
A NEW HYBRID YIN-YANG-PAIR-PARTICLE SWARM OPTIMIZATION ALGORITHM 

FOR UNCAPACITATED WAREHOUSE LOCATION PROBLEMS 

A. A. Heidari*, O. Kazemizade, F. Hakimpour 

School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Iran 

(as_heidari, kazemizade.omid, fhakimpour)@ut.ac.ir 

KEYWORDS: Warehouse Location; Optimal; Location Analysis; Optimization; Particle Swarm; Yin-yang-pair Optimization 

ABSTRACT: 

Yin-Yang-pair optimization (YYPO) is one of the latest metaheuristic algorithms (MA) proposed in 2015 that tries to inspire the 

philosophy of balance between conflicting concepts. Particle swarm optimizer (PSO) is one of the first population-based MA 

inspired by social behaviors of birds. In spite of PSO, the YYPO is not a nature inspired optimizer. It has a low complexity and starts 

with only two initial positions and can produce more points with regard to the dimension of target problem. Due to unique 

advantages of these methodologies and to mitigate the immature convergence and local optima (LO) stagnation problems in PSO, in 

this work, a continuous hybrid strategy based on the behaviors of PSO and YYPO is proposed to attain the suboptimal solutions of 

uncapacitated warehouse location (UWL) problems. This efficient hierarchical PSO-based optimizer (PSOYPO) can improve the 

effectiveness of PSO on spatial optimization tasks such as the family of UWL problems. The performance of the proposed PSOYPO 

is verified according to some UWL benchmark cases. These test cases have been used in several works to evaluate the efficacy of 

different MA. Then, the PSOYPO is compared to the standard PSO, genetic algorithm (GA), harmony search (HS), modified HS 

(OBCHS), and evolutionary simulated annealing (ESA). The experimental results demonstrate that the PSOYPO can reveal a better 

or competitive efficacy compared to the PSO and other MA. 

* Corresponding author

1. INTRODUCTION

The suitability of civic warehouses is influenced by their 

locations. One of the vital concerns in supply chain 

management, logistic and location analysis is warehouse 

location (FL) (Ou-Yang and Ansari, 2017). In recent years, FL 

problems, which is also termed in the related works as facility 

location (FL), have been extensively investigated by researchers 

because of their tactical nature (Aardal et al., 1999; Ou-Yang 

and Ansari, 2017). There are various mathematical models 

demonstrating a range of FL tasks, which most of them have a 

combinatorial nature (Aardal et al., 1999). Consequently, exact 

algorithms can often be effective for small instances and 

metaheuristic algorithms (MA) have been utilized in literature 

as efficient methods to handle larger applied FL tasks.  

In the traditional uncapacitated WL (UWL), each warehouse 

requires an initial cost to be established and a certain cost is 

associated with the choosing of roads from a client to a 

warehouse. The objective of the UWL is to determine where to 

construct the warehouses and which routes to utilize for 

optimizing the overall costs. In UWL, the decision maker 

should determine the candidate sites that specify a new 

warehouse, while some criteria such as total costs to be 

minimized (Al‐Sultan and Al‐Fawzan, 1999; Korupolu et al., 

2000). The cost includes fixed costs to open plants and depots, 

and variable cost can be related to the transportation. The other 

constraints can be the demands of all stores and the warehouse 

and suppliers capacity limits, which should not be violated. 

Therefore, the selection of warehouse location will profoundly 

influence the management planning of plants and organizations. 

It's worth noting that several applied tasks with no warehouses 

to obtain, such as portfolio management, machine scheduling, 

clustering, and computer networks can similarly be addressed 

according to UWL-based models (Ghosh, 2003; Tcha and Lee, 

1984). 

