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ABSTRACT 

Air pollution as one of the most serious forms of environmental pollutions poses huge threat to human life. Air pollution leads to 

environmental instability, and has harmful and undesirable effects on the environment. Modern prediction methods of the pollutant 

concentration are able to improve decision making and provide appropriate solutions. This study examines the performance of the 

Random Forest feature selection in combination with multiple-linear regression and Multilayer Perceptron Artificial Neural Networks 

methods, in order to achieve an efficient model to estimate carbon monoxide and nitrogen dioxide, sulfur dioxide and PM2.5 contents 

in the air. The results indicated that Artificial Neural Networks fed by the attributes selected by Random Forest feature selection method 

performed more accurate than other models for the modeling of all pollutants. The estimation accuracy of sulfur dioxide emissions was 

lower than the other air contaminants whereas the nitrogen dioxide was predicted more accurate than the other pollutants.  

1- INTRODUCTION

Air quality is considered as an important factor determining 

quality of life and public health in urban areas, especially in 

densely populated areas. Air pollution possesses the most serious 

threat to human health as far as the environmental problems are 

concerned. Air pollution leads to environmental instability, and 

has harmful and undesirable effects on the environment (Akbari 

et al, 2015&Valverde et al, 2015). Urbanization, population 

growth, industrial expansion, increased consumption of fossil 

fuels along with the low quality of fuels, lack of efficient 

transport systems, and traffic congestion have led to a daily 

discharge of large amounts of pollutants, which are  incompatible 

with the natural mechanisms, into the air (Antanasijević et al, 

2013). Monitoring and evaluation of various emissions and their 

sources, the implementation of standards and practical strategies 

of pollution reduction are necessary to solve this problem. In this 

regard, the use of modern methods to predict the concentration of 

pollutants can improve decision making and provide appropriate 

solutions. During last decades, several studies have been 

conducted to predict spatial-temporal concentration of pollutants 

in the air. Perez and Trier (2001) showed that Artificial Neural 

Network (ANN) model performed better than multiple-linear 

regression model for prediction of the nitrogen monoxide (NO) 

and nitrogen dioxide (NO2) concentration (Perez et al, 2011). 

These results were confirmed by Grivas and Chaloulakou (2006) 

where PM10 was predicted using multi-layer perceptron (MLP) 

ANN  fed by all data as input at all stations with  the index of 

agreement between 0.8-0.89 (Grivas  et al, 2006). Antanasijević 
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et al (2013) used ANN model fed by the attributes selected 

through genetic algorithm for PM10 prediction. The predicted 

mean absolute error was 10 percent which was three times better 

than that derived from multiple-linear regression and principal 

component regression (Antanasijević et al, 2013). According to 

the studies mentioned, in recent years, statistical models 

especially ANN have been commonly applied for predicting air 

quality. As far as air pollution prediction is concerned, selecting 

effective input variables called feature selection is necessary for 

modelling, as measurements are achieved from various pollution 

sources which are often complex and show a nonlinear 

relationship(Jiang  et al, 2004). The feature selection methods are 

able to reduce the complexity of the input attributes. Therefore, 

this study examines the performance of the Random Forest 

feature selection (RFFS) method in combination with multiple-

linear regression (MLR) and artificial neural network MLP 

(called MLP hereafter), to achieve efficient models for prediction 

of the emissions. This study aims to:  

• Develop optimized ANN models for prediction of

carbon monoxide (CO), nitrogen dioxide (NO2), sulfur

dioxide (SO2), and particulate matter 2.5 (PM2.5)

concentrations at 5 pollutant detection stations in

Tehran.

• Identify the effective attributes for air pollution

modeling using RFFS method.
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• Compare the performance of the developed neural

network model as a non-linear approach with multiple-

linear regression model as a linear method.

2- DATA AND METHODOLOGY

2-1 THE USED DATA 

The concentration of four pollutants, CO, NO2, SO2 and PM2.5 

measured in 2012 by five stations, Shaheed Beheshti, Chesmeh, 

Elm o sanat, park razi and pasdaran, distributed around Tehran 

were derived from Department of Environment, Islamic republic 

of Iran. Air pollution in an urban area has a complicated spatial 

pattern and pollution levels dramatically differ in small distances 

and at different times (Chaloulakou et al, 2003&Lee et al, 2011). 

