et al. also calculated soil moisture with high accuracy. They 

applied polarimetric extraction technique of AIRSAR in C and L 

channels. This technique was applied after surface rigidness 

filtration and differentiation of vegetation from the surface of the 

earth (Sarti and Mascolo, 2012).  

On the other hand, many polarized properties for classifying land 

use/cover are obtainable from PolSAR images (Lardeux et al., 
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2007; Jafari et al., 2015). Therefore, due to this vast applicability 

of the method, it is inevitable to utilize different properties 

obtained from them such as classification and designating soil 

surface parameters. Thus, in some research, there is an endeavor 

to use feature selection technique to reduce feature space of these 

images. In 2008, Batia et al. used a genetic algorithm (GA) coded 

with integral numbers in order to choose suitable features. In this 

algorithm, the length of the chromosome is related to the number 

of features chosen and chromosome drives include the number of 

extracted features (Zhang et al., 2009).  

Hadadi et al. used GA and NN classification and Salehi et al.  

utilized GA and SVM to provide a method for choosing suitable 

features from radar images (Haddadi et al., 2011; Salehi et al., 

2014). Also, Mao embarked on selecting features based on a 

hybrid algorithm. This method led to higher classification 

accuracy and also faster-applied algorithm (Mao, 2004). 

Many other scientists have developed methods in order to 

determine the link between radar signals and surface features. 

Their studies have focused on the effect of vegetation surface 

rigidness in determining soil moisture (Tabatabaeenejad et al., 

2015; Oh et al., 1992; Attema and Ulaby, 1978).  

There have been a number of practical and theoretical evaluation 

models so far for determining soil moisture, with each model 

possessing some drawbacks and pitfalls. However, due to high 

reliability of radar images in extracting varied features on earth’s 

surface, the authors are encouraged to evaluate the images of 

PolSAR to estimate soil moisture.  

The goal of this study is to propose an SVM model for predicting 

soil moisture from PolSAR image. We also propose optimal 

features of this method.  The proposed model considers two 

scenarios. In the first scenario, this modeling is applied with all 

possible features in order to estimate soil moisture. In the second 

scenario, we choose an optimal category of features utilizing 

feature selection method. In this study, SFS and SBS algorithms 

are utilized for choosing optimal features for modeling of soil 

moisture based on images obtained from remote sensing radars. 
 

Table 1: Coherent and non-coherent decomposition of the sample 

used in this study (Lee and Pottier, 2009). 

Decomposition Feature # Decomposition Feature # 

FRE2-Freeman2 2 RMB2-Brnes2 3 

FRE3-Freeman3 3 SRC-Cloude 3 

HAA-H.A.Alpha 3 TSVM-Touzi 16 
HAA-H.A.Alpha-

parameters 
11 VZ3 Van Zyl 3 3 

JRH-Huynen 3 WAH1-Holm1 3 
KRO-Krogager 3 WAH2-Holm2 3 

NEU-Neuman2 3 YAM3 Yamaguchi 3 3 

RMB1-Brnes1 3 YAM4 Yamaguchi 4 4 

 

 

2. PRACTICAL METHODS 

2.1 Producing PolSAR features 

In general, polarization features evaluated in this study have 

obtained from target product analysis. Features obtained from 

target product analysis models provide useful information about 

dispersion mechanisms. Target product analysis methods divided 

into two groups of coherent and non-coherent. (Table 1) (Cloude 

and Pottier, 1996). Coherent analysis methods divide scattering 

matrices into a set of corresponding scattering matrices with 

simpler or standard material (Cloude and Pottier, 1996), (Lee and 

Pottier, 2009). In non-coherent analysis method, the covariance 

matrix is divided into a set of corresponding second properties 

with simpler or standard material (Cloude and Pottier, 1996; Lee 

and Pottier, 2009). Pauli analysis is among the first and Freeman 

and Yamaguchi and anthropic parameters included in the second 

category (Lee and Pottier, 2009). Pauli analytic coefficients 

indicate scattering power of aims with single, double and 

volumetric surface scattering (Cloude and Pottier, 1996). Non-

coherent Freeman analysis method divides covariance matrix 

into a set of covariance matrices of single, double and volumetric 

surfaces (Freeman and Durden, 1998). Therefore, it is possible to 

consider dispersion power emitted from these aims as a feature. 

