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ABSTRACT 

Landslide is one of the main geomorphic processes which effects on the development of prospect in mountainous areas and causes 

disastrous accidents. Landslide is an event which has different uncertain criteria  such as altitude, slope, aspect, land use, vegetation 

density, precipitation, distance from the river and distance from the road network. This research aims to compare and evaluate different 

fuzzy-based models including Fuzzy Analytic Hierarchy Process (Fuzzy-AHP), Fuzzy Gamma and Fuzzy-OR. The main contribution 

of this paper reveals to the comprehensive criteria causing landslide hazard considering their uncertainties and comparison of different 

fuzzy-based models. The quantify of evaluation process are calculated by Density Ratio (DR) and Quality Sum (QS). The proposed 

methodology implemented in Sari, one of the city of Iran which has faced multiple landslide accidents in recent years due to the 

particular environmental conditions. The achieved results of accuracy assessment based on the quantifier strated that Fuzzy-AHP model 

has higher accuracy compared to other two models in landslide hazard zonation. Accuracy of zoning obtained from Fuzzy-AHP model 

is respectively 0.92 and 0.45 based on method Precision (P) and QS indicators. Based on obtained landslide hazard maps, Fuzzy-AHP, 

Fuzzy Gamma and Fuzzy-OR respectively cover 13, 26 and 35 percent of the study area with a very high risk level. Based on these 

findings, fuzzy-AHP model has been selected as the most appropriate method of zoning landslide in the city of Sari and the Fuzzy-

gamma method with a minor difference is in the second order. 

1. INTRODUCTION

Slope instability is one of the important natural phenomena. 

Increasing trend of urbanization and overuse of natural resources 

has exacerbated this phenomenon (Ercanoglu and Gokceoglu, 

2004). Landslides  are  known  as  one  the  most  common  

geological  disasters   which  cause damages  and  casualties  

worldwide  (Bianchini  et  al.,  2016;  Shahabi  et  al.,  2014; 

Wang  et  al.,  2016). The unplanned urbanization  especially  in  

developing  countries  and  wide  climate  changes  through  

global  warming increase the risk of natural hazards. Landslide 

phenomenon is an important worldwide natural hazard and Iran 

is no exception (Vakhshoori and Zare, 2016).  

Rapid population growth, the expansion of human settlements in 

mountainous areas, difficulty of predicting the time of occurrence 

of landslides and having numerous factors involved in this 

phenomenon reveals the necessity of landslide hazard zonation. 

Landslide is considered one of the most complicated natural 

phenomenon which endanger human generations (Nourani et  al. 

2013).   

Landslides are caused due to many factors such as earthquakes, 

rains and rapid melting of snow (Liu et al., 2011) and are affected 

by factors such as topography, soil and rock type, fractures and 

bedding, humidity levels and  human activities (Florsheim and 

Nichols, 2013; Liu et al., 2011). Having data related to number, 

area and volume of landslides is important for estimation of 

sensitivity (Guzzetti et al., 1999; Malamud et al., 2004), 

determination of risk of landslides (Cardinali et al., 2002; 

Reichenbach et al., 2005) and long term evaluation of slopes due 
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to the effect of mass movements (Korup ,2005; Imaizumi and 

Sidle, 2007; Guzzetti et al., 2008). 

Landslide susceptibility map is a helpful tool for planning and 

decision making in landslide hazard managements (Hong et al. 

2016; Tsangaratos et al., 2015). Sensitive areas with risk potential 

can be identified using landslide hazard zonation and landslides 

or damage caused by those can be prevented to some extent by 

provision of appropriate strategies and management practices. 

Different methods have been provided for landslide hazard 

zonation such as logistic regression (Atkinson and Massari 2011; 

Conoscenti et al. 2014), neuro-fuzzy (Tien Bui et al. 2012; 

Vahidnia et al. 2010), decision trees (Alkhasawneh et al. 2014; 

Tsangaratos and Ilia 2015) and support vector machines (Dou et 

al. 2015;  Hong  et  al.  2015; Peng  et  al. 2014), but none of those 

have the necessary certainty and provided methods in most cases 

can be used for specific areas by consideration of necessary 

reformations.  

