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ABSTRACT: 

Based on world health organization (WHO) report, driving incidents are counted as one of the eight initial reasons for death in the 

world. The purpose of this paper is to develop a method for regression on effective parameters of highway crashes. In the traditional 

methods, it was assumed that the data are completely independent and environment is homogenous while the crashes are spatial events 

which are occurring in geographic space and crashes have spatial data. Spatial data have spatial features such as spatial autocorrelation 

and spatial non-stationarity in a way working with them is going to be a bit difficult. The proposed method has implemented on a set 

of records of fatal crashes that have been occurred in highways connecting eight east states of US. This data have been recorded 

between the years 2007 and 2009. In this study, we have used GWR method with two Gaussian and Tricube kernels. The Number of 

casualties has been considered as dependent variable and number of persons in crash, road alignment, number of lanes, pavement type, 

surface condition, road fence, light condition, vehicle type, weather, drunk driver, speed limitation, harmful event, road profile, and 

junction type have been considered as explanatory variables according to previous studies in using GWR method. We have compered 

the results of implementation with OLS method. Results showed that R2 for OLS method is 0.0654 and for the proposed method is 

0.9196 that implies the proposed GWR is better method for regression in rural highway crashes. 

1. INTRODUCTION

Driving incidents and their social and economical impacts have 

compelled UN that call current decade as the decade for the 

secure roads. Based on world health organization (WHO) report, 

driving incidents are counted as one of eight reasons for death in 

the world (PARK et al., 2010).  

Among the various components of country’s infrastructure, the 

roads are very important in the transport of goods and passengers. 

Therefore, road safety authorities around the world demanding 

for use of new technologies in vehicles an infrastructure to 

enhance roads safety.  

Basically, crashes are spatial events which occur in geographic 

space. Traffic crashes can be spatially the correlated events and 

the analysis of the distribution of traffic crash frequency requires 

the evaluation of parameters that reflects the spatial properties 

and correlation (Rhee et al., 2016). Most of accidents occur due 

to human faults, technical failure of vehicle, technical failure of 

road, and environmental condition. Sometimes, accumulation of 

these factors as the hidden factors lead to accident. 

Accumulation of several factors create the hotspots. Identifying 

effective parameters of accidents can prevent future incidents 

(Black, 1991). 

 Previous studies have used regression analysis to determine 

effective parameters. Crashes severity models like linear least 

square, negative binomial regression, Poisson and more complex 

models like seemingly unrelated regression have been most 

former common methods. 

Chen et al (2016) developed a hierarchical Bayesian logistic 

model to examine the significant factors at crash and 

vehicle/driver levels and their heterogeneous impact on driver 

injury in rural interstate highway crashes. Rhee et al (2016) have 

employed a geographic weighted regression in urban traffic 

analysis in Seoul. The result showed the best area for safety 

improvement and because center lanes had more crashes, there is 

a need to improve the design to enhance their safety. De Oña et 

al (2013) have used the combination of Latent Class Clustering 

(LCC) and Bayesian networks (BN). The result showed that the 

simultaneous use of these methods is useful for road safety 

analysis. Xu and Huang (2015) have employed the semi-

parametric geographically weighted Poisson regression model 

(S-GWPR) and the random parameter negative binomial model 

(RPNB) to investigate the spatial heterogeneity in regional crash 

modelling. The result showed that the S-GWPR is more 

appropriate for regional crash modelling in comparison with 

those of the non-spatial models and global models. Zha et al 

(2016) have used Poisson inverse Gussian (PIG) regression 

model for modelling motor vehicle crash data and compered it 

with Negative binomial (NB) model. The result showed the PIG 

models perform better than the NB in the term of goodness of fit 

statistics and the PIG model can perform as well as NB model in 

capturing the variance of crash data. Also PIG models 

demonstrate same prediction performance compared to NB 

models. Hence, PIG model could be alternative to NB model for 

analysing the crash data. 

Several studies have been conducted to identify factors affecting 

crashes. For instance, (Sohn and Shin, 2001) and (Delen et al., 

2006)have used Artificial Neutral Networks for data mining of 

roads crashes. (Clarke et al., 1998) and (Chang and Chen, 2005)  

have used a decision tree method to study the crash rate and to 

determine the most important factors in crashes. (Pakgohar et al., 

2011) has used regression trees and Logistic Regression to 

investigate the impact of factors on roads’ crashes in Iran. Result 

of this study indicates that 97.5% of road accidents caused by a 
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driver failure. In 70.5%, crashes caused by the environment and 

in 31.5%, technical failure of vehicles was the reason of the 

incidents. 