 

2.2 Support vector evaluation method  

Original support vector machine (SVM) algorithm was proposed 

by Viping (Viping, 1987). SVM is an assimilated method of 

classification, regression and it is used for other training 

procedures. SVM take data to a new space based on 

predetermined category, in which data are dispersed and 

categorized in a linear fashion. Then a linear equation is meant to 

be found after searching for support vectors, the equation 

supports the highest margin between categories. Obtained data 

from these methods have high stability besides high accuracy 

(Viping, 1987). One type of SVM is support vector regression 

(SVR) which utilizing assimilated data for proposing a model and 

utilizing such models for predicting test data. The quality of SVM 

and SVR models is dependent on proper regulation of modeling 

of support vector machine (Nikraftar and Hasanlou, 2015). SVR 

has been identified as a reliable method for the last two decades 

(Ahmad et al., 2010; Nikraftar and Hasanlou, 2015). In this 

method, the aim is to evaluate an unknown function based on a 

limited number of samples. In SVR, entering X in a space with M 

number varied features is nonlinear and then based on these 

features a linear model designed from the following equation 

(Eq.1). 

𝑓(𝑥, 𝑤) = ∑ 𝑤𝑖𝑔𝑖(𝑥) + 𝑏

𝑚

𝑖=1

                                        (1) 

In Eq.1 𝑔𝑖(𝑥) refers to a set of linear transition and b is term bias. 

The legitimacy of regression function is dependent on good 

gamma and epsilon (ɛ, ϒ) parameters selection in kernel function. 

In recent years there are various methods for determining optimal 

features in SVM by scientists (Ahmad et al., 2010; Nikraftar and 

Hasanlou, 2015). In this research we, use a grid search (GS) 

model to determine suitable features for modeling. In order to 

choose gamma and epsilon parameters, the 2n range is assigned 

for each parameter in which the power n is a numeral range from 

minus to positive value.  For evaluating n number, the quality of 

all sets is evaluated and those parameters with the lowest error 

are selected as optimal parameters. 

 

2.3 Feature selection method  

Feature selection (FS) is one of the important subjects in machine 

learning and it is considered in statistical pattern recognition (Bf 

and Ap, 2005). This is essential in many applications (such as in 

classification) since in these applications there are many features 

which are impractical or without informational value (Bf and Ap, 

2005). In fact, forming a category is of transition and delivery 

property. This decline in data and regression algorithms helps 

easier and faster application. In some cases, determination 

coefficient (R2) can be improved, in other cases, it helps more 

vivid and concise results from the subject matter (Bf and Ap, 

2005). On the other hand, we know that the quality of SVR model 

depends on selected features, Hence in this research. Choosing 

unique and suitable features using optimization algorithms is the 

aim of this study. These features help the model to determine soil 

surface parameters on radar features to provide the best core base 

model for evaluating soil moisture. In this study two algorithms, 

including sequential forward selection (SFS) and sequential 

backward selection (SBS) (Guo et al., 2011). are utilized for 

varied feature selection of PolSAR features. 
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In SFS which is highly simple search algorithm, all features are 

evaluated based on one single property after the designation of 

null for all sets of (Guo et al., 2011). Then in proximity to this 

feature with the best function sample is chosen. Then this feature 

is evaluated in wider sizes and this cycle continues unless there 

is a progress in the feature and the lowest quantity remains. The 

most important drawback in SFS is that the added feature is not 

deleted from sets of answers when proven unrelated (Aha and 

Bankert, 1996). In comparison, SBS acts differently and starts its 

work a set including all features and in each algorithm repetition, 

the feature chosen by evaluating function is deleted from the set. 

This continues until the number of features equal a fixed number. 

Likewise, the other method the main drawback here is the 

deletion of added feature even if it is suitable (Aha and Bankert, 

1996). 

3. PROPOSED METHOD

Modeling is based on PolSAR imaging that common methods for 

predicting soil moisture in remote sensing community (Sarti and 

Mascolo, 2012). So far there has been some research in the area 

of soil moisture based on radar features (Sarti and Mascolo, 

2012). As mentioned previously the quality of SVR is dependent 

on proper regulation of SVR parameters. It is essential in this 

study to optimize SVR parameters in order to model soil 

moisture. Hence based on input data as mention in Table 1, two 

scenarios are suggested. In the first scenario, all SVR parameter 

are optimized based on using all PolSAR features then soil 

moisture estimation is done. In the second scenario, based on 

incorporating two selection methods (SFS and SBS,) the best 

features are chosen. In other parallel procedures, soil moisture 

model is done without optimization the SVR parameters but with 

selecting suitable features. Therefore, general procedures in this 

study follow four main parts, (1) feature generation from 

AIRSAR dataset, (2) soil moisture modelling based on SVR 

model and according to optimized features of SFS and SBS 

without optimizing SVR parameters, (3) soil moisture modelling 

based on SVR model and according to optimized features of SFS 

and SBS with optimizing SVR parameters and (4) comparing 

accuracy of different presented models (Figure 1). 

