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ABSTRACT: 

Roads are the basic element of land transportation system. After construction, the quality of road will decrease because of the aging 

and deterioration of the road surface. In the end, some distresses will appear on the pavement, such as the most common potholes 

and cracks. In order to improve the efficiency of pavement inspection, nowadays some new forms of remote sensing data without 

destructive effect on the pavement are widely used to detect the pavement distresses, such as digital images, LiDAR and Radar. In 

our study, the digital pavement images acquired by Unmanned Aerial Vehicle (UAV) and four popular supervised learning 

algorithms (KNN, SVM, ANN, RF) were used to distinguish between the normal pavement and pavement damages (i.e. cracks and 

potholes). Each of learning algorithms was given a series of different parameters, and the classification accuracy and computational 

time as two assessment criteria of the algorithm performance were calculated. Finally, four best models for each kind of learning 

algorithms were selected based on the standard of highest accuracy and minimum running time.

1. INTRODUCTION

The quality of pavement has a close relationship with the 

lifetime of road (Pan et al., 2017). In a general, because of the 

combined effect of aging and deterioration of road surface, 

some kinds of distresses would always appear on the pavement 

finally. Potholes and cracks are the two most common 

categories of road surface damages (Hajek et al., 1986). 

Previously, time-consuming field investigations and manual 

measurements were the traditional methods to detect and 

evaluate the pavement distresses, many of which were 

destructive to the road surface meanwhile (Eriksson et al., 

2008). Currently, with the support of computer and remote 

sensing technologies, many forms of remote sensing data 

without destructive effect on pavement and some advanced 

pattern recognition algorithms are introduced into the detection 

of pavement damages, such as digital images, LiDAR and 

Radar(Mettas et al., 2015; Schnebele et al., 2015; Zhang & 

Bogus, 2014). Pavement Management System is one highly 

integrated system with some types of sophisticated remote 

sensing sensors, which is commonly mounted on a mobile 

vehicle to collect the remote sensing data for pavement 

monitoring by majority of road departments (Schnebele et al., 

2015). Digital pavement images are the most commonly used 

data type that can be used to extract the features of pavement 

distresses, such as spectral features, geometry features and 

texture features (Koch, et al., 2015). These features are 

imported into appropriate classification models (e.g. support 

vector machine) to determine the categories of road surface 

damages finally(Mokhtaria et al., 2016; Xu et al., 2008). This is 

the basic procedure of pavement distress detection using digital 

pavement images. LiDAR technology can directly acquire the 

elevation information of the deteriorated pavement to measure 

the depth of pavement damages(Choi et al., 2016). Recently, 

one microwave device called Ground Penetrating Radar (GPR) 

has been widely used to detect the pavement defects. GPR 
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utilizes radar pulses to image the subsurface profile to detect 

subsurface objects, changes in material properties, voids and 

cracks, which is very convenient and accurate(Loizos & Plati, 

2007). 

 

However, some limited abilities and issues occurred in the 

previous studies. For instance, most of studies just only focused 

on one kind of distress, such as cracks or potholes, whereas 

more than one type of damages could exist on the pavement at 

the same time. The mobile vehicle integrated with PMS also has 

a potential risk for the traffic safety and is unable to cover the 

full pavement of different lanes simultaneously. Given these 

above problems, the pavement images acquired by Unmanned 

Aerial Vehicle (UAV) were used to implement the study, and 

four supervised learning algorithms including K-Nearest 

Neighbour (KNN), Support Vector Machine (SVM), Artificial 

Neural Network, and Random Forest (RF) were evaluated in 

terms of the performance on the detection of potholes and 

cracks from the UAV images of road pavement. 

 

2. DATA AND METHODS 

2.1 Image Acquisition and Segmentation 

The asphalt pavement located in rural area of Shihezi City, 

Xinjiang/China was selected in the study. According to the field 

investigation, the majority of the pavement was in poor 

condition with a variety of severe pavement distresses, such as 

potholes and cracks. A multispectral camera Micro-Miniature 

Multiple Camera Array System (MCA), designed by Tetracam 

Inc. USA, was mounted on a fixed-wing UAV to capture the 

pavement images. Theoretically, MCA configures six bands 

spanning from blue to near infrared, i.e. Blue, Green, Red and 

three near infrared channels (Kelcey & Lucieer, 2012). 