Some exact approaches have been developed for solving the 

UWL. Some of the well-known methods are branch and bound 

(Klose, 1998), dual approach (DUALLOC) (Erlenkotter, 1978) 

Lagrangean relaxation (Barcelo et al., 1990), the primal-dual 

(Körkel, 1989), and linear programming. It can be proved that 

the UWL is NP-hard (Sevkli and Guner, 2006). Hence, in last 

10 years, many researchers tried to develop efficient MA to 

tackle the UWL. Some of the well-established works can be 

summarized as tabu search (TS) (Michel and Van Hentenryck, 

2004), simulated annealing (SA) (Aydin and Fogarty, 2004), 

particle swarm optimizer (PSO) (Guner and Sevkli, 2008), and 

genetic algorithms (GA) (Jaramillo et al., 2002). In 2017, Guo 

et al proposed a two-stage capacitated FL (TSCFLP) and a 

hybrid evolutionary algorithm (EA) (Guo et al., 2017).  In 2015, 

Basti and Sevkli used artificial bee colony (ABC) optimizer to 

realize the p-median UFL problem (Basti and Sevkli, 2015). 

Moreover, Heidari et al proposed an efficient opposition-based 

chaotic HS (OBCHS) to tackle the UFL problems and the 

results revealed that the OBCHS can reveal a better efficacy 

compared to GA and PSO methods (Heidari et al., 2015a). Ng 

investigated expanding neighborhood tabu search (ENTS) 

algorithm for large warehouse location problems in water 

infrastructure planning (Ng, 2014). Esnaf et al. proposed a 

fuzzy c-means algorithm with fixed cluster centers for UFL that 

permits unlabeled data to be assigned to the related clusters 

centers. In their research, the proposed algorithm is tested on 

different UFL benchmarks from literature and Turkish fertilizer 

producer’s real data. The algorithm was compared to the PSO 

and ABC algorithms and the results show that the proposed 

algorithm have better performance than the other algorithms 

(Esnaf et al., 2014). In 2017, a hybrid PSO-tabu search 

optimizer has been proposed to treat the hierarchical FL 

problem (Ou-Yang and Ansari, 2017).  

The Yin-Yang-pair optimization (YYPO) is one of the recent 

MA that mimics the philosophy of balance among discordant 

concepts  (Punnathanam and Kotecha, 2017).  
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Figure 1. The structure of YYPO algorithm 

This algorithm has shown an efficient performance in dealing 

with several optimization problems.  In this paper, a hybrid MA 

is proposed and substantiated to tackle the UWL problem. For 

this purpose, the YYPO optimizer is embedded into the well-

known PSO algorithm to enhance the efficacy of this algorithm. 

Then, the proposed PSO-YPO is validated based on several 

instances of the UWL. 

 

2. THE YYPO ALGORITHM 

The YYPO optimizer is one of the recent MA inspired by the 

philosophy of balance among discordant concepts 

(Punnathanam and Kotecha, 2017).  In YYPO, the variables of 

the tasks should be normalized inside interval (0, 1). This 

optimizer utilizes two points (P1 and P2) to search the problem 

landscape. The P1 and P2 are generated in the initial step of 

YYPO inside the domain of [0, 1] and their fitness are 

evaluated. The better point is considered as P1 and the other 

one is assigned as P2. The point P1 plays its role in exploitation 

phase, while the point P2 tries to highlight the exploration 

behaviors. The points P1 and P2 act as hubs to sightsee the 

hypersphere dimensions inside the solution space specified by 

radii of R1 and R2, correspondingly. These spans have a self-

adaptive nature such that R1 has a propensity to every so often 

decrease and R2 to rise. The YYPO involves two core phases: 

 

 Splitting phase  

 Archive phase 

 

2.1 Splitting phase 

This phase is designed to boost the exploration of the target 

space. For this purpose, one of the points in consort with its 

search range is inserted to this step. The splitting phase can 

create new positions inside the hypersphere at diverse 

directions. In this step, 2D fresh points are scattered nearby the 

particular point P and their distances to the P is calculated based 

on R. Note that D denotes the dimension. The new points can be 

scattered using two strategies with the same chance: one-way 

and D-way splitting. In one-way strategy, simply one variable of 

each P is adjusted. In the D-way method, all variables of each P 

are updated (Punnathanam and Kotecha, 2017). 

