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ABSTRACT: 

Delineating accurate surface water quality levels (SWQLs) always presents a great challenge to researchers. Existing methods of 

assessing surface water quality only provide individual concentrations of monitoring stations without providing the overall SWQLs. 

Therefore, the results of existing methods are usually difficult to be understood by decision-makers. Conversely, the water quality 

index (WQI) can simplify surface water quality assessment process to be accessible to decision-makers. However, in most cases, the 

WQI reflects inaccurate SWQLs due to the lack of representative water samples. It is very challenging to provide representative 

water samples because this process is costly and time consuming. To solve this problem, we introduce a cost-effective method which 

combines the Landsat-8 imagery and artificial intelligence to develop models to derive representative water samples by correlating 

concentrations of ground truth water samples to satellite spectral information. Our method was validated and the correlation between 

concentrations of ground truth water samples and predicted concentrations from the developed models reached a high level of 

coefficient of determination (R2) > 0.80, which is trustworthy. Afterwards, the predicted concentrations over each pixel of the study 

area were used as an input to the WQI developed by the Canadian Council of Ministers of the Environment to extract accurate 

SWQLs, for drinking purposes, in the Saint John River. The results indicated that SWQL was observed as 67 (Fair) and 59 

(Marginal) for the lower and middle basins of the river, respectively. These findings demonstrate the potential of using our approach 

in surface water quality management. 

1. INTRODUCTION

Existing methods of assessing surface water quality depend 

mainly on comparing the experimentally measured surface 

water quality parameters (SWQPs) with the existing surface 

water quality guidelines (Debels, Figueroa, Urrutia, Barra, & 

Niell, 2005). This type of surface water quality assessment is 

valuable for researchers and experts; however, it is often poorly 

understood by non-experts, such as decision-makers. Decision-

makers do not need to be aware of the technical and detailed 

results of monitoring stations. Thus, it is necessary to assess 

surface water quality of water bodies using the water quality 

index (WQI), which is considered as the most effective tool to 

extract surface water quality levels (SWQLs) (Bharti & Katyal, 

2011). 

A WQI is a mechanism based on a numerical expression to 

identify the level of surface water quality by summarizing 

complex water quality data into simplified mathematical 

numbers, which can be interpreted into text classes (i.e. 

Excellent, good, etc.) (Bordalo, Teixeira, & Wiebe, 2006). In 

literature, very few studies have attempted to delineate SWQLs 

using statistically-based WQIs. Most of the available research is 

mainly based on two statistically-based WQIs: the Overall 

Index of Pollution (OIP) and the Canadian Council of Ministers 

of the Environment water quality index (CCMEWQI). 

The OIP was used to extract water quality levels in Yamuna 

River, India using the water quality data of turbidity, power of 

hydrogen (pH), dissolved oxygen (DO), biochemical oxygen 

demand (BOD), total dissolved solids (TDS), and fluoride 

(Sargaonkar & Deshpande, 2003). Water samples were 

collected from six stations and the extracted SWQLs were 

excellent at stations 1 and 3. While stations 2, 5, and 6 were 

categorized as slightly polluted, station 4 was classified as 

polluted. 

The CCMEWQI was used to extract the water quality in 

Mackenzie River, Canada (Lumb, Halliwell, & Sharma, 2006). 

The water quality is classified as marginal for drinking purposes 

and the river is negatively affected by high suspended sediment 

loads. In another study, the CCMEWQI was used for 

comparative analysis of regional water quality in Canada and 

was found to be a good tool for water quality assessment 

(Rosemond, Duro, & Dubé, 2009). The mean CCMEWQI 

values ranged from 42.40 to 56.70, which is marginal (i.e. the 

water quality is frequently threatened or impaired). 

Based on the literature review, WQIs can support the accurate 

interpretation of surface water quality; however, they require a 

huge set of water samples obtained by physical monitoring of 

water quality, which is costly, time consuming, and labour 

intensive. Therefore, the integration of the Landsat-8 multi-

spectral information, the back-propagation neural network 

(BPNN), and the CCMEWQI is developed for the first time to 

extract accurate SWQLs. The BPNN algorithm is selected to 

develop models to quantify concentrations of SWQPs from 

Landsat8 satellite imagery. The BPNN is proposed because it 

can lead to good generalization of the network, control the 

learning process, and achieve the global minimum (Tai-Sheng, 

Chih-Hung, Li, & Yu-Chu, 2008; Sharaf El Din, Zhang, & 

Suliman, 2017). The obtained concentrations of SWQPs over 

each pixel of the selected study area are used as an input to the 

CCMEWQI to extract accurate SWQLs. The CCMEWQI is 
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selected due to its flexibility in the selection of input parameters 

(i.e. SWQPs), the capability of minimizing the data volume to a 

great extent, and simplifying the expression of surface water 

quality (CCME, 2001). The identified objectives of this study 

are to: (1) develop Landsat-8 models to estimate concentrations 

of SWQPs of the selected study area of the Saint John River 

(SJR), New Brunswick, Canada by using the BPNN and (2) 

identify the accurate SWQLs in the SJR by using the 

CCMEWQI. 