(Kashani and Mohaymany, 2011) used a classification and 

regression tree (CART) to determine both the severity of crashes 

and the effective factors on the severity of injury for passengers 

on two lane two way roads. 

As mentioned above, lots of studies have been conducted to find 

appropriate methods for detecting effective factors in crashes but 

most of this studies have not considered spatial data’s features 

properly. 

Basic regression models assumes that data should be independent 

but this assumption is impossible in spatial data. Spatial data have 

some features that working with them is a bit difficult. Two 

samples of these features are a) spatial autocorrelation, based on 

Tobler’s first low of geography “everything is relate to 

everything else, but near things are more related than distant 

things”(Tobler, 1970), and b) spatial non-stationarity that 

represents change in space and spatial heterogeneity of 

environment. Traditional methods like ordinary least squares 

(OLS) cannot be adapted by spatial autocorrelation and non-

stationarity because these methods have assumed that data are 

completely independent and environment is homogeneous. 

Hence, OLS regardless of spatial dependencies gives an answer 

for all parts of region. In this regard, a geographic weighted 

regression (GWR) method has been proposed in this study for 

considering spatial autocorrelation and spatial non-stationarity in 

rural highway crashes. 

2. MATERIALS AND METHODS

2.1 Study area 

This study used the real world fatal crashes data occurred in 

several states in the east of US. This crashes were occurred on 

highways that connect eight states of Alabama, Georgia, North 

and South Carolina, Virginia, West Virginia, Kentucky, and 

Tennessee. Data used consist of the spatial and nonspatial data of 

fatal crashes occurred from beginning of 2007 to the end of 2009. 

During these years 2432 fatal crashes were recorded. Some of 

these crashes related to pedestrians’ crashes and some of them 

related to multi vehicle crashes. This study works on a part of 

data related to two vehicle crashes that includes 828 crashes (see 

Figures. 1 and 2). Table 1 shows the spatial and nonspatial 

variables used in this study. 

Figure 1.Study area 

 Figure 2. Fatal crashes on US rural highways 
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Table 1.Spatial and nonspatial variables 

2.2 Geographic weighted regression 

As mentioned in the introduction, OLS method cannot be adapted 

to features’ of spatial data because this method has assumed that 

data are completely independent and environment is 

homogenous. Hence, OLS method without considering 

dependency gives an answer for all points of reign and for this 

reason, a GWR method was presented by (Brunsdon et al., 1998). 

In this method, spatial dependency of observation is considered 

as the weight matrix due to environment homogeneity and non-

stationarity regression coefficients were derived locally and 

separately for each point. The general relation for GWR is as 

follows (Brunsdon et al., 1998): 

𝑦 = 𝛽0(𝑢, 𝑣) + ∑ 𝛽𝑗(𝑢, 𝑣)𝑋𝑗

𝑝

𝑗=1
+ 𝜀  (1) 

Where y is the dependent variable, Xj is the independent variable, 

p is the number of independent variables, 𝜀 is the residual of the 

model, and 𝐵𝑗  is the coefficient of regression that is a function of

observation point (u,v). Unlike OLS, the GWR is the weighted 

adjustment and the coefficients of regression can be computed by 

(Brunsdon et al., 1998): 

𝛽̂(𝑢, 𝑣) = (𝑋𝑇𝑊(𝑢, 𝑣)𝑋)−1𝑋𝑇𝑊(𝑢, 𝑣)𝑦  (2) 

where W is the weight matrix of observations that is a function of 

point’s location and this matrix is diagonal matrix as follows 

(Brunsdon et al., 1998): 
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[
𝑊1(𝑢, 𝑣) 0 0

0 ⋱ 0
0 0 𝑊𝑛(𝑢, 𝑣)

]  (3) 

Determining the geographical weights is so important in GWR 

method. In this regard, several kernels have been presented for 

this purpose. In this study, the GWR method was used with two 

kernels that have demonstrated superior performances. The 

Gaussian and Tricube kernels are as follows (McMillen and 

McDonald, 2004): 