In this way, it seems that  fuzzy-based models could model the 

uncertain aspect of landslide hazard mapping. Fuzzy theory was 

presented by Lotfi Zadeh in 1965 includes all theories which use 

basic concepts of fuzzy sets or membership functions. 

 Lotfi Zadeh (1965) stated that membership function must be 

defined for determination of members in one set which means 

membership value exclude the exact zero and one and it is a value 

between these two. Zero means that it has no membership in the 

set and one means that it is fully a member of that set (Zadeh, 

1965). Many studies have been carried out in Iran and around the 

world for landslide hazard zonation using fuzzy logic (Chung and 

Fabbri 2001; Ercanoglu and Gokceoglu, 2004; Lee 2007; 

Pradhan, 2010). 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W4, 2017 
Tehran's Joint ISPRS Conferences of GI Research, SMPR and EOEC 2017, 7–10 October 2017, Tehran, Iran

This contribution has been peer-reviewed.   
https://doi.org/10.5194/isprs-archives-XLII-4-W4-407-2017 | © Authors 2017. CC BY 4.0 License. 407



Thiery et al., (2006) used fuzzy logic to evaluate landslide-prone 

areas in the northern foothills of the Alps in France and 

introduced the use of fuzzy logic due to the high accuracy and 

measurement of outputs with proper definition of fuzzy logic 

operators and combination of sum and  operators for generation 

of landslide map as the best combination. 

(Barrile et al., 2016; Akgun et al., 2012; Pourghasemi et al., 

2012) some studies used fuzzy membership function to prepare 

landslide hazard zonation map and introduced fuzzy Logic due to  

the coordination of data and also for additional flexibility of 

spatial analysis process as very efficient and useful method in 

preparation of landslide hazard mapping. Due to the fact that a 

large part of Iran’s area is mountainous, there are many areas 

susceptible to mass movement occurrences and many researchers 

are trying to provide different methods for identification and 

zoning of these natural hazards (Pourghasemi et al., 2012; 

Ghanavati et al., 2015; Pourghasemi et al., 2016; Vakhshoori and 

Zare, 2016; Aghdam et al., 2017; Gheshlaghi and  Feizizadeh, 

2017).  

Mattkan et al., (2009) used variables such as geology, pedology, 

altitude, slope, aspect, and distance from the river, distance from 

the road, distance from fault, vegetation cover and land use for 

landslide hazard zoning in Lajim River watershed and calculated 

the weight of variables affecting the extraction of fuzzy 

membership functions using the method of relative frequency of 

landslides. Their results show that Fuzzy Gamma and Fuzzy 

Ordered Weighted Averaging models have the lowest variation 

and standard deviation compared to the other models. 

With respect to occurrence of numerous landslides in the city of 

Sari over the past years, The main contribution if this paper 

reveals to the comprehensive criteria causing landslide hazard 

considering their uncertainties and comparison of different 

fuzzy-based models including Fuzzy-AHP, Fuzzy Gamma and 

Fuzzy-OR and preparing a landslide hazard mapping for Sari 

city. 

 

2.  PROPOSED METHOD  

In this study, different fuzzy operators including ‘AND’, 

‘SUM’,‘PRODUCT’ and ‘OR’ considered  and the ‘OR’ operator 

is selected, because  the other operators classify the target area 

into either very high or very low susceptible zones that are 

inconsistent with the physical conditions of the study area. In the 

case of fuzzy gamma, the success and prediction rates increase 

for higher gamma in such a way that 0.975 shows the best result. 

The increasing trend of success and prediction rates of gamma 

operators along with the increasing of  value is due to the 

balanced effect of ‘PRODUCT’ and ‘SUM’ operators on its 

equation (equation 13).  

The overall methodology flowchart of the study is shown in 

figure 1. The methodology consists of three Steps: 
 

Step (1): Providing spatial database including landslide 

conditioning factors and historical land slide locations. 
 

Step (2): Landslide hazard mapping using Fuzzy-AHP, Fuzzy-

Gamma and Fuzzy-OR approaches.  
 

Step (3): Accuracy assessment of the constructed maps using 

DR, QS and method P parameter. 