Figure 1. The General trend in soil moisture modeling 

4. STUDY AREA AND DATA-SETS

4.1 Study area 

The study area is located in the south of Oklahoma in United 

State and also is covered with vegetation (Figure 2). This area is 

hot and dry in summer and moderate in winter (Miralles et al., 

2010). Data obtained from these areas are gathered from the 

airborne platform and in-situ during soil moisture test in 2003 

(Table 2). 

Figure 2. Study area in south Oklahoma. 

Table 2: Information about study area.

Study site Location Climate Vegetation 

South of 

Oklahoma 

Top 

Right 

35.0239N 

98.385W 
Sub-humid Grass 

Lower 
Left 

34.8693N 
97.7197W 

4.2 Remotely sensed datasets 

For incorporating in-situ data in this study, information gathered 

from SMEX03 campaign and was obtained in 2003 July 10  

(‘http://nsidc.org/data/amsr_validation/soil_moisture’). The 

amount of soil moisture was measured and analyzed in fourteen 

locations in Oklahoma. In this study among surface points, eight 

points were chosen randomly for model training and testing was 

done for remaining points. Also, PolSAR dataset acquired by 

AIRSAR instrument from this area. This dataset has a resolution 

of 6.6 meters in the angular direction. Every pixel in AIRSAR 

shows radar backscattering for every obtained vertical and 

horizontal (VV, HH, VH, and HV) polarizations. Each pixel 

includes backscattering information in three channels, C (5.31 

GHZ), L (1.26 GHZ) and P (0.45 GHZ) as illustrated in Figure 3. 

Figure 3.  Location of in-situ data points and their 

distribution in AIRSAR scene. 

5. EXPERIMENT AND RESULTS

Since soil moisture modeling depends on radar features and on 

SVR parameters, hence in this area we evaluate soil moisture 

considering all features, features with optimization of SFS and 

features with optimization of SBS in two states of SVR parameter 

optimization and no optimization of SVR. 

5.1 Soil moisture estimation with all features 

As mentioned previously, the quality of SVR model results is 

dependent on suitably selected features. In this regards, 
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optimized SVR model features based on all features obtained 

from radar imaging according to Table 1. Then estimation of soil 

moisture for three microwave channels AIRSAR image is done. 

In this research, there is 26 field point from which 18 points are 

for SVR model training and 8 point is for testing of this model. 

Obtained results for three microwave channel images AIRSAR 

are in agreement with Table 3. 

 
Table 3. Results of SVR model with all features with optimizing 

SVR parameters 

SSE RMSE 2R 

band 
Train Test Train Test Train Test 

0.3835 

0.3698 

0.0120 

0.3884 
0.3376 

0.0104 

0.0153 
0.0147 

0.00049 

0.0161 
0.0140 

0.00041 

94.39 
93.80 

97.90 

91.31 
95.32 

98.99 

C 
L 

P 

 

As it clears from obtained results, the proposed SVR model with 

considering P channel AIRSAR soil moisture image provide 

better modeling comparing to that C and L AIRSAR images. 

 

5.2 Estimation by optimal features with FS 

5.2.1 SFS algorithm 

In this scenario, four suitable features are chosen according to 

Table 4 are chosen for all selected features for proposing a 

support vector model based on SFS algorithm. 

 

Table 4. Selected features using optimization algorithms SFS 

Name Feature Number 

Freeman_Dbl 1X 

beta 2X 

Huynen_T33 3X 

Yamaguchi3_Odd 4X 

 

Results of support vector model without optimizing SVR 

parameters are as Table 5 considering features that are chosen 

with optimized SFS algorithm and core model results are as for 

Table 6 with optimizing SVR model. 

