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ABSTRACT: 

In geodesy, orthometric and normal heights are considered as basic height systems on the earth. The reference surfaces for these heights 

are the geoid and quasigeoid respectively.  Taking advantage of GNSS measurements, one can achieve a precise solution for the geoid 

and for the quasigeoid.  Two methods, called direct and indirect, are worked out in this research for the computation of separation 

between geoid and quasigeoid in a mountainous region in the USA. The area selected for this purpose is mountainous and rough enough 

in order to be able to show the effect of roughness of topography in the sought quantity.  The results of the two methods and testing 

them against GNSS-Levelling on 445 known points indicates an accuracy of 1.3 cm in RMS scale with the direct method, where there 

is  7 cm as an average difference between the observed geoid and quasigeoid separation and the same quantity derived from the direct 

method. Using Chi-squared goodness of fit test showed that the distribution of the residual quantities are normally distributed in the 

test area. 

1. INTRODUCTION

Two concepts of Stokes-Helmert (Helmert, 1890) and 

Molodensky (Molodensky et al. 1960) approaches are used to 

solve geodetic boundary-value problem for geoid and 

quasigeoid heights both referred to the normal ellipsoid. The 

geoid and quasigeoid are in turn reference surfaces to measure 

orthometric and normal heights on the earth respectively. The 

separation between geoid and quasigeoid is usually needed, in 

practice, for transformation of one system of height to another. 

There is, however, an approximate formula in literature 

(Heiskanen and Moritz, 1967) to compute                 

Geoid-to-Quasigeoid Separation (GQS) using Bouguer gravity 

anomaly; and it is also based on the known orthometric height 

at a point of interest. Precise estimation of Bouguer gravity 

anomaly requires more detailed topographical height 

information around the point. 

So far, many studies have been conducted for the 

determination of GQS. Sjoberg (1995) uses a model of 

orthometric height of higher order precision in the 

approximate formula (Heiskanen and Moritz, 1967) in order to 

reduce the terrain effect uncertainties. Rapp (1997) used 

precise height anomaly into the approximate formula. 

Nahavandchi (2002) used the Rapp technique as an indirect 

method for numerical evaluation on Iran's region    

GNSS-Levelling data. Sjoberg (2006) offered a precise 

formula, including terrain correction term and a term with 

regard to lateral variation of topographical densities for 

conversion from normal height to orthometric height. Tenzer 

et al. (2006) estimated the GQS by a correction model based 

on the mean gravity disturbance along the vertical within the 

topographic masses. Flury and Rummel (2009) derived the 

magnitude of the GQS equal to 24 and 48 cm in two test areas 

of the Alps. Sjoberg (2010) presented a strict formula for the 

GQS with two terms, terrain and gravimetric corrections. The 

result of his study improved the accuracy of Flury and Rummel 

formula up to 1 cm. Sjoberg (2012) used an arbitrary gravity 

correction model to improve the rough topographic effects 

accuracy on the GQS. Sjoberg and Bagherbandi (2012) 

evaluated the magnitude of this separation using the EGM08 

and DTM2006 models complete to harmonic degree and order 

2160 in the Tibet plateau and Indian Ocean to 5.47 and 0.11 

m, respectively. Bagherbandi and Tenzer (2013) estimated the 

value of the GQS by GOCO02S model complete to degree 250 

on the Tibet plateau and the Himalayan Mountains ranging 

from 0.15 to 3.62 m. The comparison of their results with 

EGM08 model shows ±20 cm differences. Sjoberg (2015) 

presented a rigorous scheme to estimate GQS using gravity 

disturbance expansion to Taylor series along plumbline. In his 

study, he used three different correction methods, applying the 

Bouguer gravity disturbance, an arbitrary compensation model 

and analytical continuation technique. 

In this study two methods called direct and indirect are 

worked out to accurate estimation of GQS. Topographic 

masses above the geoid are a major obstacle in the gravity field 

determination. Hence, in two mentioned methods, different 

models for topographic effects are used. Finally, to show the 

precision superiority, in each one of two methods, the 
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magnitude of geoidal height extracted from methods are 

compared with geometric geoidal height obtained             

GNSS-Levelling stations in test area. 

