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Abstract 

Air pollution is a growing problem arising from domestic heating, high density of vehicle traffic, electricity production, and 

expanding commercial and industrial activities, all increasing in parallel with urban population. Monitoring and forecasting of air 

quality parameters are important due to health impact. One widely available metric of aerosol abundance is the aerosol optical 

depth (AOD). The AOD is the integrated light extinction coefficient over a vertical atmospheric column of unit cross section, 

which represents the extent to which the aerosols in that vertical profile prevent the transmission of light by absorption or 

scattering. Seasonal aerosol optical depth (AOD) values at 550 nm derived from the Moderate Resolution Imaging 

Spectroradiometer (MODIS) sensor onboard NASA’s Terra satellites, for the 10 years period of 2000 - 2010 were used to test 7 

different spatial interpolation methods in the present study. The accuracy of estimations was assessed through visual analysis as 

well as independent validation based on basic statistics, such as root mean square error (RMSE) and correlation coefficient. 

Based on the RMSE and R values of predictions made using measured values from 2000 to 2010, Radial Basis Functions (RBFs) 

yielded the best results for spring, summer and winter and ordinary kriging yielded the best results for fall. 
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1. Introduction

Aerosols are generally consists of minute solid and liquid 

particles held in suspense in the atmosphere, with 

aerodynamic diameter, which ranges from 10−3 μm to 10 

μm. These particles have significant effects on the aerial 

visibility, the earth’s radiation budget as well as cloud 

formation, precipitation and human wellbeing (Solomon, 

2007, Kaufman et al., 2002, Pope III et al., 2002). One of 

the most important parameters in the study of aerosols is 

the aerosol optical depth (AOD). AOD is the extinguishing 

phenomenon of optical beam power as a result of the 

presence of aerosols. Thus, AOD is used to determine the  

aerosol column concentration. For fine-mode aerosols, the 

AOD generally decreases as the wavelength increases. 

The MODIS, which is mounted on the Terra satellites 

measures radiances  across 36 visible, near infrared, and 

infrared channels from 415 to 14 235 nm (King et al., 

1999) utilizing 0.25, 0.50, or 1 km spatial resolutions. This 

equipment has a viewing swath of about 2300 km in width, 

fragmented into 5 min “granules” per ~2030 km of length. 

An in depth description of the over ocean algorithm 

implemented on the MODIS for  retrieving AOD, can be 

found in Remer et al. (2005); that of the dark-target 

algorithm can be found in Kaufman et al. (1997). However, 

as reported  by Levy et al. (2010), the new order of over-

land dark-target algorithm was first proposed by Levy et al. 

(Levy et al., 2007, Levy et al., 2010), which addresses the 

limitations peculiar to the older versions of MODIS (Remer 

et al., 2005, Levy et al., 2007). In retrieving aerosol 

products using MODIS dark target land AOD, relationship 

between surface reflectance at VIS and SWIR is of specific 

importance, which generally holds for the majority of 

vegetative areas, but generally fails to hold for arid, semi-

arid, urban and desert regions (Hsu et al., 2004). On the 

other hand, the MODIS Deep Blue algorithm is developed 

for retrievals involving brightly reflecting surfaces. Such 

retrievals involve the use of blue bands where there exist 

low enough surface reflectances enabling the retrievals 

(Hsu et al., 2006). 

In  regions where there exist no previous measurements, 

spatial interpolation is a suitable technique for estimating 

the concentration of a pollutant (Isaaks and Srivastava, 

1989, Denby et al., 2005, United, 2004)  by employing a 

point-by-point forecasting utilizing the stochastic approach 

(Pisoni et al., 2009). The deterministic and stochastic 

spatial approaches have also been applied in some studies. 

Some of these deterministic approaches include the nearest-

neighbor and polynomial interpolation techniques(United, 

2004, Isaaks and Srivastava, 1989); while geostatistical 

models such as kriging (Beelen et al., 2009, Jourdan, 2009) 

and cokriging (Cressie, 1992, Isaaks and Srivastava, 1989) 

constitute stochastic approaches. In particular, researchers 
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have used kriging to map prior air pollution data involving 

such compounds as NO2, PM10, O3, SO2, CO (Beelen et 

al., 2009). For example, the study by Mulholland et al. 