One-way splitting: 2D duplicates of the P are kept as S then; 

one variable of each P in S is adjusted by Eq. (1): 
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In aforementioned relations, superscript shows the variable 

number, the subscript are the P number and a shows a random 

value inside (0, 1). In D-way splitting step, all variables of P in 

S should be updated using: 
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Here, the binary matrix B is made by randomly choosing 2D 

distinctive integers between 0 and 2D-1.  

 

2.2 Archive stage 

Initialization of this step indicates that I archive (ARC) updates 

have been completed. Moreover, the archive comprises 2I 

points. The finest point in the ARC, when it is superior to P1, is 

switched with P1 (i.e. the former P1 is currently in the ARC). 

Then, the best point in the present ARC, if superior to P2, 

substitutes P2. Thus, the best two points will continuously 

survive sequential repetitions (Punnathanam and Kotecha, 

2017). The R1 and R2 are updated as: 

 

1 1 ( 1 )R R R                                                                      (4) 

2 2 ( 2 )R R R                                                                    (5) 

 

The R1 can shrinkage the volume explored nearby P1 in the 

splitting phase, while R2 can expand the volume explored 

nearby P2. In the YYPO, the maximum of R2 is 0.75. Then, the 

ARC is deflated and a renewed value of I is created inside (Imin 

and Imax). 
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The flowchart of YYPO is demonstrated in Figure 1. For more 

details about the YYPO please refer to (Punnathanam and 

Kotecha, 2017).  

 

3. THE PSO ALGORITHM 

The PSO is a well-known population-based MA used in 

numerous works (Heidari et al., 2017a, b; Heidari and Delavar, 

2016; Heidari et al., 2015b; Trelea, 2003). The PSO tries to 

simulate the idealistic social life of birds (Heidari and 

Pahlavani, 2017c). The PSO utilizes a swarm of particles 

(solutions) that can search the target domain to explore and 

exploit the fittest particle. Temporarily, the search agents all 

follow the best solution in their searching trajectories. In PSO, 

particles will track their personal best locations along with the 

best agent explored thus far. The PSO can be mathematically 

described as: 

 
1

1 1 2 2( ) ( )t t t t

i i i i g iv v c p x c p x                                     (6) 

1 1t t t

i i ix x v                                                                          (7) 

 

where vi
t denotes the velocity of agent i at iteration t, w shows a 

weighting factor, cj is an acceleration factor, 𝜑1 and 𝜑2 are 

random values inside (0, 1), xi
t is the existing location of agent i 

at iteration t, pi is the pbest of solution i at loop t, and pg is the 

fittest agent so far. A modified PSO (CFM) is also available that 

utilizes a constriction factor (CF) (Heidari and Ali Abaspour, 

2016). In this paper, the CFM version is employed to treat the 

UWL problem. The main equation of CFM can be described as: 

 

1 1 2 2( ) ( ) ( ( )) ( ( ))i i i i g iv t v t c p x t c p x t                    (8) 

( 1) ( ) ( )i i ix t x t v t                                                             (9) 

2 0.5

1 22 / 2 ( 4 ) ,  ,  4,   c c                            (10) 

 

where χ denotes the constriction factor.  

 

4. THE HIERARCHICAL PSO-YYPO ALGORITHM 

The basic PSO can reveal a satisfactory performance in treating 

different optimization tasks. However, immature convergence to 

LO may still happen in tackling some larger UWL cases. The 

reason is that PSO cannot make a stable balance between 

exploration and exploitation tendencies. In order to mitigate this 

drawback, an enhanced PSO algorithm is proposed to enrich its 

efficacy on UWL tasks. For this purpose, the YYPO optimizer 

can be used an extra step inside the PSO method.  