Therefore, to achieve an efficient prediction model, it is 

necessary to take into account the potential factors affecting the 

pollutant concentration in the air as much as possible. In this 

study, the main factors responsible for the concentration of 

pollutants were organized in four categories including traffic 

index, concentration of pollutants during the previous days, 

meteorological and spatial factors. Meteorological attributes 

including temperature, relative humidity, wind speed, wind 

direction, cloud cover and surface pressure, as daily average, 

were collected from https://www.ecmwf.int/. Wind speed and 

direction were merged through the following equation (Siwek et 

al, 2012). 

𝑊𝑥 = |𝑊| ∗ cos 𝜑 

 𝑊𝑦 =  |𝑊| ∗ sin 𝜑   (1) 

In equation 1, W represents the wind speed and φ is wind 

direction indicator. In order to improve the performance of 

models, month related parameter indicating the changes in 

emissions due to changes in atmospheric conditions during the 

year was calculated using Equation 2 (Arhami et al, 2013). 

𝑀𝑂𝑌 = cos (
2𝜋𝑚

12
)  (2) 

In Equation 2, m represents the respective month. To calculate 

the traffic index defined in this study, buffers centered by each 

station and their radiuses incrementally increased   by 100 m 

intervals up to 1 km were drawn. It is obvious that the 

concentration of pollutants varies with distance from the road. To 

calculate traffic index for each buffer, the distance between each 

station and each street within the buffer was calculated and 

multiplied by the width of the street and then the weighted 

average was calculated for each buffer. Spatial factors used in 

this study contains the coordinates of the stations and the 

vegetation density index defined in this study. To calculate the 

vegetation density index, within a radius of 1 km buffers centered 

by each stations were drawn at intervals of 100 m within a radius 

of 1 km distance from the station. For each buffer, normalized 

difference vegetation index (NDVI) was calculated using 

Landsat-7 image and average NDVI for each buffer was 

calculated as vegetation density index.  

2-2-MODELING 

Air pollution modeling methods are divided into two groups, 

linear and nonlinear methods (Azid et al, 2014&Siwek et al, 

2012&Cai et al, 2009&Lu et al, 2004). In the recent years, 

different approaches including Multi-layer perceptron (Gardner 

et al (1999)), neural network model radial basis functions (Wang 

et al (2003)), the multiple-linear regression (Cassmassi (1998); 

Kardlynv (2001)), and support vector machine (Osowski et al. 

(2007)) were used for air pollution prediction. Accordingly, in 

this study, multiple-linear regression as a linear method and 

MLP, as a non-linear method are compared to indicate which 

method performs more efficient to predict the maximum 

concentration of pollutants in the air. MLP consists of a network 

of simple elements and relations. The number of input and output 

neurons of the artificial neural network is determined by the 

nature of the problem. The performance of the MLP depends on 

its architecture and parameters which are derived from training, 

and its activation functions (Grivas et al, 2006). In this study a 

three layer MLP comprising of input, hidden and output layers 

was used. 

The attributes introduced in section 2.1 as along with maximum 

and mean concentrations of each air pollutant measured for 4 

days before were used as the input attributes of the models for 

prediction of maximum concentration of pollutants for each day. 

In this study, the data set includes 1780 samples derived from the 

average of the hourly pollutant concentration measured for each 

day at each station in Tehran. The data set was randomly grouped 

into three sets including 70 percent for train, 15 percent for the 

test and 15 percent for the validation which are used for 

optimizing the MLP parameters and RFFS.  

In addition to use all attributes, RFFS was used for the feature 

selection in order to select the appropriate attributes before 

performing modeling techniques. The RFFS is executed as 

follows:  

1. Random Forest is fitted for an air pollutant using all

independent attributes; the validation dataset is used to calculate

the mean square error for the fitted model.

2. The absolute values of residual values of the predicted and

measured pollutant are calculated.

3. The variable importance (VIF) of each independent attribute is

calculated by permutation of the attributes.

