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ABSTRACT: 

Rational function models (RFMs) are known as one of the most appealing models which are extensively applied in geometric correction 

of satellite images and map production. Overfitting is a common issue, in the case of terrain dependent RFMs, that degrades the 

accuracy of RFMs-derived geospatial products. This issue, resulting from the high number of RFMs’ parameters, leads to ill-posedness 

of the RFMs. To tackle this problem, in this study, a fast and robust statistical approach is proposed and compared to Tikhonov 

regularization (TR) method, as a frequently-used solution to RFMs’ overfitting. In the proposed method, a statistical test, namely, 

significance test is applied to search for the RFMs’ parameters that are resistant against overfitting issue.  The performance of the 

proposed method was evaluated for two real data sets of Cartosat-1 satellite images. The obtained results demonstrate the efficiency 

of the proposed method in term of the achievable level of accuracy. This technique, indeed, shows an improvement of 50–80% over 

the TR. 

1. INTRODUCTION

Since 1999, High-Resolution Satellite Images have paved the 

way for extracting detailed and accurate information from our 

planet and nowadays, with no contest, remotely-sensed images 

are the main source of information. To this end, it is vital to know 

the mathematical relationship between the image and the object 

spaces (Tao & Hu, 2001). Sensor models, that can be grouped 

into physical and generic ones, define this relationship (Toutin, 

2004). 

Physical or rigorous sensor models, by which high geometric 

accuracy can be obtained, fully consider the procedure of the 

geometric imaging (Tao & Hu, 2001; Zhang et al., 2011); 

therefore, each of the model’s parameter has a physical meaning. 

Although physical models have the aforementioned benefits, 

they have their own drawbacks, including model complexity and 

sensor dependency, that is, each sensor has its own unique model 

(Long et al., 2015). 

Of the various generic models, none has received more attention 

than Rational Function Models (RFMs) (Fraser et al., 2006). 

Habib et al. (2007) have revealed that RFMs is an appropriate 

alternative for the physical sensor model. The Open GIS 

Consortium (OGC), in addition, recommends this model (Long 

et al., 2015).  

In order to use the RFMs, RFMs’ coefficients, called rational 

polynomial coefficients (RPCs) must be determined. Tao and Hu 

(2003) have proposed two methods, namely Direct and Iterative 

Least-Square (LS) solution, for RPCs estimation. Strictly 

speaking, to provide initial values for the Iterative LS solution, 

one may apply the Direct LS (DLS) method.  

Among RFMs’ drawbacks overfitting is the most important one 

that degrades the both accuracy and efficacy of the RFMs. The 

over-fitting issue results from both the large number of RFMs’ 
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parameters, and the strong correlation among them (Long et al., 

2015; Naeini et al., 2017). 

“Variable selection” (Draper et al., 1966) and “Regularization” 

(Poggio et al., 1985) are of methods applied to tackle the RFMs’ 

overfitting. Tikhonov regularization (TR), based on the L2-norm 

regularization, is the most common way to prevent overfitting 

and makes the RFMs’ normal matrix well-posed (Poggio et al., 

1985).  

In addition to the Variable selection and Regularization 

techniques , methods based on artificial intelligence such as 

Genetic Algorithm (GA) have been successfully applied to 

address the overfitting problem (Zoej et al., 2007). These 

methods, which are conceptually similar to Variable Selection, 

determine the optimum set of parameters which minimize the 

RMSE over Dependent Control Points (DCPs). These 

techniques, however, are very exhaustive from the computational 

point of view. In addition, their performance is highly dependent 

to some parameters which are usually set in a tedious trial-and 

error manner. More importantly, these methods cannot be robust 

because different results are obtained from different runs (Kurban 

et al., 2014).  

The foregoing literature review indicates that the overfitting of 

the RFMs have attracted many attentions. However, the 

capability of the statistical tests, such as t-test, has not been 

considered in remote sensing and photogrammetry literature.  

In this paper, a novel and robust method based on a statistical test 

is proposed to prevent overfitting issue. Our method, that has a 

simple concept and low computational burden, uses t-test in a 

recursive mode to remove those coefficients which are 

statistically insignificance.  
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The rest of the paper is organized in the following fashion. 

Theoretical background of the RFMs and its solutions are first 

reviewed. The exposition of the proposed method will be 

provided in the third section. In section 4, the experimental 

results together with a comprehensive discussion are given. Last 

section will be concluded some remarks. 

 

 

2. THEORETICAL BACKGROUND 

RFMs are of mathematical tools projecting a 2D image space into 

a 3D ground space. They model the spatial relationship between 

a pixel in the image, with two dimensional coordinates, and its 

corresponding point on the ground space. RFMs are actually a 

ratio between two polynomials. The variables of these functions 

are the ground space coordinates of a pixel (Fraser et al., 2006). 

 

𝑙 = 𝑃1(𝑋, 𝑌, 𝑍)/𝑃2(𝑋, 𝑌, 𝑍) 
 

  (1) 

𝑠 = 𝑃3(𝑋, 𝑌, 𝑍)/𝑃4(𝑋, 𝑌, 𝑍) (2) 

 

where (𝑙, 𝑠) are the normalized line and sample of a point in 

image space; (𝑋, 𝑌, 𝑍) are latitude, longitude, and height of the 

point in the ground space respectfully (Franklin, 2001).  