Selection of landslide effective criteria 

based on literature and experts  comments

Experts  comments

AHP

Final weight 

criteria

Fuzzy-OR Fuzzy-gamma

Ground control 

points for landslide

Selection of the best model

Fuzzy-AHP 

Landslide hazard 

Classified map

 Landslide hazard maps in the Sari city

Validation of landslide hazard mapping by using density 

ratio, quality sum and Precision parameter

 
Figure 1.   Flowchart of proposed methodology in the study area. 

 

2.1 Fuzzy logic and fuzzy-based models 

Fuzzy  logic  has  been  introduced  by  Zadeh  (1965). Fuzzy 

Logic Whereas the classical theory of crisp sets can describe only 

the membership or non-membership of an item to a set, fuzzy 

logic permits partial membership, which can pose a value from 0 

to 1: 

𝜇𝐴(x) : X → [0, 1]                                  (1) 

 

in which X refers to the universal set defined in a specific 

problem and μA(x) the grade of membership for element x in 

fuzzy set A. The crisp set is a special case of fuzzy sets, in which 

the membership function for each element takes one of only two 

values: 0 or 1 )Zadeh, 1965; Samany et al., 2014). To build a 

fuzzy logic- based model, the proper types of membership 

function and its parameters should be carefully selected. The 

process of decomposing a given system input and/or output into 

fuzzy sets is called fuzzification (Samany et al., 2014). In this 

study, the “linear” fuzzification algorithms were used. In this 

study, the fuzzy logic was used for standardized factors in the 

range of 0–1.  
 

2.2 Analytic hierarchy process (AHP) 

AHP is one of the most comprehensive methods of multi-criteria 

decision-making methods (Saaty, 1980) because it provides the 

capability of formulation of natural complex problems in 

hierarchy form and it can also consider different qualitative and 

quantitative criteria (Saaty, 1986). The greatest weight in AHP is 

related to a layer which has the greatest effect in determination 

of the objective. In other words, the criteria for weighting each 

information unit is also based on the greatest effect played by that 

factor in the layer (Malczwerski, 1999). Based on researches 

carried out by Saaty and Vargas (1991), a range was suggested 

for comparison of criteria which includes numerical values from 

1 to 9. Each of these numbers show the degree of importance in 

a way that 1 shows the equal importance and 9 shows the 

extremely strong importance of a criteria compared to another 
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criteria. The AHP for weighting of criteria consists of four steps 

(Cay and Uyan, 2013): 
 

1. Creation of hierarchical structure: this step is the most 

important step in analytic hierarchy process. Hierarchical 

structure is a graphical representation of a real complex 

problem on top of which there is the overall objective of 

problem and criteria, sub-criteria and alternatives are in next 

levels. 
 

2. Pair-wise comparisons: this model is based on pair-wise 

weighting model of each one of variables with each other. 

A pair-wise comparison matrix (n×n) is formed for 

indicators at this step. i-th row is compared with j-th column 

in pairwise comparison matrix. Hence, the values in main 

diagonal are equal to one and each value under the main 

diagonal is opposite of the value above the main diagonal 
 

3. Preparation of normalized matrix and calculation of weight 

vector: in this step, the values of each one of comparison 

matrix columns are initially and pair wisely added to each 

other and them the value of each element in pairwise  
 

4. comparison matrix is divided by the sum of values in its own 

column. 

Then, the average of elements in each row of normalized matrix 

is calculated as a result of which weight vector of parameters is 

created. 

5. Calculation of compatibility or incompatibility of weight of 

values: pairwise comparison matrix (A) should be initially 

multiplied by weight vector (C) for calculation of 

compatibility rate in order to obtain a good approximation 

of λmax: 

𝐴 × 𝐶 =

(

  
 

𝑎11

𝑎21

…
…
…

𝑎𝑛1
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…
…
…
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𝑐1

𝑐2

𝑐3

…
…
𝑐𝑛]

 
 
 
 
 

=

[
 
 
 
 
 
𝑥1

𝑥2

𝑥3

…
…
𝑥𝑛]

 
 
 
 
 

 (2) 

Then, Consistency Index (CI) will be initially calculated as 

follows for measurement of compatibility rate (CR): 

𝐶𝐼 =
𝜆𝑚𝑎𝑥 − 𝑛

𝑛 − 1
 (3) 

In this equation, n is the number of criterion or dimensions of A 

matrix and 𝝀max is the biggest eigenvalue of A matrix. Then, 

compatibility rate is determined as follows: 

𝐶𝑅 =
𝐶𝐼

𝑅𝐼
 (4) 

System’s compatibility is acceptable if inconsistency rate is less 

than or equal to 0.1 and it would be better for decision maker to 

review the decision if it is greater than 0.1 (Khan and Samadder, 

2015).  
 

