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ABSTRACT: 

Semi Global Matching (SGM) algorithm is known as a high performance and reliable stereo matching algorithm in photogrammetry 

community. However, there are some challenges using this algorithm especially for high resolution satellite stereo images over urban 

areas and images with shadow areas. As it can be seen, unfortunately the SGM algorithm computes highly noisy disparity values for 

shadow areas around the tall neighborhood buildings due to mismatching in these lower entropy areas. In this paper, a new method is 

developed to refine the disparity map in shadow areas. The method is based on the integration of potential of panchromatic and 

multispectral image data to detect shadow areas in object level. In addition, a RANSAC plane fitting and morphological filtering are 

employed to refine the disparity map. The results on a stereo pair of GeoEye-1 captured over Qom city in Iran, shows a significant 

increase in the rate of matched pixels compared to standard SGM algorithm. 

1. INTRODUCTION

Dense stereo matching is the primary step in generating digital 

surface model from satellite images. The methods are 

categorized as Local (area and feature based) algorithms, Global 

and Semi-Global matching algorithms (Hirschmüller, 2008; 

Scharstein and Szeliski, 2002). The weakness of Local matching 

algorithms is in occlusion boundaries due to the depth 

discontinuity. Global matching algorithms are formulated as 

minimizing energy function, which includes discontinuity, 

smoothness, and occlusion (Brown et al., 2003). These 

algorithms usually have high computation cost. The SGM 

algorithm is faster than global matching algorithms 

(Hirschmüller and Scharstein, 2009). The SGM algorithm is 

popular due to the higher efficiency compared with other 

methods (Alobeid, 2011; Zhu et al., 2014). 

The SGM algorithm comprised of four main steps including 

matching cost computation, cost aggregation, disparity 

computation and disparity map refinement (Hirschmüller, 

2008). The capability of computed costs to match conjugate 

points has an ambiguity due to equal cost value of neighbor 

pixels and low entropy in objects. so, the aggregation of 

matching costs from 8 or 16 paths has been proposed 

(Hirschmüller, 2008). In this step, matching costs are 

aggregated based on matching cost and disparity. Equation 1 is 

used to aggregate the matching costs in each path. Then using 

equation 2 the costs are aggregated in all paths. 
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Where;  

p: image location of interest pixel 

d: disparity value 

Lr (p,d): cost path toward the actual pixel of path 

C (p,d): pixel-wise matching cost 

P1: a small value penalizing disparity changes between 

neighbouring pixels of one pixel 

P2: a large value penalizing disparity changes between 

neighbouring pixels of one pixel 

r: actual path 

k: pixels in each path 
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Now, in equation 3 the disparity for each pixel is calculated by 

minimizing the aggregated cost values. Also, to estimate the 

disparity in sub-pixel level, a quadratic curve is fitted to the 

neighboring costs disparity, and the position of the minimum 

is obtained. 

(3)min ( , )dD S p d

After cost aggregation and generating disparity map, 

mismatching occurs in shadowing areas. The reason is the effect 

of pixels with lower entropy (such as shadowing areas) to those 

with higher entropy (such as building roof) to have the same 

disparity in a local neighbourhood. As shown in Figure 1, this is 

the reason to extend the roof of the buildings in the disparity 

map. 

The SGM algorithm originally uses the Mean Shift algorithm to 

refine disparity map in large textureless areas (Hirschmüller, 

2008). But this solution fails to solve the ambiguity of shadow 

effects. Also, some methods were proposed based on 

segmentation and statistical filtering (such as median of 

background) to enhance the disparity map in void areas (Bafghi 

et al., 2016; Krauß and Reinartz, 2010). 

In this paper, after shadow detection and computing disparity 

map from high resolution satellite stereo images, a new method 

based on morphological filtering and RANSAC plane fitting is 

proposed to enhance the disparity map in shadow areas. In the 

following, the proposed method is described and then the result 

of experiments is presented. The paper will end with the 

conclusions. 
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Figure 1. The shadow effect on cost aggregation step (SGM 

algorithm). a) Panchromatic image; b) computed disparity map 

without cost aggregation; c) computed disparity map after cost 

aggregation; d) overlaid disparity map and panchromatic image 

(the extended roof). 

 

2. PROPOSED METHOD 

The proposed method has three main steps, pre-processing, 

shadow detection, and disparity map refinement. Figure 2 

shows the workflow. The details of each part will be discussed 

in the following. 