 

{
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Where 𝐿𝑖𝑛𝑒 and 𝑆𝑎𝑚𝑝𝑙𝑒 are the image coordinates. The offset 

values for line and sample are 𝐿𝑖𝑛𝑒𝑜 and 𝑆𝑎𝑚𝑝𝑙𝑒𝑜; Their 

corresponding scale values are 𝐿𝑖𝑛𝑒𝑠 and 𝑆𝑎𝑚𝑝𝑙𝑒𝑠. Similarly, 𝜑, 

λ and h are the geographic latitude, longitude, and height in the 

ground space; 𝜑𝑜, λ𝑜, and h𝑜 are the offset values and  𝜑𝑠, λ𝑠, 
and h𝑠 are the corresponding scale factors. 

 

Tao and Hu (2003) have proposed two methods, based on LS, to 

solve the RFMs. According to LS estimation method, unknown 

vector 𝑋̂ that contains RPCs will be approximated as follows: 

 

𝑋̂ = (𝐴𝑇𝑊𝐴)−1𝐴𝑇𝑊𝐿 (4) 

𝑊 = 𝑑𝑖𝑎𝑔([
1

𝐵1
2 ,
1

𝐵2
2 , … ,

1
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2 ,
1

𝐷1
2 ,
1

𝐷2
2 , … ,

1

𝐷𝑛
2]) (5) 

 

Where the diagonal matrix 𝑊 can be seen as the weight matrix, 𝐴 

is the design matrix, 𝐿 is the observation vector, 𝐵𝑛 and 𝐷𝑛 are 

the denominator values of Eqs. 1 and 2. More details are available 

in (Tao & Hu, 2001; Zhang et al., 2011). 

 

Owing to the dependency of 𝑊 on 𝑋̂, unknown vector should be 

estimated in an iterative fashion. This method is named as 

“Iterative LS” RFMs solution in the literature (Tao & Hu, 2001). 

For the first iteration, 𝑊 is typically set as the identity matrix. 

The first iteration’s result is the “Direct LS (DLS)” solution for 

RFMs. 

 

Making the normal matrix 𝐴𝑇𝑊𝐴 well-posed, we can apply 

Tikhonov method as bellow: 

 

𝑋̂ = (𝐴𝑇𝑊𝐴+ 𝛼𝐼)−1𝐴𝑇𝑊𝐿 (6) 

 

In which, 𝐼 and 𝛼 are the identity matrix and regularization 

parameter, respectively. 𝛼 can be valued manually or via L-curve 

method (Hansen, 1992). 

 

 

3. PROPOSED METHOD 

To the best of our knowledge, capability of statistical tests for the 

prevention of the overfitting issue, particularly in the context of 

the RFMs has not been addressed in the literature. Models that 

include insignificance, i.e. extra/unnecessary parameters, are too 

flexible which results in an unstable oscillation. This issue is 

named overfitting. Since the estimated values of the 

insignificance parameters are typically closed to zero, statistical 

tests can be easily applied to examine if any unnecessary 

parameters have been included in the model. 

 

To do so, a two-sided statistical test can be designed with the null 

hypothesis if each parameter is equal to zero. In the statistics 

scope, this test is named “significance test”. The test statistic (𝑇𝑖), 
which has a student’s t-distribution, is as follows: 

 

𝑄𝑋 = 𝜎̂0
2(𝐴𝑇𝑃𝐴)−1 (7) 

𝜎̂0
2 =

𝑣𝑇𝑃𝑣

𝑑𝑓
 (8) 

𝑇𝑖 =
𝑥̂𝑖
𝜎̂𝑖

 (9) 

 

Where 𝐴 is the design matrix, 𝑃 is the observation weight, 𝑄𝑋 is 

the covariance matrix of estimated parameters, 𝑣 is the residual 

vector, 𝑑𝑓 represents the degree of freedom, and 𝜎̂0
2 is called 

variance factor. 𝑥̂𝑖 is the estimated value of the i-th model’s 

parameter and 𝑇𝑖 is its corresponding test statistic value. The 

diagonal elements of the matrix 𝑄𝑋 are variances of the estimated 

parameters. Therefore, to calculate the standard deviation of the 

i-th estimated parameter (𝜎̂𝑖), square root of the i-th diagonal 

element must be calculated. 