4. Removal of 20% of the less important attributes.

5. Repeat steps 1 to 4, without repeating step 3.

The suitable number of trees should be preset prior to use of 

random forest, for this purpose, the number of iterations was set 

to 10,50,100 and 200 and the validation dataset was used to 

determine the appropriate number of iteration. Then RFFS was 

run on validation dataset to determine the suitable input attributes 

(Shamsoddini et al, 2013). To optimize MLP parameters 

including learning rate, momentum, number of iteration, 

minimum error and number of hidden layer neurons, the MLP 

was run several times and appropriate values were found for each 

pollutant. 

Multicollinearity and overfitting can reduce the efficiency of the 

models derived by MLR. For this reason, tolerance, p-value and 

the condition index were calculated for each model derived from 

MLR to check these problems. Then, the models with conditional 

index greater than 30, the tolerance less than 0.1 or p-value 

greater than 0.05 were removed. Root mean square error 

(RMSE), the standard error of estimation (SSE), the coefficient 

of determination (R2) and the percentage of error were calculated 

for evaluation of the model performance. The estimation error 

was obtained from the standard error of estimation divided by the 
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mean value of each pollutant multiplied by 100. Paired samples 

t-tests were used for statistically comparing the performance of 

different models. These tests were applied on the absolute values 

of the residuals derived from subtracting measured pollutant 

values from predicted pollutant values.  

3. RESULTS AND DISCUSSION 

As mentioned, MLR was applied as a linear method compared to 

MLP as a nonlinear one. Random forest method which is a 

nonlinear method was not used in this paper since RFFS was used 

for feature selection and it could be biased if the random forest 

was applied on the attributes selected by RFFS for modelling; 

although, it is believed that the results of RFFS should not have 

bias towards random forest. After, applying MLR and MLP on 

the training data and developing the appropriate models based on 

the optimized MLP and conditions mentioned for MLR, the 

developed models were applied on the test data. Table 1 shows 

the results of air pollutant predictions derived from applying 

MLR and MLP with and without RFFS on the test data. The 

scatterplots of the forecasts vs. the observed pollutants values are 

illustrated in Figure 1. As Figure 1 indicates the predictions 

values almost coincide with the observed concentrations of the 

air pollutants, especially in the cases of NO2 and SO2. The best 

models derived from MLR, are shown as equations 6 to 9 for 

predicting CO, NO2, SO2 and PM2.5, respectively. 

ZCO = 0.44(a1) + 0.1(a2) − 14.73(a3) − 0.47(a4) − 0.01(a5) −

0.64(a6) + 3.62                       (6) 

ZNO2
= 0.37(β1) + 0.22(β2) − 9(β3) − 0.38(β4) − 85.4(β5) −

0.1(β6)                                      (7) 

ZSO2
= 0.40(γ1) + 0.12(γ2) + 0.57(γ3) + 0.36(γ4) − 6.61(γ5) +

1.88(γ6) − 10.13                     (8) 

ZPM2.5
= 0.34(θ1) + 0.26(θ2) + 0.41(θ3) − 0.29(θ4) − 0.07(θ5) −

0.03(θ6) − 0.08(θ6) + 30.77     (9) 

Effective parameters for estimating CO according to equation (6) 

are shown with coefficients ai, in which a1 and a2 respectively 

represent the maximum concentrations of CO one and four days 

before the day for which the prediction is conducted, a3 shows 

the vegetation density index at a distance of 1,000 meters from 

the station, a4 represents the month index of the year, a5  

represents the traffic indicators about 700 meters from the station 

and the average cloud cover is shown by a6. According to 

Equation 7, the prediction of NO2, is based on the variables 
denoted by β. β1 and β2, coefficients represent the maximum and 