However, the images captured by the three infrared channels do 

not have sufficient exposure, which results in a lower contrast 

between the non-distressed and distressed pavement. Therefore, 

only the images in RGB channels were chosen in this study. 

The UAV flew along the road at 30 meters above the ground 

level, in which case one pixel corresponded to about 

13.54*13.54 mm area in the pavement. In total, 126 pavement 

images were acquired with 70% of overlap between two 

sequential images. However, there is no white traffic line in 

those above pavement images, which is also one of the common 

objects on the road surface. In order to increase the 

generalization of this study, a sample UAV pavement image 

provided by Airsight Company 

(https://demo.airsight.de/uav/index_en.html) was used to extract 

the white traffic lines. This pavement image also has three RGB 

channels and was captured by a digital camera with a higher 

resolution (1 pixel = 5 mm). 

 

Given the high resolution of pavement images, Multiresolution 

Segmentation (MS) algorithm integrated in eCognition 

Developer Software 9.0 was used to extract the objects of 

potholes and cracks from pavement images. MS identifies 

single image objects of one pixel in size and merges them with 

their neighbours based on relative homogeneity criteria. This 

homogeneity criterion is a combination of spectral and shape 

criteria, which is calculated through a comprehensive scale 

parameter. Higher values for the scale parameter result in larger 

image objects, smaller values in smaller ones(Darwishet al., 

2003). However, it is difficult to choose one appropriate scale 

parameter to extract intact potholes and cracks simultaneously. 

The contrast, one texture feature calculated based on the Gray-

level Co-occurrence Matrix (GLCM)(Su et al., 2008), was 

selected to measure the variations within the distress and non-

distressed areas in the study. The formula for calculation of 

contrast feature is: 

𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = ∑ ∑ 𝑃𝑖,𝑗(𝑖 − 𝑗)2𝑁−1
𝑗=0

N−1
i=0                        (1) 

 

Where, i, j are the row and column number of GLCM 

respectively. P(i,j) is the value in the cell i, j. N is the number of 

rows or columns. In order to obtain an intact pothole object, one 

merge action was conducted based on the contrast values of 

objects over the initial segmentation resulting from the lower 

scale parameter. Namely, all image objects, the contrast values 

of which exceed the given threshold, will be merged into one 

image object. 

 

2.2 Dataset Preparation and Feature Selection 

Sufficient sample data are necessary for training and validating 

machine-learning algorithms (Mokhtaria et al., 2016). Three 

classes were defined in this study, i.e. pothole, crack and non-

distressed pavement that includes damage-free pavement, with 

white and yellow traffic lines. However, there are limited 

numbers of potholes and cracks on the pavement we studied. In 

comparison of two sequential images, it can be observed that 

the pixel values in the same location has a bias because of the 

illumination differences caused by the different solar incident 

angle. Consequently, this will lead to some degree of difference 

between the segmentation results of the same target derived 

from different images. Hence, dataset preparation will be 

implemented based on three rules: (a) 126 pavement images are 

segmented individually following the procedure mentioned in 

section 2.1; (b) the same target in two of sequential images are 

thought to be of two different objects; (c) white traffic line 

samples were collected from the image provided by Airsight 

Company. Finally, 1430 samples containing 221 potholes, 678 

cracks and 531 non-distressed pavements with 299 damage-free 

pavements, 122 yellow and 110 white traffic lines respectively 

were collected. 