 

  

2. MATERIALS AND METHODS 

2.1 Study Site and Water Sampling Trips 

The selected study area covers two main parts of the SJR: the 

lower basin (i.e. below the Mactaquac Dam) and the middle 

basin (i.e. above the Mactaquac Dam). Water sampling was 

performed at the same time of satellite overpass and collected 

during five field trips in 27-06-2015, 10-04-2016, 12-05-2016, 

22-07-2016, and 23-08-2016. As shown in Figure 1, samples 

were randomly distributed along the study area. Sixty-six 

ground truth water samples were collected along 130 km of the 

SJR and coordinates of each sample were recorded using a 

handset GPS, GARMIN 76CSx. 

 

Concentrations of both optical and non-optical SWQPs, such as 

turbidity, total suspended solids (TSS), total solids (TS), total 

dissolved solids (TDS), chemical oxygen demand (COD), 

biochemical oxygen demand (BOD), dissolved oxygen (DO), 

power of hydrogen (pH), electrical conductivity (EC), and 

temperature, were measured according to the American Public 

Health Association (APHA) water and wastewater standards 

(APHA, 2005). 

 

 
Figure 1. The study area along with sampling points 

 

2.2 Landsat-8 Acquisition and Processing 

Five Landsat-8 satellite sub-scenes acquired on 27-06-2015, 10-

04-2016, 12-05-2016, 22-07-2016, and 23-08-2016 are used in 

our study to best represent the maximum variation in the 

concentrations of SWQPs. The Landsat-8 satellite images are 

available free of charge at Level 1T (terrain corrected) (Earth 

Explorer, 2016). Atmospheric distortions should be eliminated 

in order to measure the water-leaving reflectance. The Dark 

Object Subtraction (DOS) method was used to remove 

atmospheric distortions and consequently calculate the surface 

reflectance values (Chavez, 1988). This method is well accepted 

by the geospatial community and can provide accurate mapping 

for wetland areas (Song, Woodcock, Seto, Lenney, & 

Macomber, 2001). 

 

2.3 Estimation of Concentrations of SWQPs Using 

Artificial Neural Network (ANN) 

In this study, the BPNN algorithm was adopted to model the 

nonlinear relationship between the Landsat-8 surface reflectance 

data and concentrations of SWQPs. As shown in Figure 2, the 

Landsat-8 multi-spectral bands which show the highest 

correlation to the selected SWQPs were used to form the input 

layer. While concentrations of SWQPs were selected, one at 

atime, to compose the output layer, the number of hidden layers 

and the number of neurons in each hidden layer was 

experimentaly selected. 

 

 
Figure 2. Architectural design of the proposed ANN 

 

2.4 Applying the CCMEWQI 

The CCMEWQI can be used to assess surface water quality 

relative to its desirable state as defined by water quality 

guidelines given by the Canadian Council of Ministers of the 

Environment (CCME). When the CCME standards are not 

accessible, the World Health Organization (WHO) 

recommendations are applied. As shown in Equations (1-7), the 

CCMEWQI works by combining three factors (scope, 

frequency, and amplitude) (CCME, 2001). The CCMEWQI 

produces a value within a range from [0 to 100] and the 

obtained water quality is classified into five categories, which 

are Excellent (95-100), Good (80-94), Fair (60-79), Marginal 

(45-59), and Poor (0-44). 