mean NO2 concentrations at one and three days prior to the day 

for which the prediction is conducted. β3 represents the average 

cloud cover and β4 is the mean NO2 concentration in a day before 

the day for which the prediction is conducted . Variables β5 and 

β6 also represent the vegetation maximum NO2 concentrations in 

the four days before the day for which the prediction is 

conducted, respectively.  In Equation 8 developed for the 

prediction of SO2, γ1 and γ2 and γ3 represent the maximum SO2 

concentration at one and four days before the day for which the 

prediction is conducted and the mean SO2 concentrations of a day 

before the day for which the prediction is conducted. γ 4 indicates 

traffic index for a buffer with 1000 m radius and γ5 represents the 

mean total cloud cover in the region. Finally, γ6 stands for 

average wind blowing in the direction Y. According to equation 

9 derived for PM2.5 prediction, θ1 and θ2 represent the maximum 

PM2.5 concentrations of pollutant one and three days prior to the 

day for which the prediction is conducted, θ3 and θ4 respectively 

represent the mean PM2.5 concentration in one and three days 

prior to the day for which the prediction is conducted, θ5 and θ6 

show the traffic index within the buffers with radiuses of 100 

m and 1000 m and the average indoor temperature is shown by 

θ7. As mentioned, RFFS was applied on the attributes to 

prediction of each air pollutant and the results are given in Table 

2. According to Table 2 the most important variable for 

prediction of the CO concentration is the maximum CO 

concentration in a day prior to the day for which the prediction is 

conducted. After this variable, mean CO concentration a day 

before the day for which the prediction is conducted and 

maximum CO concentration in two days prior to the day for 

which the prediction is conducted are the second and third 

important variables. Index of months of the year also plays an 

important role in prediction of CO. According to the results 

presented in Table 2, maximum and mean NO2 concentrations in 

a day prior to the day for which the prediction is conducted are 

the most important variables for the prediction of NO2 

concentration. Also, maximum and mean concentration of SO2 in 

a day prior to the day for which the prediction is conducted are 

the most important variables for SO2 prediction. As seen in Table 

2, similar to the other air pollutants, PM2.5 prediction highly 

depends on the SO2 concentration in a day prior to the day for 

which the prediction is conducted. Moreover, mean temperature 

is another variable which is important for PM2.5 prediction. The 

attributes selected by RFFS for prediction of PM2.5 concentration 

are 30 from which 9 important characteristics have been shown 

in Table 2. The selection of the pollutant concentration in the 

days prior to the day for which the prediction is conducted as the 

most effective variable for prediction of the air pollutants, may 

indicates high stability of pollutants in the atmosphere. Selection 

of index of months of the year reflects of the impact of emission 

sources on predictive models (Shamsoddini et al, 2013). As 

mentioned, paired samples t-test was used to statistically 

compare the performance of different methods and the results are 

shown in Table 3. P-values less than 0.05 indicate a significant 

difference between the performances of the methods used to 

predict the air pollutants. 
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Emissions Method R2 RMSE SEE 
Estimation 

error 

carbon monoxide 
1(PPM) 

MLR 0.56 2.3 2.33 50.43 

MLR/RFFS 0.48 1.38 1.39 30.3 

MLP 0.53 1.41 1.52 32.9 

MLP/ RFFS 0.47 1.39 1.39 30.39 

nitrogen 

dioxide 
2(PPB) 

MLR 0.74 15.54 15.66 27.16 

MLR/ RFFS 0.74 12.2 12.27 22.82 

MLP 0.74 14.92 15.12 26.9 

MLP/ RFFS 0.76 12.04 12.22 22.72 

sulfur 

dioxide 

(PPB) 

MLR 0.61 12.93 13.96 39.57 

MLR/ RFFS  0.59 13.04 13.12 35.65 

MLP 0.61 12.75 13.77 39.03 

MLP/ RFFS 0.61 12.81 12.88 34.95 

PM2.5 

(PPB) 

MLR 0.42 18.77 20.77 35.25 

MLR/ RFFS 0.42 19.85 20.15 32.51 

MLP 0.46 18.35 19.72 33.46 

MLP/ RFFS 0.49 18.13 19.24 32.32 
 

 

Table 1. Results of MLR and MLP applied on test data 

 

Figure1. Scatterplots of measured (horizontal axes) and predicted (vertical axes) air pollutants derived from the best prediction models 