 

2.  DIRECT METHOD IN DETERMINATION OF 

GEOID TO QUASIGEOID SEPARATION 

The orthometric and normal heights H and 𝐻𝑁 of a point on 

the earth are derived to be, (Heiskanen and Moritz, 1967),  

𝐻 =
𝐶

𝑔̅
                                                                                              (1)  

𝐻𝑁 =
𝐶

𝛾̅
                                                                                           (2)  

where, C is the geopotential number, 𝑔̅ and 𝛾̅ are the mean 

actual and mean normal gravities along the actual plumb line 

from the geoid up to the point of interest and normal plumb 

line from the normal reference ellipsoid up to the telluroid 

respectively. The separation between the geoid and the 

quasigeoid (GQS) as the difference between normal and 

orthometric heights is given by, (ibid), 

𝐻𝑁 −𝐻 = 𝑁 − 𝜁 =
𝑔̅−𝛾̅

𝛾̅
𝐻                                                         (3)  

where, Zetta, is the height anomaly and N is the geoidal height 

at the computation point. The evaluation of  𝑔̅  alone in practice 

is problematic since the information required about density 

distribution inside the earth around the point of interest is less 

reliable. The suggested solution is to approximate the 

differential 𝑔̅ − 𝛾̅ term with the Bouguer gravity anomaly Δ𝑔𝑃
𝐵 

at a computation point P. Therefore, the estimation of GQS is 

given by the formula (ibid). 

𝑁 − 𝜁 ≈
Δ𝑔𝑃

𝐵

𝛾̅
𝐻                                                                              (4)  

The formula above does not provide the required accuracy in 

mountainous areas due to the uncertainty in terrain correction 

(Helmert, 1890; Niethammer, 1932). Using Bruns formula, the 

disturbing potential is converted to geoid height and/or to 

height anomaly through normal gravity (Bruns, 1878; 

Molodensky et al., 1960).  

𝑁 =
𝑇𝑔

𝛾0
    and or⁄    𝜁 =

𝑇𝑃

𝛾𝑄
                                                          (5)  

where subscripts 𝑃 and 𝑔 denote locations on the Earth and 

geoid surfaces respectively, 𝛾0 and 𝛾𝑄 represent the normal 

gravities on the reference ellipsoid with geocentric radius 𝑟0 

and on the telluroid surface with 𝑟𝑡  radius, respectively. 

Radius 𝑟𝑡 equals the sum of 𝑟0 radius and normal height 𝐻𝑁. 

In Eq. (5) we can represent the disturbing potential T in form 

                                                           
1 Analytical continuation bias 

of spherical harmonic series as a (𝑟, Ω) point according to the 

following expansion that is complete to M harmonic degree. 

 𝑇(𝑟, Ω) = ∑ (
𝑅

𝑟
)
𝑛

𝑀
𝑛=2 ∑ 𝑇𝑛𝑚

𝑛
𝑚=−𝑛  𝑌𝑛𝑚(Ω)                           (6) 

where 𝑌𝑛𝑚 and 𝑇𝑛𝑚 are fully normalized spherical harmonics 

and spherical harmonics coefficients of disturbing potential of 

degree 𝑛 and order 𝑚, respectively, 𝑀 is the maximum degree 

of expansion, Ω = (𝜃, 𝜆) the spatial angle at point of spherical 

coordinates co-latitude 𝜃 and longitude 𝜆. Considering Eq. (5), 

the expression of a strict model for GQS with the terrain 

correction term as following formula is given (Sjoberg, 2006). 

𝑁 − 𝜁 =
𝑇𝑔

𝛾0
−

𝑇𝑃

𝛾𝑄
+
𝐴𝐶𝐵

𝛾0
                                                               (7)  

where the ACB1 is the topographic bias. This bias is evaluated 

applying external series expansion of earth gravity potential 

inside the topography. The following formula estimates the 

magnitude of the ACB to fourth powers of elevation according 

to spherical approximation and a constant density for 

topographic masses (Agren, 2004; Sjoberg, 2007). 