(1998) utilized universal kriging to interpolate 1-h and 8-h 

data of 10 stations in the USA. Similarly, the study by 

Rojas- Avellaneda (2007) carried out a comparative 

investigation of the peak period statistics of 16 stations in 

Mexico City using inverse distance weighting; while 

Sanchez et al. (Fernández de Castro et al., 2003) employed 

kriging to interpolate  data from 8 locations in Guadalajara 

urban area in Mexico. In addition, Son et al. (Son et al., 

2010) used interpolation methods on data generated from 8-

h ozone concentration from 13 locations in Ulsan, Korea; 

while  Montero et al. (Montero et al., 2010) utilized 

ordinary kriging to attain ozone data from over 27 locations 

within Madrid.  

2. MODIS products 

The spatially and temporally collocated MODIS data pairs 

spanning the years 2000_2010 for the full record of 

MODIS/Terra are acquired through the Multi-Sensor 

Aerosol Products Sampling System (MAPSS, 

http://giovanni.gsfc.nasa.gov/mapss/) (Ichoku et al., 2002, 

Petrenko et al., 2012).  MODIS Level 2 Collection 5.1 

MOD04 aerosol data from 4 July 2002 through 10 January 

2011 are used.  Note that: (a) vegetated surfaces are not 

‘dark’ at the 550-nm wavelength and, therefore, the AOD 

at this wavelength over land is derived from the retrieved 

AODs at the 470-nm and 660- nm channels (Levy et al., 

2010) and (b) the MODIS Dark Ocean product provides 

two AOD datasets, one from the inversion using the best-

fitting aerosol model and another from the average of 

inversions using several well-fitting models (ATBD-2006; 

found online at http://modis-atmos. 

gsfc.nasa.gov/MOD04_L2/index.html); the latter is used 

for this research. The quality of each MODIS AOD 

retrieval is represented by its associated quality flag 

ranging from 3 (high confidence) to 0 (low or no 

confidence) (Levy et al., 2010). The Land_And_Ocean 

AOD dataset is generated from a union of AODs retrieved 

respectively by the Dark Land and Dark Ocean algorithms. 

It is noted, however, that Collection 5.1 has two different 

variable names for Land_ And_Ocean AOD; one is the 

‘Image_Optical_Depth_Land_ And_Ocean’ that has no QA 

involved in its production and another is 

‘Optical_Depth_Land_And_Ocean’ that requires quality 

flags_0 over land and]0 over ocean (ATBD, 2006); the 

latter data variable is consequently used here. However, 

unlike the individual Land and Ocean AOD datasets, the 

combination product does not report QA flags. 

3. Spatial Interpolation Methods 

In this subsection, the interpolation methods employed in 

the current study will be briefly illustrated. The study by 

(Cressie, 1992, Goovaerts, 1997, Chiles and Delfiner, 2009, 

Webster and Oliver, 2007) provide detailed insight into 

geostatistical theories. In Spatial interpolation, regionalized 

values are estimated at un-sampled points using a weight of 

observed regionalized values. Mathematically, spatial 

interpolation is expressed as:  

Zg = ∑ λiZsi
ns
i=1                                  (1) 

Where Zg denotes  the interpolated value at point g, Zsi 

denotes the observed value at point i, ns denotes the total 

number of observed points, while λ = λi represents the 

weight contributing to the interpolation. Here, computing 

the weights λ, which is required in the interpolation is 

somewhat non trivial. The various means of computing the 

weights will be illustrated. 

3.1 Comparison of interpolation methods 

The common methods of comparison of the interpolation 

methods is the cross validation as well as validation with an 

independent data set. However, given the limited sample 

size of the current study, the cross validation was applied. 

Cross validation comprises of the consecutive removal of a 

data point and interpolating the value from the remaining 

observations. The predicted value is then compared with 

the measured value (Mueller et al., 2004). The accuracy of 

the results was tested by using the root mean square error 

(RMSE):  

RMSE = √
1

n
∑ [z∗(xi) − z(x)]2n
i=1                  (2)                 

Where z(xi) denotes the observed value at location I, z*(xi) 

denotes the interpolated value at location i, while n denotes 

the sample size. The smaller the RMSE, the fewer the 

errors. 

Since the cross validation is only effective in validating the 

prediction accuracy at a sample site but cannot depict the 

spatial difference of the interpolation techniques; the raster 

analysis function of ESRI ArcGIS was used in the current 

study in order to afford the comparison of the area and 

spatial differences of contaminated areas estimated by 

various interpolation techniques. 