 

The main structure of combined algorithm (PSOYPO) is similar 

to the basic PSO. The first difference is that the global best 

solution of PSO is obtained during iterations via YYPO and 

inserted into the PSO again for more improvements. The second 

difference is the hierarchical structure of PSOYPO. In the initial 

step of PSO, the YYPO is started to generate the best results. 

Then, the outputs of YYPO are considered as the initial 

candidate solutions for PSO. The third difference is that the 

PSO will search the topography of the target problem, then, the 

YYPO is triggered again improve the local searching capacity 

of PSO. After that, the basic PSO can continue the search until 

the last iteration. In PSOYPO, the operators of YYPO have a 

constructive effect on the precision of solutions based on the 

two best agents in sorted population. It's worth noting that 

YYPO is not a population-based optimizer and improves only 

two solutions during the searching process. The YYPO is a low 

complexity MA which starts with two initial positions and 

produces more points with regard to the dimension of target 

problem. Hence, when the YYPO wants to be utilized, the 

population of particles is sorted and only the first and second 

best agents are inserted as the inputs to the YYPO.  

 

The proposed PSOYPO has the main advantages of both PSO 

and YYPO. In this work, PSOYPO is used to handle the UWL 

problem. To learn how the PSO, PSOYPO, and other compared 

methods are applied to UWL problems, the reader is referred to 

(Guner and Sevkli, 2008; Sevkli and Guner, 2006). 

 

5. UWL PROBLEM 

In the UWL, a subset of locations from a given set of potential 

locations is required for establishing warehouses so as to 

optimize a given function of these chosen locations while 

satisfying certain constraints (Basu et al., 2015; Michel and Van 

Hentenryck, 2004). In this section, the variables of the UWL 

problem are described. 

 

In UWL problems with m stores and n candidate warehouse 

sites, fj is used to represent the cost of opening warehouse j that 

is fixed and cij is used to represent the cost of serving customer i 

from warehouse j or assigning store i to warehouse j. We 

assume that cij ≥ 0 for all i = 1, 2, 3… m and j = 1… n and fj >0 

for all j = 1… n. A binary variable yj is used to represent the 

status of warehouse j in the model. Warehouse j will be opened 

only if yj = 1 in the solution. A binary variable xij is used for the 

road from store i to warehouse j in the model. Store i will be 

served by warehouse j only if xij = 1 in the solution. However, 

each xij can be treated as a continuous variable and will have a 

binary value in the solution. The solution process of the UWL 

problem is to find an optimal solution that satisfies the store 

demand and minimizes the total cost (Esnaf et al., 2014; Sun, 

2006). Here, the formally UWL is described as: 
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The UWL problems usually have a mixed integer formulation 

with binary variables to indicate the locations of warehouses, 

together with continuous variables that represent system 

dynamics. This mixed integer nature of UWL problems makes 

them NP-hard (Ng, 2014; Sevkli and Guner, 2006). The 

solution methodologies used for these problems concentrate on 

exact methods and MA.  Because the UWL is NP-hard, exact 

methods are mostly suitable for small-sized UWL cases. In the 

large-scale cases, MA are used in order to obtain near optimum 

solutions since finding optimum solutions need much time 

(Basti and Sevkli, 2015).  
 

In addition, several MA have been applied for tackling UWL 

problems such as hybrid EA (Guo et al., 2017), ABC (Basti and 

Sevkli, 2015), an opposition-based chaotic harmony search 

algorithm (Heidari et al., 2015a), tabu search (Sun, 2006), 
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expanding neighborhood tabu search (Ng, 2014), a simplified 

artificial fish swarm (Azad et al., 2013), and a modified 

continuous PSO (Saha et al., 2011). In the next sections, the 

results of a new effective PSO-based optimizer are reported to 

investigate the optimum solutions of several UWL problems. 