  

CCMEWQI = 100 − ((√𝐹12 + 𝐹22 + 𝐹32 ) 1.732⁄ )   (1) 

F1 = (No. of failed SWQPs Total No. of SWQPs⁄ ) ∗ 100   (2) 

F2 = (No. of failed tests Total No. of tests⁄ ) ∗ 100   (3) 

𝐹3 = (nse (0.01 ∗ nse + 0.01)⁄ )                                       (4) 

nse = ((∑ excursioni
n
i=1 ) Total number of tests⁄ )   (5) 

excursioni = (Objectivej Failed test valuei⁄ ) − 1   (6) 

excursioni = (Failed test valuei Objectivej⁄ ) − 1   (7) 

 

where  𝐹1 (scope) = the percentage of SWQPs where water 

quality guidelines are not met 

 𝐹2 (frequency) = the percentage of tests that do not 

meet the objectives 

 𝐹3 (amplitude) = the amount by which failed tests do 

not meet the objectives 

 nse = the normalized sum of excursion 

 excursion𝑖 = the number of times by which an 

individual concentration is greater than (or less than, when the 

objective is a minimum) the objective 
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3. RESULTS AND DISCUSSION

3.1 Concentrations of SWQPs 

Descriptive statistics were measured for turbidity, TSS, TS, 

TDS, COD, BOD, DO, pH, EC, and temperature. 

Concentrations ranged from 1.19 to 13.10 NTU with an average 

4.84 NTU, 0.60 to 11.40 mgl-1 with an average 3.59 mgl-1, 

58.00 to 245.00 mgl-1 with an average 113.92 mgl-1, 52.40 to 

233.85 mgl-1 with an average 110.33 mgl-1, 4.80 to 86.64 mgl-1 

with an average 27.55 mgl-1, 1.21 to 3.25 mgl-1 with an average 

1.75 mgl-1, 6.71 to 14.14 mgl-1 with an average 9.54 mgl-1, 6.51 

to 8.42 with an average 7.59, 29.50 to 148.90 uscm-1 with an 

average 97.09 uscm-1, and 5.00 to 23.30 Celsius with an average 

15.92 Celsius for turbidity, TSS, TS, TDS, COD, BOD, DO, 

pH, EC, and temperature, respectively. 

3.2 Calibration and Validation of the Developed BPNN 

Models 

The architectural design of the proposed artificial neural 

network (ANN) consisted of three layers with a sigmoid 

activation function which is differentiable and can provide the 

powerful capability of modelling complex and nonlinear 

problems. In our study, 25 neurons were experimentally 

selected to form the hidden layer. Using a few set of neurons in 

the hidden layer may lead to an underfitting problem, while 

using a huge set of hidden neurons may lead to slow learning. 

Figure 3. Scatter plots of measured vs. predicted concentrations 

of turbidity (a), TSS (b), TS (c), TDS (d), COD (e), BOD (f), 

DO (g), pH (h), EC (i), and temperature (j) using the training 

dataset 

The BPNN algorithm was used to map the relationship between 

the Landsat-8 spectral data and concentrations of SWQPs. This 

algorithm can result in good generalization when using either 

large or small datasets (MacKay, 1992). This algorithm is 

computationally efficient as 4, 5, 8, 12, 22, 21, 10, 4, 18, and 11 

seconds were achieved, at the ANN training phase, for turbidity, 

TSS, TS, TDS, COD, BOD, DO, pH, EC, and temperature, 

respectively. Additionally, finding the global minima is 

guaranteed by utilizing an appropriate learning rate value. In 

this context, a learning rate value of 0.01 was adjusted to 

achieve the global minima in the error surface. As shown in 

Figure 3, for the whole SWQPs, coefficients of determination 

were very high (R2 > 0.82) at the neural network training phase 

with p-value < 0.001. The final relationship between the desired 

output (i.e. observed concentrations of SWQPs) and the actual 

output (i.e. predicted from the developed network) was 

developed in the Matlab environment. 

The root mean square errors (RMSEs) were 0.061 NTU, 0.802 

mg/l, 0.753 mg/l, 0.522 mg/l, 0.133 mg/l, 0.150 mg/l, 0.121 

mg/l, 0.011, 0.021 us/cm, and 0.041 Celsius for turbidity, TSS, 

TS, TDS, COD, BOD, DO, pH, EC, and temperature, 

respectively, at the network training phase, as shown in Figure 

4. Similarly, the RMSEs were 0.557 NTU, 0.654 mg/l, 1.353

mg/l, 1.781 mg/l, 0.112 mg/l, 0.171 mg/l, 0.143 mg/l, 0.451,

0.752 us/cm, and 0.302 Celsius for turbidity, TSS, TS, TDS,

COD, BOD, DO, pH, EC, and temperature, respectively, at the

network testing phase. Moreover, turbidity, TSS, TS, TDS,

COD, BOD, DO, pH, EC, and temperature error surfaces

showed that the training process was stopped at epoch 51, 73, 

117, 311, 703, 697, 237, 54, 517, and 256, respectively. In deed, 

there is no further enhancement in the neural network

performance after reaching the stopping points.