 

 

Figure 2. Flowchart of proposed method to enhance the 

disparity map in SGM algorithm 

 

2.1 Pre-processing 

In the pre-processing step, spectral bands are pan-sharpened to 

enhance the spatial resolution. In the proposed method, the HIS 

transformation algorithm is used due to its acceptable spatial 

quality (Strait et al., 2008; Tu  et al., 2001). 

 

Epipolar images are rectified images so that each row of the left 

image corresponds to the same row at the right image (i.e. 

parallax y is zero). The epipolar images are the input of SGM 

algorithm (Hirschmüller, 2008). Unlike the images with 

perspective geometry (Frame Camera), the epipolar geometry of 

linear array images could not be considered as a straight line. 

Recently, for linear consideration of epipolar geometry, a new 

strategy based on image tiling was proposed to produce epipolar 

images from high resolution satellite stereo images (Tatar et al., 

2015b). The panchromatic and pan-sharpened multispectral 

images are rectified along the epipolar lines using this method. 

 
Then the rectified panchromatic and spectral bands are 

introduced to Fractal Net Evolution Approach (FNEA) 

segmentation algorithm (Baatz and Schäpe, 2000; Benz et al., 

2004), implemented in eCognition software. This paradigm 

known as object-based image analysis is used to detect the 

correct border of Shadow areas in urban area. 

 

2.2 Shadow detection  

Detecting shadow areas from high resolution satellite images is 

a critical role in disparity map refinement. Up to now, a lot of 

shadow detection methods were proposed, see complete review 

in (Shahtahmassebi et al., 2013). In this paper, an object-based 

shadow detection method is used based on our previous work 

(Tatar et al., 2015a). The method is based on thresholding on 

the panchromatic band and C3new index to find a binary shadow 

mask. Then a majority voting (Lam and Suen, 1997) analysis is 

used to detect shadow areas in object level. 

 

The threshold value is calculated based on Otsu thresholding 

algorithm (Otsu, 1979). The shadow areas are considered as 

background and foreground in panchromatic and C3new index 

respectively. Also, the C3new index was defined by equation 4 

(Tatar et al., 2015a). 
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Where; 

B: Blue band 

PAN: Panchromatic band 

 

After detecting shadow objects, connected component analysis 

(Gonzalez and Woods, 2002) is used to identify shadow 

regions, and unify them to use as the input for further 

processing. 

 

2.3 Disparity map refinement 

The aggregation step couldn’t find the correct matching in 

shadow and large textureless areas. Therefore, some post 

processing on disparity map is performed to solve the problem. 

In this paper, only the effect of shadowing on disparity map will 

be improved. Two methods of RANSAC (Fischler and Bolles, 

1981) plane fitting and geodesic dilation filtering (Arefi and 

Hahn, 2005) are employed and then the results are integrated to 

increases the confidence level. 
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The step by step RANSAC plane fitting is executed as follows. 

1. Remove disparities of shadow areas 

2. The dilation operator with a 3×3 structure element is 

applied to the disparity map  

3. Using RANSAC algorithm, a plane is fitted to 

disparities of each shadow region. 

4. Using an interpolation process, the shadow pixels 

getting interpolated disparities 

 

At the same time with RANSAC plane fitting, the geodesic 

dilation filtering is employed as described below: 

1. Detecting non-ground pixels from disparity map using 

geodesic dilation algorithm 

2. Fitting a surface to disparities of ground pixels 

(estimate background of disparity map) 

3. Replace disparities of non-ground pixels by original 

disparity map  

 

The refined disparity map, the result of RANSAC plane fitting, 

as well as disparity of geodesic dilation algorithm, permits the 

determination of false disparities by performing a consistency 

check. Each disparity of RANSAC plane fitting is compared to 

its corresponding disparity in the result of geodesic dilation 

algorithm. The disparity is set to invalid if the difference more 

than one pixel. Otherwise the disparity is modified by averaging 

of two disparities. 

 

3. EXPERIMENT AND ANALYSIS 

3.1 Dataset 

High resolution satellite stereo images from GeoEye-1 are used 

in the experiments. GeoEye-1 images with panchromatic and 

multispectral bands are prepared over urban area in Qom city in 

Iran. Table 1 gives detail information about images, including 

the acquisition date, Location, and spatial resolutions. 