 

Feature selection has a great influence on the performance of 

learning algorithms. Reasonable numbers and types of features 

are able to increase the accuracy of algorithm while decreasing 

the computation time(Oliveira & Correia, 2009). Generally, 

three types of image features can be extracted from digital 

images, i.e. spectral feature, geometry feature and texture 

feature. In this study, based on the prior knowledge of feature 

value distribution of every kind of image objects, 18 features 

containing 6 spectral features, 6 geometry ones and 6 GLCM 

texture ones were introduced to train and validate the learning 

algorithms (Table1). Furthermore, considering the different 
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value distribution of each feature, feature normalization was 

implemented based on the equation (2) below. 

X𝑁𝑜𝑟𝑚 =
𝑋−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
                          (2) 

Where X𝑁𝑜𝑟𝑚 is the normalized feature vector. 𝑋𝑚𝑎𝑥, 𝑋𝑚𝑖𝑛 are 

the maximum and minimum values of feature X respectively. 

Consequently, values of all features are in the same range from 

0 to 1, which should speed up the convergence efficiency of 

learning algorithms. In order to verify the capabilities of each 

type of feature towards the detection of potholes and cracks, six 

combinations of three types of features were introduced to each 

classification algorithm, i.e. spectral(C1); geometry(C2); 

texture(C3) features; spectral and geometry features(C4); 

geometry and texture features(C5); spectral, geometry and 

texture features (C6). 

 

Table 1 Selected Feature Set 

Categ

ory 
Name 

Categor

y 
Name 

Categ

ory 
Name 

Spectr

al 

Mean 

of 

Red 

Geomet

ry 

Area 

Textu

re 

Mean 

Mean 

of 

Green 

Length/Wid

th 
Contrast 

Mean 

of 

Blue 

Elliptic Fit 
Homoge

neity 

STD 

of 

Red 

Main 

direction 

Dissimil

arity 

STD 

of 

Green 

Roundness 
Correlat

ion 

STD 

of 

Blue 

Shape 

Index 
Entropy 

STD: Standard Deviation 

 

2.3 Detectors of Potholes and Cracks 

Four supervised classifiers including K-Nearest Neighbours 

(KNN), Support Vector Machine (SVM), Artificial Neural 

Network (ANN) and Random Forest were selected to detect the 

potholes and cracks in this study. In order to examine the 

predictive accuracy of learning algorithms, and to protect 

against overfitting, the 1430 samples were randomly divided 

into 5 folds. For each fold, a model is trained using the out-of-

fold observations, and the classification accuracy of the model 

is calculated using in-fold data. Finally, the average 

classification accuracy over all folds is an indicator of the model 

performance. Exceptionally, the performance of Random Forest 

would be validated using the Out-of-Bag (OOB) Error 

(Breiman, 2001) instead of the above n-fold validation 

procedure. All the algorithms are run on one PC configured 

with Core i7-6700HQ CPU@ 2.6GHZ, Nvidia Quadro 

M1000M GPU and 16GB RAM. The running time of different 

models was also recorded as one of important indicator of the 

algorithm performance. 

 

2.3.1 K-Nearest Neighbours 

K-Nearest Neighbours (KNN) is one type of instance-based and 

lazy learning algorithm, which determines the class of 

observation that represents the maximum of its neighbours( 

Zhang & Zhou, 2007). The parameter K determines the number 

of neighbours considered. The distance between the observation 

and samples could be defined by  each of their Euclidean 

distances, Minkowski distance etc. Generally, the class of 

observation will be assigned directly based on the class of 

majority neighbours. However, KNN might bias the outcome 

when the number of nearest neighbours in one class is less than 

other relatively distant neighbours that belong to another class. 

Therefore, distance weighting is always introduced to refine the 

classification result of KNN. Namely, the nearer neighbours 

will contribute more to the outcome than the more distant ones. 

A common weighting scheme consists in giving each of K 

neighbours a weight of 1/d2, where d is the distance of 

observation with respect to its neighbours. Among these 

parameters, the parameter K has a great impact on the accuracy 

of KNN. In this study, we present a series of K to verify how 

many of K would best towards this application. The Minkowski 

distance and weighting scheme of squared inverse of distance 

were selected for the experiment. 