4. Result and Discussion 

4.1 Data Analysis 

Statistical results indicated that the aerosol optical depth 

was non normally distributed (Figure 2). Data sets were 

analyzed with different software packages. Maps were 

produced with GIS software ArcGIS and its extension of 
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Spatial Analyst. The geostatistical analysis and the 

probability calculations were carried out with GS+ and 

geostatistic extension of ArcMap. Data characteristic of 

seasonal mean AODs can be described by statistics, such as 

mean, median, skewness, kurtosis and so on. Table 1 shows 

the data characteristic and that after data transformation. 

Obviously, it is more approximate Gaussian distribution 

after transformation. Mean is closed to median in log 

transformation, and skewness is closer to 0, therefore, log 

transformation is adopted. 

4.2 Accuracy of interpolation methods 

4.2.1 Spring 

The Figures 3 and Table 2 illustrate the interpolation 

surfaces analyzed using Seven different techniques. These 

techniques include simple kriging, Disjunctive kriging, 

Ordinary kriging, IDW, RBF, GPI and LPI. These 

techniques are mapped using suitable parameters. For 

example, 𝑝 = 2 was ideally chosen for the IDW technique. 

Each of the seven schemes also underwent cross-validation, 

and upon a number of computations, R and RMSE were 

used for validating the interpolation methods. Table 2 

illustrates that performance is optimal when the RBF has 

maximum R and minimum RMSE during spring. On the 

other hand, the polynomial interpolation does not aptly 

interpolate data since it is unable to pass through the 

majority of the  specified points. Also, the level of accuracy 

registered by the LP is more superior to That of the GP, due 

to the fact that the latter takes the global trends into 

consideration. Nevertheless, it provides a much smoother 

surface compared to the former. 

4.2.2 Summer 

Table 2 illustrate the interpretation of the interpolation 

surfaces using the seven techniques mentioned. Here, these 

techniques were mapped using optimal parameters. For 

example, 𝑝 = 2 was ideally chosen for the IDW technique. 

Each of the seven schemes also underwent cross-validation, 

and upon a number of computations, R and RMSE were 

used for validating the interpolation methods. Table 2 

illustrates that performance is optimal when the RBF has  

maximum R and minimum RMSE during the summer. On 

the other hand, the polynomial interpolation does not aptly 

interpolate data since it is unable to pass through the 

majority of the  specified points. Also, the level of accuracy 

registered by the LP is more superior to that of the GP, due 

to the fact that the latter takes the global trends into 

consideration. Nevertheless, it provides a much smoother 

surface compared to the former. 

4.2.3 Fall  

Table 2 illustrate the interpretation of the interpolation 

surfaces using the seven techniques mentioned. Here, these 

techniques were mapped using optimal parameters. For 

example, 𝑝 = 2 was ideally chosen for the IDW technique. 

Each of the seven schemes also underwent cross-validation, 

and upon a number of computations, R and RMSE were 

used for validating the interpolation methods. Table 2 

illustrates that performance is optimal when the Ordinary 

kriging has maximum R and minimum RMSE during fall. 

On the other hand, the polynomial interpolation does not 

aptly interpolate data since it is unable to pass through the 

majority of the  specified points. Also, the level of accuracy 

registered by the LPI is more superior to that of the GPI, 

due to the fact that the latter takes the global trends into 

consideration. Nevertheless, it provides a much smoother 

surface compared to the former. 

4.2.4 Winter 

Table 2 illustrate the interpretation of the interpolation 

surfaces using the seven techniques mentioned. Here, these 

techniques were mapped using optimal parameters. For 

example, 𝑝 = 2 was ideally chosen for the IDW technique. 

Each of the seven schemes also underwent cross-validation, 

and upon a number of computations, R and RMSE were 

used for validating the interpolation methods. Table 2 

illustrates that performance is optimal when the RBF has 

maximum R and minimum RMSE during the winter. On 

the other hand, the polynomial interpolation does not aptly 

interpolate data since it is unable to pass through the 

majority of the specified points. Also, the level of accuracy 

registered by the LPI is more superior to that of the GPI, 

due to the fact that the latter takes the global trends into 

consideration. Nevertheless, it provides a much smoother 

surface compared to the former. 
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Table 1: Data characteristic of seasonal mean AOD data 

Statistics AOD 

Spring 

Log 

(AOD) 

Spring 

AOD 

Summe

r 

Log 

(AOD) 

Summer 

AOD 

Fall 

Log 

(AOD) 