 

6. RESULTS AND ANALYSIS 

In this section, the efficacy of the new PSOYPO is studied 

carefully. Here, each method is experienced using MATLAB 

2013 software. The PSOYPO is utilized to solve 15 well-known 

UWL benchmark test cases from OR Library (Beasley, 2005). 

Twelve test problems are somewhat small in size, whiles three 

test cases are pretty large. The details of tackled benchmark 

problems are reported in Table 1.  

 

ID Name Type Size (m × n) Optimum 

TF01 Cap71 Small 16 × 50 932615.8 

TF02 Cap72 Small 16 × 50 977799.4 

TF03 Cap73 Small 16 × 50 1010641 

TF04 Cap74 Small 16 × 50 1034977 

TF05 Cap101 Small 25 × 50 796648.4 

TF06 Cap102 Small 25 × 50 854704.2 

TF07 Cap103 Small 25 × 50 893782.1 

TF08 Cap104 Small 25 × 50 928941.8 

TF09 Cap131 Small 50 × 50 793439.6 

TF10 Cap132 Small 50 × 50 851495.3 

TF11 Cap133 Small 50 × 50 893076.7 

TF12 Cap134 Small 50 × 50 928941.8 

TF13 Cap-A Large 100 × 1000 17156454 

TF14 Cap-B Large 100 × 1000 12979072 

TF15 Cap-C Large 100 × 1000 11505594 

Table 1. Details of benchmark test cases 

 

Each method is verified based on 30 independent trials. The 

population size of all methods is equal to the number of 

warehouses. Note that the recommended settings in related 

literature are used in this experiment (Heidari et al., 2015a; 

Sevkli and Guner, 2006). In addition, the algorithms can repeat 

the process throughout 1.00E+03 iterations. In this research, the 

mean relative percent error (ARPE) is measured as the 

performance index. The MRPE is described as: 

1

( ) 100
/

Z
i

i
i

T S
MRPE Z

S

  
  

 
                                    (14) 

where Ti is the ith iteration, U denotes the fittest value and Z 

represents the iteration number. The other indexes utilized in 

this study are "Optimum Rate" represented by (HR) and CPU 

time indicated by (RT). Furthermore, HR is the hit to the 

optimum rate (HR) ratio that shows the robustness of 

algorithms. It is truly hard to explore the best positions in every 

round of search. The higher HR and MRPE value are better than 

the lower values. When these indexes are higher, it can be 

recognized that the quality of results is more satisfactory.  

 

The MRPE values of the PSOYPO algorithm are compared to 

HS, OBCHS, and PSO in Table 2. It can be seen from Table 2 

that the proposed PSOYPO can obtain preferable solutions 

compared to the basic PSO method. It is seen that for problems 

with bigger sizes, the error rate of all methods has increased. 

The reason that PSOYPO can obtain results with a better 

precision is that it has an effective exploitation capacity. Hence, 

in the case of finding a fruitful region, it can focus on the better 

positions in the search space. The MPRE values of PSOYPO 

are very competitive to the OBCHS, but OBCHS still can show 

a better efficacy than PSO-based methods for TS13, TS14, and 

TS15 problems.   

ID PSO HS OBCHS PSOYPO 

TS1 6.00E-02 4.00E-02 0.00E+00 0.00E+00 

TS2 8.00E-02 9.00E-02 0.00E+00 0.00E+00 

TS3 7.00E-02 7.00E-02 1.00E-02 0.00E+00 

TS4 8.00E-02 8.00E-02 0.00E+00 0.00E+00 

TS5 1.60E-01 1.30E-01 0.00E+00 2.00E-02 

TS6 1.70E-01 1.00E-01 0.00E+00 0.00E+00 

TS7 1.50E-01 1.70E-01 2.00E-02 3.00E-02 

TS8 1.70E-01 1.90E-01 0.00E+00 0.00E+00 

TS9 7.90E-01 7.60E-01 0.00E+00 0.00E+00 

TS10 8.10E-01 7.70E-01 1.00E-02 8.00E-02 

TS11 7.10E-01 7.20E-01 0.00E+00 0.00E+00 

TS12 9.10E-01 9.40E-01 0.00E+00 2.00E-02 

TS13 2.12E+01 1.27E+01 1.00E-02 1.00E-02 

TS14 9.91E+00 4.12E+00 1.00E-02 2.41E+00 

TS15 9.62E+00 2.41E+00 3.00E-02 4.52E+00 

Table 2. Comparison of MRPE values 

 