                                                           
1 - Parts per million 
2 - Parts per billion 
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Parameter VIF(CO) )2VIF(SO )2VIF(NO )2.5VIF(PM 

maximum concentration the day 

before 
20.3 26.2 26 26.7 

mean concentrations of the days 

before 
13.7 17.6 20/9 23.1 

maximum concentration two days 

before 
4.8 6.4 7.6 4.6 

Month in year 4.7 - - 2.4 

mean concentrations of two days 

before 
- - 6.9 7.4 

mean concentrations of four days 

before 
- - 6.2 2.1 

mean concentrations of three days 

before 
- - 5.3 3 

maximum concentration three days 

before 
- - 4 2.7 

maximum concentration four days 

before 
- - 4 - 

average temperature - - - 4.8 

 

Table 2. Results of the RFFS method to estimate the importance of each attribute represented in percent 

 
 

Method CO 2NO 2SO 2.5PM 

MLR/RFFS & MLR 0.00 0.00 0.63 0.56 

MLP & MLR 0.00 0.72 0.37 0.51 

MLP/ RFFS & MLP 0.86 0.00 0.59 0.67 

MLP/ RFFS & MLR 0.00 0.00 0.87 0.9 

MLR/ RFFS & MLP 0.77 0.00 0.89 0.39 

MLP/ RFFS & MLR RFFS 0.09 0.88 0.03 0.33 
 

 

Table 3. The p-values derived from the paired samples t-test 

According to the results shown in Table 1, for the prediction of 

NO2, the best results derived from MLP in combination with 

RFFS with R2 0.76 and estimation error 22.7 %. Based on the 

results shown in Table 1, SO2 was predicted by MLP in 

combination with RFFS with R2 0.61 and estimation error 35% 

better than that derived from the other methods. Based on the 

results given in Table 1, PM2.5 was predicted using MLP fed by 

the attributes selected by RFFS with R2 0.49 and estimation error 

32.3% better than the other models. According to Tables 1 and 3, 

Co and NO2, predictions are significantly improved using linear 

method fed by the attributes selected by RFFS whereas 

combination of MLP and RFFS significantly affects the 

prediction of NO2.  According to Tables 1 and 3, the best 

predictions for CO, NO2 and PM2.5 can be derived using the 

combination of MLR or MLP with RFFS while the SO2 

prediction derived from the combination of MLP and RFFS 

resulted in the best accuracy compared to that derived from the 

other methods. According to the statistical tests applied to 

compare the accuracies of the air pollutant predictions, while 

NO2 is predicted with the highest accuracy, SO2 prediction is 

associated with the most errors than the other air pollutants.  It 

seems that simpler and more linear relationships between the 

input attributes and NO2 changes, can result in more accurately 

prediction of this air pollutant compared to that derived for other 

pollutants. It can be discussed that SO2 concentration changes 

and the factors affecting these changes are more complex than 

that is the case for other air pollutants. 
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This complexity can be attributed to the following reasons: 

• SO2 is produced by a variety of the sources such as

transportation, and fossil fuel used by power stations

and factories which are highly changeable.

• The inability of input attributes to form an efficient

model for prediction of this pollutant (Arhami et al,

2013). In fact air pollutant prediction accuracy

depends upon the accuracy of the measured data,

sources of release and spatial variation of pollutant

concentration (Perez et al, 2011).

4. CONCLUSION

This study examined the feasibility of RFFS method for 

improving MLR and MLP performance when the prediction of 

the air pollutants including CO, NO2, SO2, and PM2.5 is the 

aim. Different attributes including meteorological parameters, 

and the air pollutant concentration in the days before the day 

for which the prediction is conducted, were utilized. Also, two 

indices including traffic and vegetation density were proposed 

in this study to use along with the common attributes 

mentioned. The findings of this research can be concluded as 

follow: 

• RFFS indicated that the proposed indices are

useful for air pollutant predictions.

• According to RFFS, the concentrations of the

air pollutants during the previous days are

very important attributes for the prediction of

air pollutant concentration for a day.

• Use of RFFS can result in reduction of the

difference between the performance of the

linear and non-linear methods for prediction

of the air pollutants.

• MLP method in combination with RFFS is

able to predict all pollutants better than that

derived from MLR.

• While the prediction accuracy of SO2

concentration is significantly lower than the

other air pollutants, NO2 concentration can be

predicted with the highest accuracy.
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