 

2.3.2 Support Vector Machine 

Support Vector Machine (SVM) is a classification system 

derived from statistical learning theory. It separates the classes 

with a decision surface that maximizes the margin between the 

classes. The surface is often called the optimal hyperplane, and 

the data points closest to the hyperplane are called support 

vectors. The support vectors are the critical elements of the 

training set. SVM is one of non-probabilistic binary classifiers 

to assign new examples to one category or the other. It means 

one SVM can only solve the two-class problems. SVM can also 

perform the multiclass problems by combining several binary 

SVM classifiers together based on the logic classification 

procedure of one-vs-one or one-vs-all. One special feature of 

SVM is the kernel function, which is introduced to deal with 

non-linear classification problems. The kernel function can map 

the original examples into a high-dimensional feature space, in 

which case the non-linear classification problem will become 

the linear case. There are several types of kernel model with 

different performance for different applications, such as linear 

kernel, polynomial kernel, Gaussian kernel etc. In the study, the 

performance of four types of kernel models on detection of 

potholes and cracks were evaluated, i.e. linear, quadratic, cubic 

and Gaussian. 
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2.3.3 Artificial Neural Network 

Artificial Neural Network mimic the way human brain solves 

problems with a large number of neurons(Saar & Talvik, 2010). 

ANN is composed typically of three kinds of layers, i.e. the 

input layer, the hidden layer and the output layer. Every layer 

comprises a certain number of nodes similar to the neurons in 

the brain. The number of nodes in the input layer is determined 

by the number of features in the example data, while the number 

of output classes decides the number of nodes in the output 

layer. The number of hidden layers and associated nodes could 

vary for different applications. Moreover, every node 

corresponds to a kind of activation function which defines the 

output of that node given a set of inputs. Sigmoid, Softmax, 

Rectified Linear unit (ReLU) are commonly used in ANN. 

Which of them should be used depends on the objective of 

application. Back propagation is one widely used training 

procedure for ANN to adjust the weights and bias between the 

nodes. In this study, a three-layer feed-forward network with 

one input layer, one Sigmoid hidden layer and one Softmax 

output layer was constructed to classify the potholes and cracks. 

The network will be trained with the conjugate gradient method 

to minimize the difference between the output node activation 

and the output. In order to find out the appropriate number of 

nodes in the hidden layer for pavement distress detection, a 

series of numbers from 1 to 10 was evaluated based on the 

accuracy of classification result. 

 

2.3.4 Random Forest 

Random Forest (RF) is one member of ensemble learning 

algorithms, which combine a certain number of decision tree 

classifiers together as a forest to predict the class of new 

examples (Breiman, 2001). Every tree in the forest is trained 

with a subset training set, which is resampled from the original 

training dataset. The resampling is implemented with 

replacement and follows the bootstrap sampling procedure, i.e. 

the number of subset examples is the same as the original 

examples. In addition to the resampling of training examples for 

every tree, the features used to find the best split at each node of 

tree are resampled from the original feature set as well. The 

class of new examples is predicted by every tree in the forest, 

and is assigned based on a majority vote of them. The number 

of trees has a significant effect on the computation time of RF. 

As a result, a series of evaluation for what size of forest will 

perform best on pavement distress detection was conducted in 

this study. 

 

3. RESULTS AND DISCUSSION 

Classification accuracy and computational time are selected as 

the two indicators of the performance of four learning 

algorithms. Classification accuracy is defined as the ratio of the 

number of successfully classified and total samples. Figure 1 

illustrates the classification accuracy of KNN trained and 

validated using different settings of K and six groups of 

features. The accuracy of all models has a slight increase first 

and then decreases gradually while increasing K. It can be 

observed that the model trained with the combination (C6) of 

spectral features, geometric and textural features always 

performed best with the highest accuracy, while both the 

individual set of spectral or geometric features always presented 

almost similar performance with lower accuracy. Moreover, the 

figure presents that the individual textural feature set contributes 

more to the accuracy of KNN among the three types of features 

(Figure 1(a)). Figure 1(b) is the running time variation of 

different KNN models and indicates that the running time has 

no significant fluctuation over increasing the K for every feature 

combination. In general, the more features were used, the more 

time taken for KNN. The model with combination of C6 cost 

the most time while it can achieve the highest accuracy. Figure 

1(c) shows the relationship between running time and 

classification accuracy of the best performance of each of six 

feature combinations. In order to make a compromise between 

the time and accuracy, K equals 4 and feature combination C5 

containing the geometric and textural features were the best 

choice, which can result in an overall accuracy of 98.81%  and 

0.65s running time.(Table 2). 