In Table 3, The HR values of the PSOYPO algorithm are 

compared to the HS, OBCHS, and PSO algorithms (Also see 

Figure 2).  

 

ID PSO HS OBCHS PSOYPO 

TS1 8.50E-01 9.00E-01 1.00E+00 1.00E+00 

TS2 7.90E-01 8.40E-01 1.00E+00 1.00E+00 

TS3 6.50E-01 6.80E-01 1.00E+00 1.00E+00 

TS4 7.10E-01 7.80E-01 1.00E+00 1.00E+00 

TS5 5.60E-01 4.20E-01 1.00E+00 1.00E+00 

TS6 4.60E-01 5.40E-01 1.00E+00 9.80E-01 

TS7 1.90E-01 1.20E-01 1.00E+00 1.00E+00 

TS8 6.50E-01 7.20E-01 9.90E-01 9.90E-01 

TS9 6.00E-02 7.00E-02 1.00E+00 1.00E+00 

TS10 0.00E+00 1.00E-02 1.00E+00 9.80E-01 

TS11 0.00E+00 0.00E+00 1.00E+00 1.00E+00 

TS12 1.00E-01 1.40E-01 1.00E+00 1.00E+00 

TS13 0.00E+00 0.00E+00 9.80E-01 1.00E+00 

TS14 0.00E+00 0.00E+00 9.70E-01 9.70E-01 

TS15 0.00E+00 0.00E+00 5.00E-01 5.60E-01 

Table 3. Comparison of HR values 

 

 
Figure 2. Robustness comparison between the PSO, HS, 

OBCHS, and PSOYPO algorithms 
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It can be seen that PSOYPO can obtain better results than PSO 

in dealing with all problems. The results of the PSOYPO 

method are very competitive to the OBCHS, but it is observed 

that the results are better than basic HS. Generally, the PSO 

cannot show an outstanding effectiveness in comparison with 

HS, OBCHS, and PSOYPO.  

 

In Table 3, the RT values of the PSOYPO algorithm are 

compared to HS, OBCHS, and PSO. It is seen that the 

PSOYPO require additional time obtain better results compared 

to the PSO (see Figures 3 and 4). The reason is that the 

proposed strategy has a hierarchical structure that increases the 

time of the process. However, OBCHS is still the fastest 

method.  

 

ID PSO HS OBCHS PSOYPO 

TS1 1.30E-01 1.20E-01 7.00E-02 1.50E-01 

TS2 1.50E-01 1.90E-01 6.00E-02 2.10E-01 

TS3 2.80E-01 2.30E-01 1.40E-01 3.10E-01 

TS4 2.30E-01 1.05E+00 4.50E-01 2.60E-01 

TS5 7.10E-01 6.50E-01 6.10E-01 8.50E-01 

TS6 8.00E-01 9.80E-01 8.50E-01 9.60E-01 

TS7 1.13E+00 9.90E-01 7.80E-01 1.23E+00 

TS8 5.10E-01 4.50E-01 1.20E-01 6.50E-01 

TS9 4.34E+00 4.13E+00 2.41E+00 5.23E+00 

TS10 4.62E+00 4.14E+00 3.98E+00 6.62E+00 

TS11 4.51E+00 4.13E+00 3.41E+00 5.52E+00 

TS12 4.53E+00 3.98E+00 2.12E+00 4.87E+00 

TS13 1.47E+01 1.47E+01 8.12E+00 1.56E+01 

TS14 1.77E+01 1.60E+01 1.30E+01 1.84E+01 

TS15 2.57E+01 2.24E+01 1.90E+01 2.93E+01 

Table 4. Comparison of RT values 

 