𝑊𝑖𝑗 = 𝜑(
𝑑𝑖𝑗

𝜎ℎ
)  (4) 

𝑊𝑖𝑗 = {
(1 − (

𝑑𝑖𝑗

ℎ
)

3

)
3

 , 𝑑𝑖𝑗 ≤ ℎ

0   , 𝑑𝑖𝑗 > ℎ
 (5) 

Where 𝑊𝑖𝑗  is the geographic weight of observation j on the point

i, 𝜑 is the normal standard distribution function, 𝑑𝑖𝑗  is the

distance between two points i and j, and 𝜎 is the standard 

deviation for 𝑑𝑖𝑗  for each point and h is the bandwidth. 𝑑𝑖𝑗  is the

Euclidean distance in Cartesian coordinate when using 

geographic coordinates the distance is great circle distance. The 

most important issue in determining the geographic weights is 

selecting appropriate bandwidth because if this parameter is too 

large, GWR trends to OLS results and if too small bandwidth is 

selected, the variance will increase (Charlton and Fotheringham, 

2009). 

There are several method for optimizing bandwidth. One of them 

is Cross Validation method which can be computed by (Brunsdon 

et al., 1998): 

∑ [𝑦𝑖 − 𝑦𝑖̂(ℎ)]2𝑛
𝑖=1  (6) 

Where n is the number of observation, 𝑦𝑖 is the observation i, and

𝑦̂𝑖 is the estimated value for the observation i computed by the

other observations. Also, 𝑦̂𝑖 is a function of bandwidth and if

bandwidth minimizes the function, it will be considered as the 

optimal bandwidth. Actually, in goodness of fit, determining the 

bandwidth is more effective than the kind of kernel used. There 

are two methods for selecting bandwidth (Charlton and 

Fotheringham, 2009): 

• Fixed bandwidth: if data are distributed regularly, fixed

bandwidth will be used.

• Unfixed (changeable) bandwidth: it is used in the cases

that data are almost irregular and have clustered

distribution. In this regard, in the high density area

bandwidth decreases and vice versa. One criterion for

this change can be the minimum and maximum of

observation points in search band. Moreover,

bandwidth can be changed in a way the fixed number

of observations would stay on each band.

2.3 Evaluation Criteria 

There are different parameters for evaluating the results of 

regression. One of them is R2 that indicates the goodness of fit 

for the achieved result. The value of R2 is between 0 and 1. R2 =0 

indicates that using explanatory variables (effective parameters 

on crashes in this study) are not effective on estimating the 

dependent variable (the number of casualties in this study) and 

R2=1 indicates that the dependent variable is completely 

predictable using regression model. R2 can be calculated 

by(Shekhar and Xiong, 2007): 

𝑅2 = 1 −
𝑆𝑆𝐸

𝑆𝑆𝑇
 (7) 

𝑆𝑆𝐸 = ∑ (𝑦𝑖 − 𝑦̂)2𝑛
𝑖=1  (8) 

𝑆𝑆𝑇 = ∑ (𝑦𝑖 − 𝑦̅)2𝑛
𝑖=1  (9) 

Where n is the number of observations, 𝑦𝑖 is the value of

dependent variable, i.e. observation, i, 𝑦̂ is the estimated value 

for the dependent variable, 𝑦̅ is the mean of observations. The 

methods that have been used for evaluation of residuals are 

RMSE and NRMSE that are computable by: 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − 𝑦̂)2𝑛

𝑖=1  (10) 

𝑁𝑅𝑀𝑆𝐸 =
𝑅𝑀𝑆𝐸

𝜎𝑦̂
 (11) 

Where 𝜎𝑦̂ is standard deviation for the estimated values of

dependent variables. 

3. IMPLEMENTATION

In this study, the number of casualties were considered as the 

dependent variable and the number of persons in crash, road 

alignment, number of lanes, pavement type, surface condition, 

road fence, light condition, vehicle type, weather, drunk driver, 

speed limitation, harmful event, road profile, and junction type 

were considered as explanatory variables. These factors were 

selected based on previous studies and our limitation to access 

the data. 