 

Figure 2 indicates the performance of SVM configured with 

different types of kernel functions and six feature combinations. 

Figure 2(a) shows that the SVM with linear kernel presented a 

lower classification accuracy when it is trained and validated 

only using either spectral features or geometry features 

individually. Along with introducing texture features or more 

types of features, the four kinds of SVM models (linear, 

quadratic, cubic, Gaussian) almost performed similarly on 

feature combination C3, C4, C5 and C6, and the highest 

accuracy was acquired by using three types of features together. 

Figure 2(b) indicates the running time by different SVM 

models. It can be seen that the SVM with polynomial kernels 

(Quadratic and Cubic) cost most time on the feature sets of C1, 

C2, C3. For C4, C5, and C6, all types of SVM models 

performed similarly on the running time. It is interesting that the 

SVM models with linear and Gaussian kernel took almost the 

same time on each of six feature combinations. The best 

performances of the six feature combinations were plot in the 

time-accuracy diagram (Figure 2(c)). It shows that the SVM 

model configured with linear kernel and the feature combination 

C6 could achieve the highest classification accuracy (98.95%) 

while cost the least running time (0.59s) (Table 3). 

 

 

 

 

 

Table 2. Confusion Matrix of KNN4-C5 

Class Predicted Class Accuracy 
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Crack Pothole Non-distressed 

True Class 

Crack 669 1 8 98.67% 

Pothole 0 221 0 100% 

Non-distressed 6 2 523 98.49% 

Reliability 99.11% 98.66% 98.49% 98.81% (OA) 

OA: Overall Accuracy 

 

Figure 1. (a) The classification accuracy and (b) running time of KNN with respect to different K, and (c) the relationship between 

running time and accuracy of the best performance of each of six feature combinations 

 

Table 3. Confusion Matrix of SVML-C6 

Class 
Predicted Class 

Accuracy 
Crack Pothole Non-distressed 

True Class 

Crack 670 1 7 98.82% 

Pothole 0 221 0 100% 

Non-distressed 5 2 524 98.68% 

Reliability 99.26% 98.66% 98.68% 98.95% (OA) 

OA: Overall Accuracy 

 

Figure 3 presents the variation of classification accuracy and 

running time of ANN with respect to different numbers of 

neurons in the hidden layer. Specifically, when the number of 

hidden neurons was set to one, it means that only one abstract 

feature in hidden layer was used to classify the objects, which 

was not sufficient to distinguish between the pavement and 

distresses (cracks and potholes). Moreover, it took the most 

time to train and validate ANN in this case. With increasing the 

number of hidden neurons, the classification accuracy could 

benefit a lot from the more abstract features learned by ANN, 

(a) (b) 

(c) 
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and the running time decreased generally (Figure 3(b)). Figure 3 

(a) shows that the ANN models with more than one type of 

features (C4, C5, and C6) and two more hidden neurons could 

always result in a higher accuracy. It also can be observed that 

when the number of hidden neurons was set over two, the 

classification accuracy did not change so much. Taking account 

of the running time as illustrated by Figure 3(c), the ANN with 

12 hidden neurons and feature combination C4 was the best 

model to classify the pavement and distresses with the overall 

accuracy 98.81% and the corresponding running time was 

0.35s. (Table 4). 