2.3 Fuzzy AHP 

Being one of the multicriteria decision making methods, AHP 

enables the decision maker to regard a certain hierarchy, make 

association between options and make a choice. AHP has an 

approach that makes paired comparison of objective and 

nonobjective criteria, identifies the priorities among the criteria 

and consists of the significance of the criteria (Can and Arıkan, 

2014). AHP was developed by L. T. Saaty for the first time in 

1971 and it has been widely studied in literature (Saaty, 1980). 

Saaty has proposed the significance scale in which numbers from 

1 to 9 are used while the decision maker makes paired 

comparison in the application process. However, most of the 

decisions in real life have uncertain results. In such cases, fuzzy 

AHP is used instead of AHP.  While applying fuzzy AHP, the 

steps below proposed by Chang should be followed (Chang, 

1996):  

Step 1: X = {x1, x2, … , xn} being criteria set and U = {u1, u2, …, 

un} being targets set, degree analysis (gi) is applied for every 

target by regarding every criterion. M degree analysis value 

related to the targets is expressed in triangular fuzzy numbers 

Mgi
1 , Mgi

2 , Mgi
3  as, i = 1,2,…,n and j = 1, 2,…,m. So, Mgi

j
 shows 

triangular fuzzy number related to j target according to i criteria. 

For example, Mg1
2  is triangular fuzzy number related to target-2 

according to criteria-1. 

Step 2: Fuzzy synthetic degree value related to i criterion is 

stated as; 

𝑆𝑖 = ∑𝑀𝑔𝑖
𝑗

𝑚

𝑗=1

   [∑∑𝑀𝑔𝑖
𝑗

𝑚

𝑗=1

𝑛

𝑖=1

]

−1

                       (5) 

Here, equalities are attained as triangular fuzzy number (li, 

mi, ui):  

∑𝑀𝑔𝑖
𝑗

𝑚

𝑗=1

= (∑𝑙𝑗 ,

𝑚

𝑗=1

 ∑𝑚𝑗 ,

𝑚

𝑗=1

 ∑𝑢𝑗

𝑚

𝑗=1

)                     (6) 

[∑∑𝑀𝑔𝑖
𝑗

𝑚

𝑗=1

𝑛

𝑖=1

]

−1

=  (
1

∑ 𝑢𝑗
𝑚
𝑗=1

,
1

∑ 𝑚𝑗
𝑚
𝑗=1

,
1

∑ 𝑙𝑗
𝑚
𝑗=1

 )             (7) 

Step  3:  Significance  vector  is  calculated  indicated  as:  W = 

(d(A1 ), d(A2), . . . ,d(An )) T. W vector is attained by 

normalizing W′ vector. i = 1,2,…,n, is described as: 

𝑊′= (𝑑′ (𝐴1 ), 𝑑′ (𝐴2), . . . ,𝑑′(𝐴𝑛 )) 𝑇                  (8) 

𝑑′(𝐴𝑖) = min V (𝑆𝑖 ≥ 𝑆𝑘), k = 1, 2, . . . , n and k ≠ i          (9) 

For  the  triangular  fuzzy  numbers  M1= (l1, m1, u1) and  M2= 

(l2, m2, u2), the numbers M1 and M2 should be compared 

calculating both, V(M1 ≥ M2) and V(M2 ≥ M1) values. That is 

why, d′(Ai) values are calculated according to the equality in 

number (9) by using the equality in number (10) in order to 

indicate the likelihood M2 ≥ M1 of  V(M2  ≥  M1) statement. 