 
Table5. Results of SVR model with optimal features selection with 

SFS algorithm without optimizing SVR parameters 

SSE RMSE 2R 

band 
Train Test Train Test Train Test 

0.7507 

0.4200 

0.8580 

0.7278 

0.3542 

0.8554 

0.0299 

0.0167 

0.0319 

0.0301 

0.0147 

0.0314 

53.59 

85.24 

39.79 

62.62 

85.96 

40.78 

C 

L 

P 

 

Table 6. Results of SVR model with optimal features selection with 
SFS algorithm with optimizing SVR parameters 

SSE RMSE 2R 

band 
Train Test Train Test Train Test 

0.6949 

0.3826 
0.2323 

0.6284 

0.3301 
0.2800 

0.0277 

0.0152 
0.0092 

0.026 

0.0137 
0.0116 

58.00 

86.29 
95.09 

71.26 

90.27 
95.53 

C 

L 
P 

 

As it is conceivable, better soil moisture modeling obtains when 

SVR parameters are optimized compared to the state in which 

SVR parameters are not optimized based on optimal values SFS 

algorithm proposed. Also, obtained results here show that 

proposed SVR model with considering P-channel AIRSAR soil 

moisture image provide better modeling that C and L AIRSAR 

images. 

 

5.2.2 SBS algorithm 

In this scenario, ten suitable features are chosen according to 

Table 7 are chosen for all selected features for proposing a 

support vector model based on SBS algorithm. 

 

 

Table 7. Selected features using optimization algorithms SBS 

Name Feature Number Name Feature Number 

TSVM_alpha_s 
6

X Barnes1_T22 
1

X 

TSVM_psi1 
7

X Barnes1_T33 
2

X 

Holm2_T22 
8

X Barnes2_T22 
3

X 

Yamaguchi4_Y4O_Hlx 
9

X Barnes2_T33 
4

X 

Yamaguchi4_Y4O_Vol 
10

X Cloude_T22 
5

X 

 

Results of support vector model without optimizing SVR 

parameters are as Table 8 considering features that are chosen 

with optimized SBS algorithm and core model results are as for 

Table 9 with optimizing SVR model. 

 
Table 8. Results of SVR model with optimal features selection with 

SBS algorithm without optimizing SVR parameters 

SSE RMSE 2R 

band 
Train Test Train Test Train Test 

0.3791 

0.6480 
0.5939 

0.3725 

0.6109 
0.5803 

0.0151 

0.0258 
0.0236 

0.0154 

0.0253 
0.0224 

88.51 

73.38 
66.72 

84.94 

80.29 
73.64 

C 

L 
P 

 
Table 9. Results of SVR model with optimal features selection with 

SBS algorithm with optimizing SVR parameters 

SSE RMSE 2R 

band 
Train Test Train Test Train Test 

0.1149 
0.5549 

0.0105 

0.1404 
0.4918 

0.0115 

0.0046 
0.0221 

0.00047 

0.0058 
0.0204 

0.00041 

98.97 
79.27 

97.40 

98.24 
91.26 

97.93 

C 
L 

P 

 

As it is conceivable, better soil moisture modeling obtains when 

SVR parameters are optimized compared to the state in which 

SVR parameters are not optimized based on optimal values SBS 

algorithm proposed. Also, obtained results here show that 

proposed SVR model with considering P-channel AIRSAR soil 

moisture image provide better modeling that C and L AIRSAR 

images. 

6. CONCLUSION  

In this study tried to utilize data obtained from two optimal 

selection algorithms of SFS and SBS in three channels C, L and 

P which are related to 2003 soil moisture project in Oklahoma 

region in the United States. In the first scenario, optimal feature 

selection algorithms for soil moisture core model are compared. 

Among these models, support vector model has proven to more 

accurately evaluate soil moisture modeling. It has used SBS 

algorithm and considered all features and other features that 

selected by SFS algorithm. In the second scenario, optimal input 

features for support vector model when SVR parameter are not 

optimized and when SVR parameter are optimized are compared. 

Evaluating soil moisture and results show that the SVR model 

with optimized parameters has modeled soil moisture more 

accurately compared to the case in which SVR parameters are not 

optimized. In the third scenario, different soil moisture evaluation 

models in different channels are compared. Among three 

channels in AIRSAR data, P-band more accurately model soil 

moisture in all utilized models and L and C bands come later. The 

C-band has shown to provide inaccurate estimations comparing 

to other channels, it also provides a weaker result in optimal 

selective algorithm SFS among another algorithm for soil 

moisture modeling. 
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