 

GSD (m) Location 

Lat/Lon 

Acquired 

date 
time 

Looking 

angle MS Pan 

2 0.5 o N 34.62 

oE 50.92 
01/16/2014 

7:20 Afterward 

2 0.5 7:21 Forward 

Table 1: Detail of dataset 

 

3.2 Experimental results 

In the pre-processing step, IHS pan-sharpening algorithm used 

to enhance the spatial resolution of spectral bands which helps 

to detect shadow areas and create a color point cloud with 

higher details. After the pan-sharpening, the panchromatic and 

pan-sharpened spectral bands are resampled along epipolar line. 

Due to the small size of corresponding stereo image tiles, the 

epipolar images can be generated by fundamental matrix (Loop 

and Zhang, 1999; Tatar et al., 2015b). The stereo anaglyph of 

epipolar images is shown in Figure 3. 

 

In the next step, the epipolar panchromatic and pan-sharpened 

images are served as input to FNEA segmentation algorithm to 

produce the image objects. FNEA segmentation algorithm 

requires tuning the scale parameter, shape and compactness 

weight coefficients. The value of these parameters has a direct 

effect on the final segmentation and shadow detection result. 

The scale parameter, shape and compactness weight coefficients 

are selected as 80, 0.1 and 0.9 respectively and considered 

constant in the experiments based on our previous experiences 

on the same dataset (Tatar et al., 2015b; Tatar et al., 2016). 

 

 
Figure 3. Stereo anaglyph of the generated epipolar images 

 

Recognition of shadow objects in the proposed method depends 

on the detection of suspected shadow pixels. Thresholding on 

the panchromatic band and the C3new index are employed to this 

end. Thresholding on the panchromatic band detects a mixture 

of dark pixels including shadow pixels, asphalt road, and dark 

roofs. In the next step, thresholding on C3new index improves the 

accuracy of suspect shadow pixels by omitting the false shadow 

pixels among the suspicious shadow pixels. 

 

Then the results of pixel-level shadow detection and FNEA 

image segments are integrated through the majority voting to 

recognize shadow areas in object level. This will improve the 

accuracy with omitting salt and pepper noise in suspect shadow 

detection. The threshold percentage of the shadow pixels in 

each image segment is needed to make decisions here. From 

previous studies, the best majority threshold is selected as 20% 

(Tatar et al., 2015a; Tatar et al., 2016). Figure 4 shows the 

comparison of pixel and object level shadow detection results. 

 

After generating epipolar images for corresponding stereo 

image tiles, the SGM algorithm is applied to generate disparity 

map. As mentioned earlier, matching cost function, and penalty 

of P1 and P2 are critical inputs for SGM algorithm. The Census 

transformation with 7×9 kernel size is selected as the cost 

function. Also, the value of P1 and P2 are obtained 12 and 30 

respectively in the experiment. The noises and outliers are 

removed using a median filter. 
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Figure 4. Shadow detection results. Top: pan-sharpened original 

images; middle: suspected shadow areas; bottom: overlaid 

object-based shadow areas on original images 

 

Cost aggregation in SGM algorithm is sensitive to entropy 

values and it caused a shift in disparity value of shadow areas to 

get closer to those of neighbouring buildings. To solve this 

problem, as described in section 2.3, the disparity map 

refinement is applied to the disparity map. The generated 

disparity map of SGM algorithm and enhanced disparity map 

are shown in Figure 5. 

 

  

  

  

Figure 5. Disparity map refinement. Top: original epipolared 

left image; middle: Computed disparity map by SGM algorithm 

(the border of man-made objects drawn in red line); bottom: 

enhanced disparity map (proposed method) 

   

Also to visual inspection of shadow effect on SGM algorithm, 

the corresponding points and images were intersected and color 

point cloud is generated (Figure 6). Due to the existence of 

rational polynomial coefficients (RPCs) for satellite stereo 

images, the corresponding points are intersected by RPCs in the 

object coordinate system. 

 

  
Figure 6. 3D reconstruction of high resolution satellite stereo images. Left: 3D reconstruction with shadow effect (standard SGM 

algorithm); right: 3D reconstruction after disparity map refinement (proposed method).
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3.3 Evaluation and Discussion 

In this section, the result of epipolar resampling, shadow 

detection, and disparity map refinement are evaluated. Y-

parallax values for corresponding points in epipolar images 

considered as evaluation measure to the results of epipolar 

resampling. The Y-parallax value of measured corresponding 

points is shown in Figure 7. The result of experiments in Figure 

3 and 7 demonstrates that the epipolar images are generated 

with sub-pixel accuracy. 