𝐴𝐶𝐵 = −2𝜋𝜇 [𝐻2 +
2

3

𝐻3

𝑅
+
𝑛(𝑛+1)

12

𝐻4

𝑅2
]                                     (8)  

where 𝜇 = 𝐺𝜚, 𝐺 is gravitational constant, 𝜚 being the density 

of crust and for topographic height powers with its coefficients 

the following expansions exists 

𝐻𝑛𝑚
𝜈 =

1

4𝜋
∬ 𝐻𝜈 𝑌𝑛𝑚 𝑑𝜎𝜎

   for   𝜈 = 2,3,4                             (9)                                                              

𝐻𝜈 = ∑ 𝐻𝑛𝑚
𝜈

𝑛,𝑚  𝑌𝑛𝑚                                                                (10)  

In Eq. (7), by using downward continuation technique and 

Taylor series, the following conversion between the telluroid 

and reference ellipsoid surfaces is expressed for normal 

gravity  (Molodensky et al., 1960). 

𝛾0 = 𝛾𝑄 − ∑
(𝐻𝑁)

𝑘

𝑘!
∞
𝑘=1  

𝜕𝑘𝛾

𝜕ℎ𝑘
|
𝛾=𝛾𝑄

                                             (11)  

 where by applying following spherical approximation 

∑
(𝐻𝑁)

𝑘

𝑘!
∞
𝑘=1  

𝜕𝑘𝛾

𝜕ℎ𝑘
|
𝛾=𝛾𝑄

≈ 𝛾0  ∑ (−1)𝑘
(𝑘+1)!

𝑘!
∞
𝑘=1 (

𝐻𝑁

𝑅
)
𝑘

         (12)  

and in Eq. (11) regardless of higher terms 𝑘 = 1 , we have  

𝛾𝑄 ≈ 𝛾0𝛿𝛾                                                                                   (13) 

where 𝛿𝛾 equal to 

𝛿𝛾 = 1 −
2

𝑅
𝐻𝑁                                                                            (14)  
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In above Eq. 𝛿𝛾 is correction that is used for transferring 

normal gravity between telluroid and reference ellipsoid 

surfaces. By applying Eq. (13) in Eq. (7), final formula for the 

GQS computation is presented in the following form 

𝑁 − 𝜁 =
𝑇𝑔 − 𝑇𝑃𝛿𝛾

−1 + 𝐴𝐶𝐵

𝛾0
                                               (15) 

In Eq. (12) by assuming that 𝐻𝑁 ~5000 m and R as the mean 

Earth radius approximating the mean sea level, correction 

quantity 𝛿𝛾 for term of  𝑘 = 1 equals to 0.9 and for the term 

of  𝑘 = 2 this quantity equals to 1. Ergo, regardless of terms 

higher than 𝑘 = 1, the amount of the GQS in Eq. (15) will not 

be affected substantially. On the other hand, in Eq. (12) the 

maximum error created by applying spherical approximation 

will be less than 1 mm (Sjoberg, 2004). Moreover, created 

error in Bruns formula is close to the 1.5 mm. This is due to 

the omission of the second and higher terms in the expansion 

of Taylor series. 

 

3.  INDIRECT METHOD IN DETERMINATION OF 

GEOID TO QUASIGEOID SEPARATION 

The other model for the estimation of GQS is the Eq. (4) with 

a correction topographic term of the second power of 

orthometric height added, (Sjoberg, 1995).  

𝑁 − 𝜁 =
∆𝑔𝐵

𝛾̅
𝐻 +

𝐻2

2𝛾̅

𝜕∆𝑔𝑃
𝐹

𝜕𝐻
                                                        (16)  

where the vertical gradient of free air gravity anomaly equals, 

(Heiskanen and Moritz, 1967),  

𝜕∆𝑔𝑃
𝐹

𝜕𝐻
=

𝑅2

2𝜋
∬

∆𝑔𝐹−∆𝑔𝑃
𝐹

𝑙3𝜎
𝑑𝜎 − 

2

𝑅
∆𝑔𝑃

𝐹                                         (17)  

In above Eq., ∆𝑔𝐹 is free air gravity anomaly, 𝜎 is unit sphere 

and 𝑙 is the spatial distance between the computation point P 

and integration point. Rapp (1997) used the Taylor series 

expansion formula for the height anomaly on the Earth's 

surface as 

𝜁 = 𝜁0|𝑟=𝑟𝑒 +
𝜕𝜁

𝜕𝑟
ℎ                                                                           (18)     

for the evaluation of GQS, he suggested the following equation 

in 1997, 

𝑁 − [𝜁0 + 𝐶1] = 𝐶2                                                                   (19)  

where  

𝐶1 =
𝜕𝜁

𝜕𝑟
𝐻 +

𝜕𝜁

𝜕𝛾

𝜕𝛾

𝜕ℎ
𝐻                                                                  (20)  