 
Figure 3. Computational efficacy of the PSO in dealing with 

TS1 to TS15 

 
Figure 4. Computational efficacy of the proposed PSOYPO 

in dealing with TS1 to TS15 

Regarding the measured indexes, it is seen that the efficiency of 

PSOYPO is superior to PSO and other methods. The reason is 

that it has an enhanced local search potential, which can help it 

in escaping from LO. To further analysis of the performance of 

the PSOYPO, it is compared with a GA-based strategy 

proposed by (Jaramillo et al., 2002) and evolutionary SA (ESA) 

developed by (Aydin and Fogarty, 2004). Note that the results 

of GA and ESA are obtained and reported here based on their 

original works (Sevkli and Guner, 2006). The standard 

deviation (STD) results of different algorithms for normal scale 

(NS) and large scales (LS) problems are compared in Tables 5 

and Table 6, respectively. In addition, the running time of 

different methods is tabulated in Table 7 and Table 8. Note that 

the HS, OBCHS, PSO, and PSOYPO algorithms were tested on 

the same computer. 

 

ID GA ESA HS OBCHS PSO PSOYPO 

TS1 0.00 0.00 0.00 0.00 0.00 0.00 

TS2 0.00 0.00 0.001 0.00 0.001 0.00 

TS3 0.00033 0.00 0.00021 0.0001 0.002 0.00 

TS4 0.00 0.00 0.00 0.00 0.002 0.002 

TS5 0.00020 0.00 0.0001 0.00 0.005 0.003 

TS6 0.00 0.00 0.0001 0.00 0.001 0.00 

TS7 0.00015 0.00 0.0023 0.00 0.052 0.00 

TS8 0.00 0.00 0.00 0.00 0.014 0.01 

TS9 0.00065 0.00008 0.0004 0.00 0.004 0.00 

TS10 0.00 0.00 0.00 0.00 0.005 0.00 

TS11 0.00037 0.00002 0.00075 0.00 0.002 0.00 

TS12 0.00 0.00 0.00 0.00 0.001 0.00 

Table 5. Comparison of STD results for normal scale problems 

 

ID GA ESA HS OBCHS PSO PSOYPO 

TS13 0.00 0.000 0.00 0.00 0.001 0.00 

TS14 0.00172 0.00070 0.001 0.00002 0.001 0.00001 
TS15 0.00131 0.00119 0.00 0.00 0.051 0.00 

Table 6. Comparison of STD results for LS problems 

 

From the results in Table 5, it is noticeable that the results of 

PSOYPO algorithm have a superior accuracy. The STD results 

are lower than other methods in the majority of test cases. It is 

seen that for all problems, except TS4, TS5, and TS8, the 

proposed PSOYPO can show an impressive performance 

according to the STD results and its results have the least 

deviation from the optimum. It's also seen that the accuracy of 

results of the PSO isn't impressive. From Table 6, it is seen that 

the HS, OBCHS, and PSOYPO algorithms can obtain the best 

results in solving TS14 test case (see Figure 5). The overall 

outcomes confirm that the stagnation problems of PSO have 

been alleviated significantly based on the proposed YYPO-

based mechanisms. 

 

 
Figure 5. Comparison of STD results for TS14 
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From Table 8 and Table 9, it is realized that the chaos-

embedded OBCHS can outperform the GA, ESA, HS and 

PSOYPO methods in dealing with TS1 to TS12. However, in 

many applications, the quality of solutions and efficiency of 

algorithms is more important than the running time. The UWL 

is not an exception. Figures 6 and 7 also compare the 

computational speed of different algorithms for NS and LS 

problems, respectively. From these illustrations, it can be 

understood that the proposed PSOYPO can show an acceptable 

performance in dealing with UWL problems. 