Figure 4. Turbidity (a), TSS (b), TS (c), TDS (d), COD (e), 

BOD (f), DO (g), pH (h), EC (i), and temperature (j) error 

surfaces at the network training and testing phases 
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To validate the robustness of the developed BPNN models, the 

testing dataset (i.e. water samples which were not used in 

training process) was used to validate their performance. As 

shown in Figure 5, for different SWQPs, R2 > 0.80 at the 

network testing phase with p-value < 0.001. The validation 

models for turbidity, TSS, TS, TDS, COD, BOD, DO, pH, EC, 

and temperature remained stable with R2 = 0.949, 0.947, 0.884, 

0.881, 0.823, 0.803, 0.823, 0.849, 0.897, and 0.981, 

respectively. 

Figure 5. Scatter plots of measured vs. predicted concentrations 

of turbidity (a), TSS (b), TS (c), TDS (d), COD (e), BOD (f), 

DO (g), pH (h), EC (i), and temperature (j) using the testing 

dataset 

Overall, the developed BPNN algorithm was used to produce 

highly accurate estimations of SWQPs compared to regression 

techniques which have been used in previous studies. The main 

basis is that the BPNN has the potential to map the non-linear 

relationship between satellite multi-spectral information and 

concentrations of different SWQPs without prior knowledge of 

the parameter relationship. Moreover, the BPNN can lead to 

good generalization, minimizing the complexity, and 

accelerating the computational speed of the network (Sharaf El 

Din, Zhang, & Suliman, 2017). 

3.3 Extracting Accurate SWQLs 

In order to properly delineate the levels of surface water quality 

in the SJR by using the CCMEWQI, the selected study area 

were subdivided into two main sites: (1) below the Mactaquac 

Dam and (2) above the Mactaquac Dam. As shown in Figure 6, 

twenty eight water samples were collected below the dam 

during the first two trips. Rather than using twenty eight water 

samples, 47544 water pixels, derived from the developed BPNN 

algorithm with R2 > 0.80, were used as an input to the 

CCMEWQI to extract the exact SWQL below the Mactaquac 

Dam. In the same way, thirty eight samples were collected 

above the dam during trip 3, 4, and 5. Instead of using thirty 

eight water samples, 100606 water pixels were used to delineate 

the accurate SWQL above the dam. 

The CCMEWQI calculations were carried out and the 

concentrations of TS, TDS, and pH were found within the 

permissible limits; however, turbidity, TSS, COD, BOD, DO, 

EC, and temperature values exceeded the standard limits given 

by the CCME and WHO standards for drinking water. The 

obtained CCMEWQI was observed as 67 (Fair) in the lower 

basin of the SJR, which means the water quality is usually 

protected but occasionally threatened or impaired. The obtained 

SWQL for the lower basin of the SJR was found to be 

consistent with the results obtained by the Canadian River 

Institute (Kidd, Curry, & Munkittrick, 2011). Moreover, the 

water quality in the middle basin of the SJR was classified as 59 

(Marginal), which means the water quality is frequently 

threatened or impaired. The main reason of obtaining different 

levels of water quality in the two main sites of the SJR is that 

the lower basin of the river has less agricultural and industrial 

processes, which may keep this part of the SJR in a better state 

than the middle basin of the river. 

Figure 6. The two sites of the study area of the SJR 

4. CONCLUSION

Traditional analysis of physico-chemical SWQPs could not 

provide the overall trends of surface water quality in water 

bodies. Therefore, we need a tool, such as the WQI, to delineate 

accurate levels of surface water quality. The CCMEWQI was 

selected because it is very flexible in selecting input parameters 

(i.e. physico-chemical SWQPs) and capability of minimizing 

the data volume to a great extent as well as simplifying the 

process of surface water quality assessment. Due to 

complexities and difficulties of providing representative 

database (i.e. water samples), The WQI may be biased towards 

reflecting misleading SWQLs. Hence, the integration of 

Landsat-8 spectral data, the BPNN algorithm, and the 

CCMEWQI was developed to extract accurate SWQLs to be 

accessible to decision-makers. 

The results of this study show the potential of generating 

generalized models to retrieve concentrations of SWQPs from 

satellite imagery in the SJR and other water bodies. 

Additionally, our study is valuable for managers and decision-

makers because the CCMEWQI mechanism provides 
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comparative evaluation of the water quality of sampling sites 

and summarizes complex water quality data into simplified 

mathematical numbers. Finally, in order to produce better 

research outcomes in future, water sampling stations should be 

collected in the upper basin of the SJR to determine the 

CCMEWQI in the whole parts of the river. 
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