 

Figure 4 shows the performance of RF with different number of 

trees in the forest. Obviously, the accuracy of RF maintained 

increasing along with the growth of quantity of trees until a flat 

trend. The feature combinations with one more type of features 

(C4, C5, C6) performed best and similarly when the number of 

trees in forest exceeded about eight. Figure 4(b) shows the 

running time of RF and demonstrates that the RF with feature 

combination C1 always cost most time compared with other 

feature combination. Moreover, there is a positive correlation 

between the trees and running time. As Figure 4(c) shows, the 

RF with 18 trees in the forest was the best model to detect the 

pavement and distresses when using the feature combination C4 

(Table 4). The calculation time was only 0.09s. 

 

Figure 2. (a) The classification accuracy and (b) running time of SVM over six feature combinations and four types of 

kernel function, i.e. linear, quadratic, cubic and Gaussian; (c) the relationship between running time and classification accuracy of the 

best performance of six feature combinations 

 

 

 

Table 4. Confusion Matrix of ANN12-C4 

Class 
Predicted Class 

Accuracy 
Crack Pothole Non-distressed 

True Class 
Crack 671 1 6 98.96% 

Pothole 0 220 1 99.54% 

(a) (b) 

(c) 
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Non-distressed 7 2 522 98.31% 

Reliability 98.96% 98.65% 98.67% 98.81% (OA) 

OA: Overall Accuracy 

 

 

 

Figure 3. (a) The classification accuracy and (b) running time of ANN with respect to different numbers of hidden neurons; (c) the 

relationship between running time and classification accuracy of the best performance of six feature combinations 

 

Table 5. Confusion Matrix of RF18-C4 

Class 
Predicted Class 

Accuracy 
Crack Pothole Non-distressed 

True Class 

Crack 667 2 9 98.38% 

Pothole 0 221 0 100% 

Non-distressed 9 2 520 97.93% 

Reliability 98.66% 98.22% 98.3% 98.46% (OA) 

OA: Overall Accuracy 

 

(a) (b) 

(c) 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W4, 2017 
Tehran's Joint ISPRS Conferences of GI Research, SMPR and EOEC 2017, 7–10 October 2017, Tehran, Iran

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-4-W4-209-2017 | © Authors 2017. CC BY 4.0 License.

 
215



 

 

 

Figure 4. (a) the classification accuracy and (b) running time of Random Forest over a series of numbers of trees; (c) the relationship 

between running time and classification accuracy of the best performance of six feature combinations 

 

4. CONCLUSION 

Remote sensing technology as a non-destructive method for 

road surface inspection has been widely used in road 

departments nowadays. UAV is one flexible platform that can 

be configured with different kinds of remote sensing sensors to 

monitor the pavement condition. Compared with the 

conventional vehicle-based PMS system, the UAV remote 

sensing system can acquire the full pavement images of 

different lanes simultaneously and does not have significant 

impact on the normal traffic. Moreover, benefit from the full 

coverage of the pavement, different kinds of pavement 

distresses can be extracted from UAV images at the same time. 

In this study, a set of digital pavement images acquired by UAV 

and four popular learning algorithms (KNN, SVM, ANN, RF) 

were used to identify the road surface damages. It can be 

concluded that each kind of learning algorithms when given a 

specific set of parameters and features can achieve a high 

classification accuracy (over 98%) while using less 

computational time. Finally, taking account of the classification 

accuracy and running time together, four best models for each 

kind of learning algorithms were recommended, which all have 

the best performance on the detection of pavement potholes and 

cracks. It includes the KNN with K being 4 and feature 

combination of geometric and textural features, the SVM with 

linear kernel and feature combination of spectral, geometric and 

textural features, the ANN with 12 nodes in hidden layer and 

feature combination of spectral and geometric features, the RF 

with 18 trees and feature combination of spectral and geometric 

features. Among the four best models, the RF could get the best 

performance with a higher classification accuracy and minimum 

running time. In the future, more pavement images acquired by 

UAV should be used to further evaluate the performance of 

these best models on the detection of potholes and cracks. Other 

kinds of remote sensing data including LiDAR and Radar by 

UAV also have a great potential ability in the pavement 

condition monitoring. Additionally, other advanced learning 

algorithms could also be introduced into the pavement distresses 

detection, such as convolutional neural networks. 
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