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Here we present a review on a new family of Kalman filter algorithms which recently developed for integrated navigation. In 

particular it is useful for vision based navigation due to the type of data. Here we mainly focus on three algorithms namely weighted 

Total Kalman filter (WTKF), integrated Kalman filter (IKF) and constrained integrated Kalman filter (CIKF). The common 

characteristic of these algorithms is that they can consider the neglected random observed quantities which may appear in the 

dynamic model. Moreover, our approach makes use of condition equations and straightforward variance propagation rules.  The 

WTKF algorithm can deal with problems with arbitrary weight matrixes. Both of the observation equations and system equations 

can be dynamic-errors-in-variables (DEIV) models in the IKF algorithms. In some problems a quadratic constraint may exist. They 

can be solved by CIKF algorithm. Finally, we compare four algorithms WTKF, IKF, CIKF and EKF in numerical examples.   

Introduction 

Recently, there has been an explosion in the number, type 

and diversity of system designs and application areas of 

mobile sensors. The navigation of these systems is one of the 

main problems. In this problem, one aims to determine the 

position and attitude of a mobile sensor in a geo-referenced 

frame. When this information is attained directly by means 

of measurements from sensors on-board the vehicle the term 

direct geo-referencing is used (Skaloud (1999)). The 

integration of these data is done during a Kalman filter 

algorithm (Kalman (1960)). In the literature, the Kalman 

filter is derived as either a best predictor (BP) or a best linear 

predictor (BLP), see e.g. Kalman (1960), Gelb (1974), 

Teunissen and Khodabandeh (2013). The minimum mean 

squared error (MMSE) is the criterion which selects the best 

predictor or estimator. By now, one of the common solutions 

to this problem has been the traditional extended Kalman 

filter (EKF) (Jazwinski (1970)), in particular, when the 

navigation systems have relied mainly on the GPS receivers 

as the primary source of information to provide the position 

of the vehicle. GPS is able to provide precise positioning 

information to an unlimited number of users anywhere on 

2 *

the planet. However, a comprehensive study, referred to as 

the Volpe report (Center (2001)), indicates several 

vulnerabilities of GPS associated with signal disruptions. 

GPS can provide precise information only under ideal 

conditions which require an open environment (i.e. open 

space areas). In other words, the system doesn’t work very 

well in urban, canopy areas due to signal blockage and can 

be totally blocked if the signal is jammed (see e. g. Sheta 

(2012) and Stepanyan (2006)).  

Nevertheless, motivated by the new advances in remote 

sensing sensors solutions in combination with traditional 

navigation sensors, recently some new systems have been 

proposed based on fusing remote sensing measurements 

with GPS-INS measurements to achieve comprehensive, fast 

and real-time systems (Sheta (2012)). The linearized 

observation equations and/or system equations of these new 

developed systems may be DEIV models (Mahboub et al. 

(2016) and Schaffrin and Iz (2008)). Hence, the classic EKF 

algorithm or its alternatives such as Unscented Kalman Filter 

(UKF) (Julier et  al. (1995)) may not be useful.  

Schaffrin and Iz (2008) considered the case which 

observation equations are DEIV model and proposed a 
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Kalman filter algorithm namely total Kalman filter (TKF). 

Then Schaffrin and Uzun (2011) tried to impose a data 

snooping procedure to the TKF algorithm. As the 

characteristic of the noise of different sensors is often 

arbitrary and different, the structure of the noise supposed by 

Schaffrin and Iz (2008) may not be useful. Therefore 

Mahboub et al. (2016) presented an applicable TKF 

algorithm with general weight matrixes and named it weight 

total Kalman filter (WTKF). Then Mahboub et al. (2017a) 

solved the problem which both of the coefficient matrix of 

the observation equations and system equations are 

corrupted by random noise and named it integrated Kalman 

filter (IKF). Eventually Mahboub et al. (2017b) developed a 

constrained integrated total Kalman filter (CITKF) as a 

solution to DEIV model since a quadratic constraint may 

appear the navigation problem.    

It must be mentioned that EIV model in its time invariant 

case i. e. static case has been investigated by several valuable 

publications e. g. Snow and Schaffrin (2012), Fang (2011), 

Shen et al. (2011), Schaffrin (2016), Schaffrin et al. (2012), 

Schaffrin and Felus (2008), Mahboub (2012,2014,2016), 

Mahboub et al. (2013,2015), Amirisimkooei and Jazaeri 

(2012), Mahboub and Sharifi (2013a,b), Paláncz B. and 

Awange L. (2012) etc. 