𝑉(𝑀2  ≥  𝑀1) = {

1,                                   𝑚2  ≥  𝑚1  
0,                                   𝑙1  ≥  𝑢2     

(𝑙1− 𝑢1)

(𝑚2− 𝑢2)− (𝑚1− 𝑙1)
         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

          (10) 

Elements of W vector are calculated as: 

𝑑(𝐴𝑖) =  
𝑑′(𝐴𝑖)

[𝑑′(𝐴1) + 𝑑′(𝐴2) + ⋯+ 𝑑′(𝐴𝑛)]⁄       (11) 

i = 1, 2, … , n     

Here, W′ vector and W vector is found. The ultimate decision is 

reached suitably for the hierarchical structure of the AHP 

approach known with W significance vector which is not fuzzy 

and calculated from the comparison matrix attained by the 

triangular fuzzy numbers.  
 

2.4 Fuzzy-OR 

This operator uses the maximum function in combination and is 

equal to aggregation and it is calculated as (Chung and Fabbri, 

2001): 

𝜇𝑂𝑅(𝑥) = 𝑀𝐴𝑋 [μ𝐴(𝑥), μ𝐵(𝑥), … , μ𝑁(𝑥)]                  (12) 

This operator extracts the maximum degree of membership for 

members which means it extracts the maximum value (weight) 
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of each pixel in all informational layers and provides the final 

map and that is why this operator considers almost the entire area 

in landslide hazard zonation in extreme risk class. 
 

2.5 Fuzzy- 
 

This operator is defined based on multiplication of algebraic 

fuzzy sum and multiplication and it is calculated as (Chung and 

Fabbri, 2001): 

𝜇(𝑥) =  [𝜇𝑆𝑈𝑀(𝑥)]  ×  [𝜇𝑃𝑅𝑂𝐷𝑈𝐶𝑇(𝑥)]1−𝛾             (13) 

𝜇𝑆𝑈𝑀(𝑥) = 1 − ∏𝜇𝑖(𝑥)

𝑛

𝑖=1

    ,    𝜇𝑃𝑅𝑂𝐷𝑈𝐶𝑇(𝑥) = ∏𝜇𝑖(𝑥)

𝑛

𝑖=1

  

In this equation, μ(x) is a result of fuzzy gamma and  is the 

parameters determined in the range of zero and one. When  is 

equal to one, the applied combination is the same fuzzy algebraic 

sum and when  is equal to zero, combination is equal to fuzzy 

algebraic multiplication.  varies between zero and one. Fuzzy 

gamma function of 0.975 has been used in this research. 

2.6 The effective criteria 

The main data layers required for landslide hazard assessment in 

the study area are shown in Table 1. 

Table 1.  Main data layers 

Criteria Description of Criteria 

Slope 

 

Slope is one of the main factors causing landslides 

in different areas. The function is straight and 

linear for fuzzification of slope layer since 

increases level of slope increases the risk of 

landslides. 

Altitude 

Altitude has been introduced as one of the factors 

affecting landslide hazard because it has an 

important role in controlling of the degree and 

type of erosion. The type of function for its 

fuzzification is straight and linear since the 

increased level of height increases the landslide 

hazard. 

Land use 

Land uses including forest, agricultural use 

(rainfed), irrigated agriculture and gardens, built 

areas, bare land and water-filled areas have been 

identified in the study area based on carried out 

evaluations. The type of function for fuzzification 

of land use layer is reversed and linear. 

Vegetation 

cover 

 

The type of function for fuzzification of it is 

reversed and linear since there is a greater risk of 

falling in areas with poor vegetation cover which 

also have high level of slope. 

Rainfall 

 

Rainfall has a direct relation with landslide hazard 

and increased rainfall increases the risk of 

landslide by reduction of shear strength of 

different levels. Direct linear function has been 

used for fuzzification of rainfall map. 

Distance 

from the 

road 

Construction of roads has the most important role 

among human activities in creation of new 

landslides and stimulation of old landslides. Non-

normative also is among the causes of landslides 

in addition to road density. 

Distance 

from the 

river 

The type of function for fuzzification of it is 

reversed and linear since increased distance from 

the river reduces the risk of landslide and as a 

result, the score will be less. 

Aspect  

Aspect has been introduced as one of the factors 

affecting landslide hazard. The function is straight 

and linear for fuzzification of aspect layer. 