𝐶2 =
∆𝑔𝐵

𝛾
𝐻 +

𝐻2

2𝛾

𝜕∆𝑔𝑃
𝐹

𝜕𝐻
                                                               (21)  

and 𝜁0 is the value of  the height anomaly at the point with 

ellipsoidal radius 𝑟𝑒 and it is equal to, (Heiskanen and Moritz, 

1967), 

 𝜁0(𝑟𝑒 , Ω) =
𝐺𝑀

𝑟𝑒𝛾0
∑ (

𝑎

𝑟
)
𝑛
∑ 𝑇𝑛𝑚
𝑛
𝑚=−𝑛  𝑌𝑛𝑚(Ω)

𝑀
𝑛=2                (22) 

where 𝑎 is semi major axis of the ellipsoid and GM is 

geocentric gravitational constant. By using above expansion 

and applying spherical approximation 𝜕𝛾 𝜕ℎ⁄ = −2𝐺𝑀 𝑟3⁄ , 

the 𝐶1  correction term will be calculated through two 

following expansions. 

𝜕𝜁

𝜕𝑟
𝐻(𝑟, Ω) = 

−𝐺𝑀

𝑟2𝛾0
𝐻∑ (𝑛 + 1) (

𝑎

𝑟
)
𝑛

𝑀
𝑛=2 ∑ 𝑇𝑛𝑚

𝑛
𝑚=−𝑛  𝑌𝑛𝑚(Ω)                  (23)  

𝜕𝜁

𝜕𝛾

𝜕𝛾

𝜕ℎ
𝐻(𝑟, Ω) = 

2𝐺𝑀

𝑟3
[
𝐺𝑀

𝑟𝛾0
2
𝐻 ∑ (

𝑎

𝑟
)
𝑛

𝑀
𝑛=2 ∑ 𝑇𝑛𝑚

𝑛
𝑚=−𝑛  𝑌𝑛𝑚(Ω)]                     (24)  

In the first section of 𝐶2 correction term, by assuming the 

constant crust density and applying the Bouguer reduction 

δ𝑔𝐵 = −2𝜋𝜇𝐻 to free air gravity anomaly ∆𝑔𝐹, the Bouguer 

gravity anomaly ∆𝑔𝐵 from 

∆𝑔𝐵 = 

[
𝐺𝑀

𝑟2
∑ (𝑛 − 1) (

𝑎

𝑟
)
𝑛

𝑀
𝑛=2 ∑ 𝑇𝑛𝑚

𝑛
𝑚=−𝑛  𝑌𝑛𝑚(Ω)] − 2𝜋𝜇𝐻     (25)  

 and by applying spherical approximation, the mean normal 

gravity  𝛾 from  

𝛾̅ ≈ −
1

2

𝜕𝛾

𝜕ℎ
𝐻 ≈ 𝛾0 +

𝐺𝑀

𝑟3
𝐻                                                       (26)  

is computed, (Heiskanen and Moritz, 1967). 

Based on existing definition, in the second section of 𝐶2 

correction term, the vertical gradient of the free air gravity 

anomaly equals to Eq. (17). By applying the planer 

approximation, we can express Eq. (17) in the following form 

(Heiskanen and Moritz, 1967; Bian, 1997). 

𝜕∆𝑔𝐹

𝜕𝐻
=

1

2𝜋
∬

∆𝑔𝐹(𝑥,𝑦)− ∆𝑔0
𝐹

(𝑥2+𝑦2)
3
2⁄
𝑑𝑥 𝑑𝑦                                           (27)                         

where ∆𝑔0
𝐹  illustrates the value of free air gravity anomaly at 

the computation point and [𝑥, 𝑦] are horizontal parameters for 

planer coordinates of running point. Furthermore, in above Eq. 

2∆𝑔𝐹 𝑅⁄  term is disregarded in the light of its being little 

amount that demonstrates the indirect effect of free air gravity 

anomaly. 