 

To sum up, for every estimated parameter, if the absolute value 

of its test statistic (|𝑇𝑖|) is larger than the crucial value, extracted 

from t-distribution table with 1 −
𝛼

2
 as the upper cut-off value 

(𝑡𝑑𝑓,1−𝛼
2

), then the parameter is not statistically equal to zero (see 

Eq. 10) and, as a result, doesn't cause overfitting. The parameters 

which are not statically equal to zero can be preserved in the 

model. 

 
|𝑇𝑖| >  𝑡𝑑𝑓,1−𝛼

2
 (10) 

 
𝛼

2
  is the cut-off value for the designed statistical test , in which 𝛼 

is the significance level. Due to the symmetry of the t-

distribution, only upper cut-off value will be considered (Brown 

& Melamed, 1990). 
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Figure 1. Flow chart of the proposed method 

 
 

Figure 1 illustrates the flow chart of our method. Firstly, third-

order RFM will be solved via Direct solution. Then, all of the 

seventy-eight estimated RPCs as well as their corresponding 

standard deviations are employed to examine if any parameters 

are statistically zero (Eqs. 7–10).  Secondly, the statically zero 

parameters are omitted from the model. By doing this, a new 

RFM is made whose parameters need to be estimated. Parameters 

of the new model and their corresponding standard deviations are 

again used to identify and exclude statistically zero parameters. 

This procedure will be repeated until no statically zero parameter 

exists in the model. 

 
 

4. RESULT AND DISCUSSION 

To validate the capability of the proposed method, two High-

Resolution satellite images of Cartosat-1 sensor, with the ground 

sample distance of 2.5 meters, were applied. All of the GCPs, 

shown in Figure 2, were meticulously extracted from 1:2000 

maps. The first and the second images were respectively acquired 

over Kermanshah, Iran and Tehran, Iran. 
 

 

(a) 

1 - Iterative Least-Square solution regularized via Tikhonov 

method 

 

(b) 

Figure 2. Distribution of GCPs and ICPs: (a) First data-set 

over Tehran, Iran; (b) Second data-set over Kermanshah, Iran. 

 

The proposed method was compared to the Iterative LS solution, 

regularized with TR method (ILST). According to table 1, the 

ILST method is not substantially robust because its RMSE values 

of ICPs are greater than one pixel, especially in the second 

dataset. Note that the model, approximated via ILST method, was 

a third-order RFM that is frequently employed by the satellite 

imagery vendors. 

 

Data 

set 

GCPs 

/ICPs 

Total ICPs’ RMSE 

(pix) 

Total GCPs’ RMSE 

(pix) 

Proposed 

method 
ILST1 

Proposed 

method 
ILST 

1 55/21 0.84 1.72 6e-4 3e-4 

2 60/20 0.87 4.21 8e-4 2e-4 

Table 1. RMSE of the ICPs and GCPs  

 

Moreover, Table 1 verifies the presence of the overfitting issue 

which is not been addressed completely by ILST method. As 

mentioned, the high number of RFMs’ parameters result in high 

flexibility of the RFMs, that means, the RFMs perfectly fit to 

GCPs, used for RFMs training. However, due to overfitting issue, 

it doesn't fit to new samples, including ICPs. The fourth and sixth 

columns of the Table 1 provide solid evidence for the pernicious 

effect of this issue. 

 

The worst drawback of any Regularization method, including TR 

method, is the regularization parameter that must be set 

optimally. For this purpose, we applied the L-curve (Hansen, 

1992), as a convolutional method (Ma et al., 2017).  

  

 

GCPs 

 

RFMs Direct 
solution 

All 

terms 
are non-

zero? 

Omit zero 

terms 
Approximate 

new model 

Non over 

fitted 

model 

NO 

Yes 
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Figure 2. ICPs’ RMSE of both data sets 

According to the RMSE values in both Table 1 and Figure 2, the 

proposed method outperforms ILST. For the first and second 

dataset, our method was respectively 50% and 80% more 

accurate than ILST. RMSE values of the proposed method, also, 

reached to the subpixel value for both datasets that is 

substantially satisfactory. 

The subpixel value is caused by two reasons that demonstrate the 

efficacy of our method. Firstly, the designed RFM, based on the 

proposed method, is not influenced by the overfitting issue, due 

to the small number of parameters (see Table 3). Secondly, 

degree-of-freedom (df) of the designed model is much more than 

that of third-order RFM. Needless to mention that the large df 

value leads to the reliable result. 

Data set 

Number of coefficients 

Line Sample 

NUM DEN NUM DEN 

1 6 1 4 1 

2 3 0 5 2 

Table 3. Number of model’s parameters resulted from our 

method 

In addition to the aforementioned advantages, our method unlike 

TR method does not have any essential parameter to be set. The 

only parameter of the proposed method is the significance level 

𝛼 which can be easily set. In our experiments, we set it as 𝛼 = 

0.05 which is common when using any statistical tests. 

5. CONCLUSION

Extracting essential products such as Digital Elevation Model 

(DEM) from satellite images, no one can deny the role of 

mathematical models that describe the relationship between the 

image and the ground spaces. For this purpose, RFMs have 

widely been applied. However, these models severely affected by 

the overfitting issue. 

In this paper, we directly addressed the overfitting of the RFMs 

by means of a statistical test. The results prove the efficacy of our 

proposed method. Dealing with the aforementioned issue, our 

method was 50% to 80% more effective than the common 

Regularization method—TR method. In addition to the efficacy, 

compared to the Regularization based methods, our method 

needs no essential parameter to be optimally set.  

Therefore, due to the capabilities of our method, it can be 

considered as an algorithm to cope with overfitting, and as a 

result, ill-posedness of the RFMs. 
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