2.7 Assessing the accuracy of zoning 

In this level, we match the distribution map of landslides in the 

area and risk zoning maps to evaluate and compare landslide 

hazard zonation methods using QS and P methods. DR is used 

for evaluation and comparison of accuracy between zones or 

levels of risk (Yalcin, 2008). 

 

2.7.1 Validation or Quality Sum (QS) 

DR is required to be initially calculated for determination of QS 

which is calculated as following (Gee, 1992): 

𝐷𝑅 = (
𝑆𝑖

𝐴𝑖
)/(∑𝑆𝑖/∑𝐴𝑖

𝑛

𝑖

𝑛

𝑖

) (14)    

 

In which Si is the total area of landslides in each risk level, Ai is 

i-th level of risk in a zoning map and n is the number of risk 

levels. 

Density of landslides risk is ascending from low levels to high 

levels of risk in hazard maps which have been prepared properly. 

A method (map) of zoning in landslides density level with DR= 

1 is equal to average density of landslides in the whole area and 

level with DR of 2 has landslide density two times larger than 

landslide density of the area. 

Thus, better distinction between risk levels using the indicator of 

DR leads to having risk better accuracy or favorability. QS which 

is calculated as following shows the validity or favorability of the 

performance of method for predicting the risk of landslide. 

 

𝑄𝑆 = ∑ ((𝐷𝑅 − 1)2 × 𝑠)
𝑛

𝑖=1
 (15) 

 

In which QS is quality sum, DR is density ration, S is the ratio of  

risk area to the total area and n is the number of risk classes. 

Closeness of deviation of DR values from the average of different 

zones shows that density of landslides n different classes is close 

to each other and the level of QS is low and high deviation of DR 

values from the average of different zones shows that density of 

landslides are different and as a result, the numerical value of QS 

will be large. Thus in evaluation of methods, higher value of QS 

in a method will lead to greater accuracy (favorability) in 

differentiation. 

 

2.7.2 Precision of method (P) 

It means the ration of area of landslide area in high and very high 

risk zones to total area of those zones which is calculated as 

following (Jade and Sarkar, 1993): 

 

𝑃 = 𝐾𝑠/𝑆   (16) 
 

In which P is the Precision of method in zones with moderate to 

high risk, Ks is the area of the landslide in zones with moderate 

to high risk and S is the total area of the landslide region. 

 

3.  CASE STUDY AREA AND REQUIRED DATA 

3.1 Case study  

City of Sari in located in Mazandaran province of Iran. In 

longitude of 672590 to 764824 east and latitude of 3981925 to 

4077768 north in 39th north zone of UTM (Universal Transverse 

Mercator). The study area has a particular diversity in terms of  

climate and simultaneously has four Mediterranean semi-humid, 
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wet and very wet climates. This area also has high topography 

changes due to being simultaneously located in mountainous and  

lowland environmental conditions. The study area has been 

shown in figure 2. 
 

  

 

Figure 2. Location of the study area and distribution of landslide data events. 

3.2 Required data 

Initially, distribution data of landslide incidents related to the 

study area have been prepared from Forest, Rangeland and 

Watershed organization. Then, these layers were converted into 

landslide zones using high spatial resolution satellite imagery as 

well as Google Earth and 1: 100,000 geological map of Sari. This 

means pointed layer was converted into surface or zoning layer 

of landslides by determination of distribution of pointed position 

of landslides on mentioned information sources of area based on 

this position and the area of occurred landslide as well as its 

apparent features (cutting area, level of fallen mass, level of 

dependency to surface displacement of soil) is the dependent 

variable in the implementation of zoning models as the most 

important layer used in the present study. Altitude, slope and 

slope aspect of area were extracted from Aster digital elevation 

model (DEM). normalized difference vegetation index (NDVI) 

density of vegetation indicator and Landsat 8 satellite image 

related to 2015 have been used for preparation of vegetation 

cover variable. 1:250000 land use map prepared by land use map 

prepared by Forest Service organization has been used for 

preparation of land use layer. Shapefile map of isolited lines 

prepared by Meteorological Agency, Shapefile map of road 

networks prepared by Roads and Urban Development, Shapefile 

map of streams network prepared by Regional Water Authority 

have been used respectively for preparation of rainfall, road and 

waterway layers. 