In this situation, to solve the integration of Eq. (27), the 

Newton- Cotes formula is used. This formula in innermost area 

of computation points would have a solution in the following 

form (Sadiq et al., 2010).  
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𝜕∆𝑔𝐹

𝜕𝐻
=
36 𝑙𝑛(1 + √2) + 128

135 𝛼𝜋
. 𝛰1 +

49

8100 𝛼𝜋√2
 . 𝛰2

+
84

8100 𝛼𝜋
. 𝛰3 +

448

10125 𝛼𝜋√5
. 𝛰4

+
56

6075 𝛼3𝜋√2
. 𝛰5                               (28) 

where for 𝑂1, … , 𝑂5 we have 

{
 
 
 
 
 
 

 
 
 
 
 
 
Ο1 = ∆𝑔

𝐹(−𝛼, 0) + ∆𝑔𝐹(𝛼, 0) + ∆𝑔𝐹(0,−𝛼)                

+∆𝑔𝐹(0, 𝛼) − 4∆𝑔𝐹(0,0)                                       

Ο2 = ∆𝑔
𝐹(−2𝛼, 2𝛼) + ∆𝑔𝐹(2𝛼, −2𝛼) + ∆𝑔𝐹(2𝛼, 2𝛼)

+∆𝑔𝐹(−2𝛼,−2𝛼) − 4∆𝑔𝐹(0,0)                           

Ο3 = ∆𝑔
𝐹(−2𝛼, 0) + ∆𝑔𝐹(2𝛼, 0) + ∆𝑔𝐹(0,2𝛼)            

+∆𝑔𝐹(0,−2𝛼) − 4∆𝑔𝐹(0,0)                                

Ο4 = ∆𝑔
𝐹(−2𝛼, 𝛼) + ∆𝑔𝐹(2𝛼, −𝛼) + ∆𝑔𝐹(𝛼,−2𝛼)   

+∆𝑔𝐹(−𝛼, 2𝛼) + ∆𝑔𝐹(−2𝛼,−𝛼)                        

+∆𝑔𝐹(2𝛼, 𝛼) + ∆𝑔𝐹(−𝛼,−2𝛼) + ∆𝑔𝐹(𝛼, 2𝛼)

−8∆𝑔𝐹(0,0)                                                                    

Ο5 = ∆𝑔
𝐹(−𝛼, 𝛼) + ∆𝑔𝐹(𝛼, −𝛼) + ∆𝑔𝐹(−𝛼,−𝛼)        

+∆𝑔𝐹(𝛼, 𝛼) − 8∆𝑔𝐹(0,0)                                        

(29) 

In above Eq., 𝛼 is the spacing of the data on a grid with   

−2𝛼 ≤ 𝑥 ≤ 2𝛼 and −2𝛼 ≤ 𝑦 ≤ 2𝛼 for integration. This 

integration is performed for 𝑛 = 4 interpolated nodal points. 

 

4.  NUMERICAL EVALUATION 

The results of this section is obtained from a numerical 

calculation in a mountainous region of the USA located in an 

area with latitudes 37°N to 41°N and longitudes 104°W 

to 109°W. This region includes the Rocky Mountains with 

roughness topographic to 3776 m high. The harmonic 

coefficients of the EGM08 model are completed to 2190 

degree/order. A Digital Terrain Model (DTM) arranged in a 

regular grid data of 6 arc-min spacing is obtained from an 

average data of SRTM model with 3 second interval. Global 

height harmonic models of  𝐻2, 𝐻3 and 𝐻4 are used. The 

information of 445 GNSS-Levelling stations is available in the 

test area.  The GRS80 normal gravity field, (Moritz, 1980), is 

used to generate the normal gravities. The figure (1-a) shows 

the position of test area topography and the figure (1-b) 

indicates the distribution of GNSS-Levelling stations. 

In direct method, the GQS is calculated from Eq. (15). In 

this equation, the disturbing potential is obtained on the Earth's 

surface 𝑇𝑃 and geoid 𝑇𝑔 considering height ℎ referred to the 

ellipsoid. The disturbing potential on the surfaces is computed 

by the expansion of spherical harmonic series in Eq. (6) and 

by using the EGM08 model. The Somigliana formula was used 

in order to calculate the value of normal gravity on the 

reference ellipsoid 𝛾0 (Somigliana, 1929). 𝛿𝛾 Quantity which 

describes the correction of the normal gravity between the 

reference ellipsoid and telluroid, was determined by Eq. (14). 