 

 
Figure 7. Y-parallax of corresponding points on the generated 

epipolar images 

 

The confusion matrix is computed to evaluate the result of 

shadow detection and disparity map refinement. The confusion 

matrix for generation of two classes is shown in Table 2.  

 
  Detected /generated 

  Class 1 Class 2 

Reference 
Class 1 TP FP 

Class 2 FN TN 

Table 2: Confusion matrix for evaluation of results 

 

The confusion matrix in shadow detection includes: true 

positive (TP) number of correctly classified shadow pixels, false 

positive (FP) number of wrongly classified non-shadow pixels 

as shadow, false negative (FN) number of shadow pixels which 

detected as non-shadow, and true negative (TN) number of non-

shadow pixels classified correctly. 

 

Also, the confusion matrix is created for evaluation of disparity 

map refinement and computed disparity map by SGM 

algorithm. In this evaluation, the confusion matrix includes:  

TP: number of correctly matched pixels 

FP: number of mismatched pixels 

FN: number of conjugate pixels which considered as occlusion  

TN: number of occlusions truly found. 

 

Completeness, correctness and F-measure criterions obtained 

from confusion matrix as below are used to evaluate the results. 

 

100
TP

Completeness
TP FN

 


  
(5) 

100
TP

Correctness
TP FP
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2
100

2
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TP FN FP


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(7) 

 

To evaluate the shadow detection results, 98 image objects in 

shadow class and 118 image objects in non-shadow class are 

selected manually. Compactness, correctness, and F-measure 

were calculated based on generated confusion matrix. Table 3 

contains the result of object-based shadow detection. In this 

table, the F-measure is used as quantitative criteria due to the 

big gap between correctness and completeness.  

 

 

Completeness Correctness F-measure 

100% 89% 94% 

Table 3: Statistical analysis of object-based shadow detection 

 

To evaluate the performance of proposed disparity map 

refinement method, 260 corresponding points are measured 

manually. The disparity value of measured points was compared 

to the disparity computed by SGM algorithm and the proposed 

method. Evaluation results for both results are presented in 

Table 4. 

 
Method Completeness Correctness F-measure 

SGM algorithm 48% 71% 57% 

Proposed method 89% 94% 92% 

Table 4: Statistical analysis of computed disparity map by 

SGM algorithm and enhanced by proposed method 
 

To evaluate the computed disparity map, completeness, 

correctness, and F-measure are used. It should be noted that the 

higher value of correctness, shows the non-occlusion pixels 

matched correctly. In the other word, the building roofs and 

land cover are matched correctly. According to the results 

presented in Table 4, lower correctness value in the case of 

SGM algorithm indicates the number of shadow pixels (wrongly 

matched) which added to all matched pixels. Due to the 

enhanced disparity map in shadow areas, the wrongly matched 

pixels are removed from all matched pixels. This will cause an 

increase in the correctness value in the case of proposed 

method. 

 

Also, if completeness has a higher value, indicates the occlusion 

and shadow pixels are not matched as non-occlusion and roof 

pixels respectively. Quantitative evaluation in Table 4, shows 

the lower completeness in the case of original SGM algorithm. 

The reason is that the shadow pixels matched as roof pixels. 

However, in the case of proposed method, the completeness is 

increased due to disparity refinement in shadow areas.   

 

4. CONCLUSION 

In this paper, we investigate the effect of shadow area on SGM 

algorithm in the case of high resolution satellite stereo 

processes. The SGM algorithm causes shadow pixels have a 

disparity equal to the disparity of buildings roof. To solve this 

problem, FNEA segmentation was employed to detect shadow 

areas accurately in object level. Then a new method based on 

RANSAC plane fitting and morphological filtering used to 

enhance the disparity map in shadow areas. The result of 

experiments demonstrates that the proposed object-based 

disparity map refinement significantly increased the result of 

original SGM algorithm in shadow areas. 

 

The proposed method in this paper focuses on disparity map 

refinement in shadow areas. For other areas such as mirrored 

surfaces and non-lamebrain surfaces, an adaptive disparity map 

refinement method seems to work. Also, the numerical 

assessment of the results was done by some corresponding 

points which measured manually. Creating a dataset with ground 

truth and evaluate the proposed method with ground truth will 

follow by the authors. 
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