4.  IMPLEMENTATION AND RESULTS 

Zoning and risk mapping in this research are based on fuzzy 

logic. Algorithms of fuzzy functions discussed in this research 

are linear. The fuzzy membership function tool in ArcGIS 10.4.1 

was used to derive membership functions for factors used to 

derive spatial suitability levels. Maps of various factors have 

been initially converted to fuzzy maps for landslide hazard 

zonation using fuzzy linear membership functions. Usage and 

application of each one of these two functions are done based on 

two parameters of midpoint and distribution parameter. 

Selection of function for fuzzification is based on the nature, 

importance and relation of each criterion with the selected 

objective. Since the usage of fuzzy logic model in landslide 

zoning is based on the analysis of raster (grid), each pixel in each 

criterion must take a membership value from zero to one based 

on the ideal function. Fuzzy maps of criteria effective in 

landslides have been shown in figure 3. 
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Figure 3. Landslide contributing-factor layers produced for the study area: (a) slope, (b) slope aspect, (c) land use, (d) distance to 

roads, (e) elevation, (f) NDVI, (g) distance to river, (h) rainfall 

 

After defining membership functions and fuzzification of 

effective criteria, landslide hazard zonation maps have been 

overlapped using Fuzzy-AHP model and OR operators and 

gamma of 0.975 by overlaying the layers of effective classes on 

each other in landslide with Fuzzy Overlay command. 

Weights of criteria in Fuzzy-AHP model have been calculated 

and the results are shown in form of figure 4. In the end, the 

landslide hazard map of Sari was prepared using each one of 

these operators and  the results of have been shown in form of 

figure 5. The area of different classes of risk for Fuzzy-AHP 

models, gamma of 0.975 and OR operator have  been calculated 

and their results have been shown in form of figure 6. 

 

 
 

Figure 4. Weight of criteria used in Fuzzy-AHP model for preparation of landslide hazard mapping using AHP method 
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Figure 5. Landslide hazard zonation map using a) Fuzzy-AHP model b) Gamma operator of 0.975 C) OR operator 

 

 
 

Figure 6. The area of different classes of risk for Fuzzy-AHP models, gamma of 0.975 and OR operator 

Validation and accuracy of landslide hazard zonation models for 

Fuzzy-AHP models, gamma of 0.975 and OR operator have been 

evaluated using DR, QS and method P parameter quantified and 

the results have been depicted as tables 2 to 4.

 

Table 2. Validation and accuracy of landslide hazard zonation using Fuzzy-AHP model 

Danger of 

slide category 

Area of zone 

(Pixel) 

Area of slide 

(Pixel) 

 Density 

Ratio (DR) 

Percentage 

of area  (S) 

QS in each 

category 

Quality 

Sum (QS) 

Precision of 

method (P) 

Very Low 177547 0 0 0.04 0.04 

0.45 0.92 

Low 870698 543 0.34 0.22 0.09 

Moderate 1281871 1371 0.59 0.31 0.05 

High 1216427 3288 1.5 0.3 0.075 

Very High 497443 2083 2.23 0.13 0.2 

Sum 4043986 7285    

 

Table 3. Validation and accuracy of landslide hazard zonation using gamma operator of 0.975 

Danger of 

slide category 

Area of zone 

(Pixel) 

Area of slide 

(Pixel) 

Density 

Ratio (DR) 

Percentage 

of area  (S) 

QS in each 

category 

Quality 

Sum (QS) 

Precision of 

method (P) 

Very Low 1243676 1041 0.46 0.4 0.11 

0.21 0.78 

Low 204802 549 1.48 0.05 0.01 

Moderate 435605 1177 1.5 0.2 0.05 

High 1099928 2761 1.4 0.27 0.04 

Very High 1059975 1757 0.92 0.26 0.001 

Sum 4043986 7285    
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Table 4. Validation and accuracy of landslide hazard zonation using OR operator 

Danger of 

Slide category 

Area of zone 

(Pixel) 

Area of slide 

(Pixel) 

 Density 

Ratio (DR) 

Percentage 

of area  (S) 

QS in each 

category 

Quality 

Sum (QS) 

Precision of 

method (P) 

Very Low 106058 9 0.04 0.02 0.018 

0.11 0.88 

Low 316955 799 1.4 0.08 0.012 

Moderate 905473 1447 0.89 0.23 0.002 

High 1271074 1457 0.63 0.32 0.04 

Very High  1444426 3573 1.37 0.35 0.04 

Sum 4043986 7285    

5.  DISSCUSION 

Hazard zonation map using Fuzzy-AHP model shows that the 

number of pixels in very high risk classes in terms of landslides 

in the study area is 497443 which is equal to 13% of total area. 