By accepting 𝜚 = 2670 kg m−3 as the value of constant 

density for topographic masses, terrain effect as the analytical 

continuation bias was calculated from the expansion of Eq. (8) 

to maximum degree 2190. In this expansion, the second to 

fourth powers of topographic height were used. In Eq. (10) the 

multiple topographic powers are computable from height 

coefficients. The global height harmonic models make these 

coefficients accessible. The value of terrain effect on the GQS, 

obtained from various powers of topography has been 

illustrated in Table 1. 

Table1. The statistical parameters of terrain effect on the GQS with 

topographic powers dissociation, unit: cm. 

  𝐀𝐂𝐁 γ0⁄          Min            Max         Mean          STD 

       𝐻2         -164.063      -20.213      -67.983       32.788 

       𝐻3             -0.064        -0.003        -0.019         0.013 

       𝐻4             -4.818         3.596        -0.001         0.757 

 

The results show that the contribution of second power of 

topography is high and about 1.640 m. The contribution of the 

third power is in opposite sign. The fourth power effect is still 

considerable compared to the third power effect. It is shown 

that the even power effects compared to their earlier odd 

powers effects play important roles in modelling topographic 

masses potential. Figure (1-c) shows the total topographic 

effect on the GQS maximum to 2190 harmonic degrees. By 

determining right side of quantity in Eq. (15), separation 

between the geoid and quasigeoid is obtained. In Figure (1-d) 

the amount of this separation is illustrated. Table (2) represents 

the numerical results of direct method from separation 

determination between the geoid and quasigeoid. 

In indirect method, the GQS values are computed from Eq. 

(16). The values of correction terms 𝐶1 and 𝐶2 are introduced 

to Eq. (19). The term 𝐶1 is the correction to transfer height 

anomaly 𝜁0 from the ellipsoid to the Earth surface (telluroid 

surface). The height anomaly 𝜁0 from Eq. (22) expansion and 

correction term 𝐶1 from Eq. (23) and Eq. (24) were computed 

using the EGM08 model. In term 𝐶1 by applying spherical 

approximation, this term 𝜕𝛾 𝜕ℎ⁄  was approximated 

to  −2𝐺𝑀 𝑟3⁄ . Correction term 𝐶2 indicates the separation 

amount between the geoid and quasigeoid. To be more precise, 

this term is calculable through Eq. (21). In this Eq. The 

Bouguer gravity anomaly ∆𝑔𝐵 assuming a constant amount of 

crust density of the Earth and applying the Bouguer reduction 

δ𝑔𝐵 to free air gravity anomaly ∆𝑔𝐹 can be obtained. In Eq. 

(25) the free air gravity anomaly is expanded to spherical 

harmonics series and it is computed by using the EGM08 

model. In Figure (2-a) the Bouguer gravity anomaly amount 

has been displayed. The mean normal gravity quantity 𝛾̅ is 

calculated by applying spherical approximation from Eq. (26). 

In the second section of correction term 𝐶2, the vertical 

gradient of the free air gravity anomaly is computed from 

integral Eq. (17). This Eq. is converted to Eq. (27) by applying 

planer approximation. Needless to say, the free air anomaly 

indirect effect amount (2∆𝑔𝐹 𝑅⁄ ) has been ignored on account 

of its low value. Eq. (27) was computed by using the     

Newton- Cotes integral solution for 𝑛 = 4 interpolated points 

in horizontal location 2𝛼 ≤ 𝑥 ≤ 2𝛼 and−2𝛼 ≤ 𝑦 ≤ 2𝛼. Eq. 

(28) is a solution to the integral Eq. (27) for the vertical 

gradient of the free air gravity anomaly. In this Eq. 𝑂1, … , 𝑂5 

quantities are achieved Eq. (29) by computing the free air 
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gravity anomaly. In addition, the free air gravity anomalies in 

a regular grid of data with spacing of  𝛼 = 6° are derived from 

the EGM08 model. Figure (2-b) shows the vertical gradient of 

the free air gravity anomaly in test area. By calculating right 

side of quantity in Eq. (16) the GQS was obtained in the 

indirect method. Figure (2-c) illustrates this separation. In 

Table (3) the numerical results of this method were shown. 