Fall 

AOD 

Winter 

Log 

(AOD) 

Winter 

Mean 0.23 -1.64 0.24 -1.58 0.17 -1.93 0.16 -2.03 

Median 0.18 -1.66 0.20 -1.57 0.12 -0.04 0.12 -2.09 

Std. Deviation 0.15 0.59 0.16 0.58 0.12 0.56 0.12 0.60 

Minimum 0.041 -3.19 0.03 -3.31 0.03 -3.44 0.02 -3.77 

Maximum 0.83 -0.18 1.05 0.04 0.67 -0.39 0.76 -0.27 

Skewness 1.72 0.14 2.17 -0.04 2.06 0.59 2.38 0.65 

Kurtosis 2.86 0.06 6.28 0.57 4.33 0.28 6.15 0.54 

 

 

Fig. 1 Map of AERONET stations used in this study. a) Map of the 236 AERONET stations during the spring season. b) 

Map of the 239 AERONET stations during the summer season. c) Map of the 239 AERONET stations during the fall 

season. d) Map of the 202 AERONET stations during the  winter season.
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                                                      Figure 2. Histograms of raw values of mean AOD

Table 2: R and RMSE for eight methods for season. 

Season MODEL Sample R RMSE Regression Function Std. Error of the 

Estimate 

Spring GPI 236 .415 0.550 Y= 0.198*x- 1.308 .245 

Spring IDW 236 .807 0.360 Y= 0.731*x- 0.401 .303 

Spring K_D 236 .791 0.392 Y= 0.480*x- 0.813 .214 

Spring K_O 236 .796 0.366 Y= 0.689*x- 0.502 .302 

Spring K_S 236 .792 0.392 Y= 0.481*x- 0.808 .214 

Spring LPI 236 .789 0.371 Y= 0.666*x- 0.540 .299 

Spring RBF 236 .815 0.353 Y= 0.667*x- 0.505 .274 

Summer GPI 239 .273 0.574 Y= 0.064*x- 1.455 .182 

Summer IDW 239 .789 0.370 Y= 0.668*x- 0.478 .293 

Summer K_D 239 .773 0.412 Y= 0.445*x- 0.821 .195 

Summer K_O 239 .792 0.364 Y= 0.621*x- 0.597 .285 

Summer K_S 239 .773 0.411 Y= 0.448*x- 0.816 .196 

Summer LPI 239 .775 0.377 Y= 0.608*x- 0.630 .295 

Summer RBF 239 .808 0.356 Y= 0.638*x- 0.541 .260 

Fall GPI 238 .388 0.525 Y= 0.227*x- 1.530 .230 

Fall IDW 238 .747 0.383 Y= 0.691*x- 0.571 .309 

Fall K_D 238 .731 0.398 Y= 0.440*x- 1.072 .223 

Fall K_O 238 .769 0.363 Y= 0.619*x- 0.762 .284 

Fall K_S 238 .731 0.399 Y= 0.441*x- 1.063 .222 

Fall LPI 238 .762 0.368 Y= 0.587*x- 0.812 .292 

Fall RBF 238 .765 0.367 Y= 0.602*x- 0.754 .272 

Winter GPI 202 .405 0.566 Y= 0.211*x- 1.639 .252 

Winter IDW 202 .677 0.462 Y= 0.603*x- 0.758 .363 

Winter K_D 202 .684 0.458 Y= 0.421*x- 1.166 .252 

Winter K_O 202 .684 0.454 Y= 0.569*x- 0.873 .346 

Winter K_S 202 .685 0.457 Y= 0.428*x- 1.148 .254 

Winter LPI 202 .649 0.471 Y= 0.481*x- 1.063 .320 

Winter RBF 202 .703 0.441 Y= 0.552*x- 0.909 .326 
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Fig 3: Interpolation maps of aerosol optical depth for spring. A) GPI, B) IDW,C) K_D, D) K_O, E) K_S_, F) LPI and G) 

RBF   
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4. Conclusion 

The seven interpolation methods of seasonal mean AOD of 

10 years over the world, was compared. The accuracy of 

interpolation was determined by cross-validation. RMSE 

and R were chosen as validation criteria because of high 

sensitivity in this study. Visual results were given in Table 

2. From the comparison of cross-validation criteria, it has 

been observed that the best interpolation scheme is RBF for 

spring, summer and winter seasons and ordinary kriging for 

fall season.  
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