Landslides with high risk levels have high risk which is 30% of 

the area. Each class has the moderate risk of 1281871 pixels 

which is 31% of area. Sliding pixels of classes with low risk and 

very low risk are respectively 870698 and 177547 pixels which 

are equal to 22% and 4% of the area (Table 2). The number of 

sliding pixels of classes with very high risk, high risk, moderate 

risk, low risk and very low risk are respectively 1059975, 

1099928, 435605, 204802 and 124,676 pixels in 1059975, 

1099928, 435605, 204802 and 1243676 with gamma of 0.975 

(Table 3). And finally, the number of same pixels for zoning map 

with the OR operator, are respectively, 1444426, 1271074, 

905473, 316955 and 106058 pixels (Table 4). 

The results of indicators of QS and method P show that DR of all 

three used methods are proportionate to increased risk of growing 

zones in addition to good resolution. Level of QS index which 

shows comparison and evaluation of methods in comparison with 

each other has been obtained to be respectively 0.45, 0.21 and 

0.11 for  Fuzzy- AHP, gamma of 0.975 and OR. The values of 

method’s P are also respectively 0.92, 0.78 and 0.88 for three 

used operators. 

 

6.  CONCLUSION 

Various methods and many causative factors can be used for 

landslide hazard mapping production depending on the scale and 

scope of the study. Comparison of the results of different 

methods in the same conditions is helpful for assessment of the 

relative reliability of them, although the reliability of methods is 

often dissimilar in different conditions. 

In this study, Fuzzy-AHP, Fuzzy Gamma and Fuzzy-OR 

methods were compared at a regional scale, on the city of sari, in 

the north of Iran considering 8 causative factors. Occurrence of 

landslides and damages caused by those have become wider and 

more extensive due to increasing continuation of human changes 

in nature and use of mountainous areas prone to landslides. Sari 

has always faced many landslides due to landslides and land use 

changes. In this research, the validation and accuracy of different 

landslide hazard zonation have been evaluated and landslide 

hazard zoning has taken place using landslide distribution map 

and different algorithms. The results show that using fuzzy-based 

model is very effective and convenient in reducing and increasing 

the accuracy of landslide zoning. Also it was determined that the 

map of fuzzy-AHP model, OR operator and gamma of 0.975 has 

a high accuracy in landslide hazard zonation. Even though almost 

the same values were obtained for methods based on method’s P 

which shows the almost the same and there is no limit for 

intervention of parameters.  

Differences in validation and accuracy expresses the priority of 

method can be caused by things like this: inherent nature of 

parameters or affecting factors are different in various models 

and a method which is capable of comparing the priority of 

effective factors and their weights have greater accuracy and in 

other words, it will have better compliance with the potential of 

occurrence of landslides. Hazard zonation map with fuzzy-AHP 

model shows that the number of pixels in very high risk classes 

in terms of landslides in the study area is 497443 which is equal 

to 13% of total area. QS values have been obtained to be 

respectively 0.45, 0.21 and 0.11 for fuzzy- AHP, gamma of 0.975 

and OR. Values of P are also respectively 0.92, 0.78 and 0.88 for 

three used operators. Based on these findings, fuzzy-AHP model 

has been selected as the most appropriate method of zoning 

landslide in the city of Sari and the Fuzzy-gamma method with a 

minor difference is in the second order. 

Nevertheless, in this study landslide hazard mapping produced in 

a regional scale (small-scale map), and further studies are needed 

in the landslide hazard mapping production for the slope stability 

and land use management projects in the larger-scales. Also, 

more studies for comparing the reliability of other methods in 

small-scale might be helpful. 
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