Firstly, correlation between data must be checked by (Dale, 

2014): 

𝑐𝑜𝑣(𝑋, 𝑌) =
∑ (𝑋𝑖−𝑋̅)(𝑌𝑖−𝑌̅)𝑛

𝑖=1

𝑛
 (12) 

𝑟 =
𝑐𝑜𝑣(𝑋,𝑌)

𝜎𝑋𝜎𝑌
 (13) 

Where cov(X,Y) is the covariance of two data sets of  X and Y, 𝑋̅ 

and 𝑌̅ are the mean values for two X and Y data sets, n is the 

number of observations in each data set, r is the correlation 

coefficient between two data sets, 𝜎𝑋 and 𝜎𝑦  are the standard

deviation for data sets. All of the calculated values for correlation 

coefficient is between -0.1 and 0.6 that indicates any of 

explanatory variable does not have specific correlation to the 

other one. For this reason, all of them have been used in 

implementation. Correlation matrix of explanatory variables is 

shown in Figure 3. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W4, 2017 
Tehran's Joint ISPRS Conferences of GI Research, SMPR and EOEC 2017, 7–10 October 2017, Tehran, Iran

This contribution has been peer-reviewed.   
https://doi.org/10.5194/isprs-archives-XLII-4-W4-305-2017 | © Authors 2017. CC BY 4.0 License. 307



Figure 3. Correlation matrix of explanatory variables 

Table 2. The results of evaluation criteria for implemented 

algorithms 

Figure 4 shows the result of OLS regression. The blue line depicts 

the actual data and the red line depicts the predicted result by the 

OLS. 

Figure 4. Results of OLS regression 

Figures 5 and 6 show the results of the proposed GWR using 

Gaussian and Tricube kernels, respectively. The blue line depicts 

actual data and the red line depicts the predicted result by GWR 

with kernels. In GWR both of bandwidth have been used and in 

order to optimize the bandwidth, the cross validation method was 

used. Moreover, Table 2 shows the achieved results for 

evaluation criteria used. 

Figure5. Results of GWR with Gaussian kernel 

Figure 6. Results of GWR with Tricube kernel 

As shown in Table 2, R2 was calculated for both GWR and OLS 

the value of R2 for OLS has been obtained 0.0654 that is near 

zero. It implies that using explanatory variables (effective factors 

on crashes in this study) are not useful on estimating the 

dependent variable, i.e. the number of casualties. Hence, the OLS 

is not appropriate method for this issue while the calculated value 

for GWR with Gaussian kernel is 0.1294 and with Tricube kernel 

is 0.9196 that demonstrate better performance of GWR method 

in comparison with OLS for rural highway crashes. In fact OLS 

cannot be adapted with spatial autocorrelation and spatial non-

stationarity because in this method, it was assumed that the data 

were completely independent and environment was homogenous. 

As a result, OLS without considering spatial dependency 

presented an answer for whole region. Furthermore, the obtained 

results for RMSE and NRMSE for GWR with Tricube kernel has 

great difference with both GWR with Gaussian kernel and OLS 

model therefor using GWR with Tricube kernel in rural highway 

crashes can improve accuracy and increase performance of 

detecting effective factors on rural highways crashes. 

4. CONCLUSIONS

Today detecting effective factors of road accidents is so 

important because the number of passengers’ have been injured 

or died by driving accidents is too much. These casualty causes 

irreparable social and economical impacts. Hence, identifying 

hazardous times and places can be used in preventing future 

accidents’ occurrence. The goal of this paper is to develop an 

appropriate model for regression on rural highway crashes 

factors. Crashes are spatial events that occur in geographic space. 

The former regressions used for this purpose are not compatible 

with spatial data features like spatial autocorrelation and spatial 

non-stationarity. Thus, the GWR method as an appropriate 
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method for studying local patterns with adaptivity with spatial 

data features was used. For evaluation, the proposed method was 

applied to the real-world data of US rural highways recorded 

from 2007 to the end of 2009. In order to show the impact of 

spatial data features on regression, we compered the result of the 

proposed GWR method with that of OLS method. Goodness of 

fit result of OLS on highway crashes was 0.0654 while this value 

was 0.9196 for the proposed GWR method with Tricube kernel. 

As a result, using GWR with Tricube kernel can enhance 

accuracy and increase performance of detecting effective 

parameters on occurrence of crashes in rural highways. 

In future study we recommend using combination of GWR with 

evolutionary algorithms to identify most effective factors on 

accidents. Also, using the GWR method with Tricube kernel in 

urban crashes is proposed in order to detect the effective factors 

of accidents in urban areas. 
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