 

The GNSS-Levelling stations as the test points of known 

GQS values are used to evaluate the accuracies of the direct 

and indirect methods. Hence, the geoidal heights were 

extracted from direct and indirect methods at the test points. 

Table (4) illustrates the results of geoidal heights. As the 

results show, the geoid modelled in direct and indirect methods 

has on average 16 cm difference. This difference demonstrates 

the models are comparable in centimeter accuracy level. In the 

performed comparison between the obtained geoid from two 

methods with the geometric geoid of GNSS-Levelling stations, 

the direct method with 1.3 cm precision superiority in respect 

to the indirect method at RMS scale is obvious. It has been 

considered as an efficient method. In addition, this is indicated 

as a precise approach in determining GQS. The stimulating 

result of direct method is due to the precise modelling of 

terrain effects. Comparison of the results of direct method in 

the test area with the GNSS-Leveling results in the area shows 

an average difference of 7 cm in GQS values. Also, the Chi-

squared goodness of fit test shows the normal distribution of 

the residuals in the test area. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                

 

 

 

 

 

 

 

 

 Figure 1. (a) the topographic of test area, unit: meter, (b) GNSS-Levelling stations location in test area, (c) the total topographic 

effect on the GQS, unit: meter and (d) separation between the geoid to quasigeoid as a result of the direct method, unit: meter. 

 

b a 

c d 
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Table 2. The statistical characteristics of GQS based on direct method, unit: meter. 

 

 

 

 

 

 

              

 

 

 

 

  

 
                                                                                                                                         

 

                                        

 

 

 

 

 

  

 

                              

                                                                                                                                                                                    

 

 

 

 

 

Figure 2. (a) The Bouguer gravity anomaly with 6 arc-min interval, unit: mGal, (b) the vertical gradient of the free air gravity 

anomaly with 6 arc-min interval, unit: mGal and (c) the GQS obtained from indirect method, unit: m. 

 

Table 3. The statistical parameters of GQS based on indirect method. 

 

 

 

 

 

 

 

 

 

Statistical parameters           Min              Max             Mean               STD 

                    𝑇𝑔 𝛾0⁄                        -20.679          -9.860           -15.076             2.472 

               𝑇𝑃𝛿𝛾
−1 𝛾0⁄                    -20.674          -9.969           -15.126             2.438 

                 𝐴𝐶𝐵 𝛾0⁄                         -1.685          -0.201             -0.680             0.331 

                  𝑁 − 𝜁                              -1.581          -0.066             -0.629             0.299 

   Statistical parameters             Min               Max              Mean              STD 

             ∆𝑔𝐹[mGal]                   -106.868          249.239           26.176           54.125 

            𝛿𝑔𝐵  [mGal]                   -422.712        -149.532         -264.496           64.435 

            ∆𝑔𝐵[mGal]                    -415.857          -87.203         -238.320           48.765 

     𝜕∆𝑔𝐹 𝜕𝐻⁄ [mGal]                      -0.022              0.015              0.000             0.004 

               𝐶1 [m]                             -0.524              0.148             -0.079             0.123 

     [𝜁0 + 𝐶1] = 𝜁 [m]                   -20.630           -10.289           -15.195             2.365 

       𝑁 − 𝜁 = 𝐶2 [m]                     -1.322             -0.212             -0.596             0.236 

a b 

c 
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Table 4. The statistical parameters of the comparison of the geoidal height in direct and indirect methods with  

geometric geoidal height of GNSS_Levelling stations, unit: meter. 

 

 

 

 

 

 

5.  CONCLUSIONS 

In this study, two different methods (direct and indirect) were 

used to reach at a reliable method to determine the             

Geoid-to-Quasigeoid Separation (GQS). These two methods 

used the EGM08 geopotential model in a mountainous area. 

The results of this study show that the GQS values in this two 

methods are different in average of approximately 3.3 cm. This 

is an indication of the fact that these two methods are 

comparable. It shows obviously that the direct method with the 

ability of modelling terrain effect up to high degrees of 

topographic height approximates more closely the GQS values 

in the test region. Comparison of the results of direct method 

in the test area with the GNSS-Leveling results in the area 

shows an average difference of 7 cm in GQS values. Also, the 

Chi-squared goodness of fit test shows the normal distribution 

of the residuals in the test area. 
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