 

ID GA ESA HS OBCHS PSOYPO 

TS1 0.287 0.041 0.042 0.014 0.552 

TS2 0.322 0.028 0.210 0.021 1.127 

TS3 0.773 0.031 0.215 0.028 2.451 

TS4 0.200 0.018 0.041 0.014 4.445 

TS5 0.801 0.256 0.704 0.098 5.412 

TS6 0.896 0.098 0.085 0.019 6.102 

TS7 1.371 0.119 1.012 0.064 7.921 

TS8 0.514 0.026 0.201 0.014 8.930 

TS9 6.663 2.506 4.122 0.514 9.754 

TS10 5.274 0.446 0.492 0.197 9.851 

TS11 7.189 0.443 0.785 0.312 10.821 

TS12 2.573 0.079 1.415 0.142 10.711 

Table 7. Comparison of computational performance for normal 

scale problems 

 

 
Figure 6. Comparison of time results for NS problems 

 

ID GA ESA HS OBCHS PSOYPO 

TS13 184.422 17.930 47.412 15.741 19.851 

TS14 510.445 91.937 147.52 84.112 124.874 
TS15 591.516 131.345 110.430 101.922 352.811 

Table 8. Comparison of computational performance for LS 

problems 

 

 

Figure 7. Comparison of time results for LS problems 

 

To validate the efficacy of the PSOYPO, the Wilcoxon rank 

sum test with 0.05 degree is performed to finish the 

experiments. The rank sum test can demonstrate the significant 

improvements in the exploration and exploitation potentials of 

the proposed PSOYPO over other methods. The final results are 

tabulated in Table 9. In this Table, + shows that the 

improvements are significant and p-values are lower than 0.05. 

The negative values show that the PSOYPO cannot statistically 

outperform the second method.  

 

Problem PSOYPO versus 

ID GA ESA HS OBCHS PSO 

TS1 + + + + + 

TS2 + + + + + 

TS3 + + + + + 

TS4 + + + + + 

TS5 - + - + + 

TS6 + + + + + 

TS7 + - + + + 

TS8 + + + - + 

TS9 + + + + + 

TS10 + + + - + 

TS11 + + + - + 

TS12 + + + + + 

Table 9. Results of the statistical tests 

 

From Table 9, it can be seen that the new results are 

significantly better than those of PSO algorithm in all cases. 

However, it is seen that the results are not statistically superior 

to the OBCHS in solving TS08, TS10, and TS11. 

 

7. CONCLUSIONS AND FUTURE DIRECTIONS 

In this paper, a new hierarchical PSO-based algorithm is 

proposed and employed to solve several UWL problems. The 

Yin-Yang-pair optimization (YYPO) was used to enrich the 

optimality of the exploited results. The YYPO is the latest MA 

proposed in 2015 inspiring from the philosophy of balance 

between conflicting concepts. The proposed PSOYPO was 

tested on 15 well-known small and large scale benchmark 

problems. It was observed that the PSOYPO can attain the best 

solutions throughout a reasonable computational time. The 

comparative results of this research vividly show that the 

immature convergence problems of PSO are alleviated, 

significantly. The New PSOYPO not only exploits better 

solutions but also it is capable of outperforming PSO in dealing 

with the UWL tasks.  

 

In addition to utilizing the UWL models and the PSO and 

YYPO algorithms to real-world tasks, proposing more efficient 

and competent metaheuristics seems to be a remarkable research 

direction. Future works in this direction can revolve around the 

addition of more PSO operators to enhance its efficacy. 

Proposing new exploration or exploitation approaches can 

similarly deserve investigation. With adaptation, the PSOYPO 

technique employed in this paper can be extended to other FL 

scenarios, such as the capacitated FL (CFL) and the single 

source CFL problems.  
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