 This paper is organized as follows: in Sect. 2, dynamic 

model of integrated navigation problem is defined in Kalman 

filter frame work. In Sect. 3, WTKF algorithm is reviewed 

besides a brief introduction to IKF and CIKF algorithms, 

then, in a later section, we compare four algorithms WTKF, 

IKF, CIKF and EKF in numerical examples. Finally we 

conclude the paper. 

 

Section 2: Dynamic model of integrated navigation 

In this section we introduce the concepts of integrated 

navigation in terms of the Kalman filter algorithms. In recent 

years, integrated Navigation systems have started to be 

applied to mobile systems. They can provide a self-

contained autonomous navigation solution and can be used 

as an alternative (or an addition) to the traditional sensors 

(GPS, INS and integrated GPS/INS). By now, the dynamic 

model of integrated direct geo-referencing problem in 

integrated navigation has been traditionally defined as 

follows (see e. g. Sheta (2012)): 

𝑦𝑖 = 𝐴𝑖𝑥𝑖 + 𝑒𝑖    (1) 

𝑥𝑖 = 𝛷𝑖𝑥𝑖−1 + 𝑓𝑖 + 𝑢𝑖    (2) 

It is also assumed that the state vector is observed at an initial 

(previous) epoch: 

𝑥𝑖−1 = 𝑥𝑖−1 + 𝑒𝑖−1
0      (3) 

Equation (1) represents observation equations and equation 

(2) is system equations which is also called dynamic model. 

It relates the unknown parameters at an epoch 𝑖 to an earlier 

epoch 𝑖 − 1. In the above equations 𝑦𝑖 is the m × 1 random 

observation vector, 𝑒𝑖 is the m × 1 vector of observational 

noise, 𝐴𝑖 is the linear/linearized design matrix of the 

observation equations, 𝑥𝑖 is the n × 1 random parameter 

vector (time dependent unknowns) which contains 3-D 

position and attitude of the mobile sensors i. e. 𝑥𝑖 =
[𝑋𝑖 𝑌𝑖 𝑍𝑖 𝜔𝑖 𝜑𝑖 𝜅𝑖], 𝛷𝑖 is the n × n transition 

matrix and 𝑢𝑖 is the random system noise, 𝑓𝑖 is an 

independent time variable function, 𝑒𝑖−1
0  is the random noise 

at the first epoch  and underlining ( ) indicates random 

variables. 

Equation (2) is usually produced by INS data and equation 

(1) is usually provided by other sensors e. g. GPS and remote 

sensed sensor in an integrated navigation system. This 

arrangement can be changed due to available sensors in a 

system.  

Equations (1) to (3) usually represent the functional model 

of the dynamic model for the problem. We also define the 

corresponding stochastic model as follows: 

[

𝑒𝑖

𝑢𝑖

𝑒𝑖−1
0

]~([
0
0
0
] , [

𝑄𝑦𝑖
0 0

0 𝜃𝑖 0

0 0 Σ𝑖−1
0

])   (4) 

where 𝑄𝑦𝑖
, 𝜃𝑖  and Σ𝑖−1

0 , are the corresponding dispersion 

matrixes of the observation vector, the system equations and 

the observed unknown parameters at an initial epoch. 

Traditionally, the so called extended Kalman filter (EKF) is 

applied to solve the above problem. 

Nevertheless, we can argue that the real dynamic model of 

the problem should be given by the following equations 

since some random observed quantities may still exist in 𝐴𝑖 

which may be neglected such noisy control points. 

Moreover, if INS is used to produce system equations, one 

encounters with a dynamic errors-in-variables (DEIV) 

model (Mahboub et al (2017a). Furthermore, one may need 

to impose the following quadratic constraint since it is well 

known that the Quaternion approach is sometimes used to 

solve the singularity problems of the Euler angles at the 90 

degrees angle. This constraint may also be because of the 

fixed distance between two sensors. Thus we have 

𝑦𝑖 = (𝐴𝑖 − 𝐸𝐴𝑖
)𝑥𝑖 + 𝑒𝑖    (5) 

𝑥𝑖 = (𝛷𝑖 − 𝐸𝛷𝑖
)𝑥𝑖−1 + 𝑓𝑖 + 𝑢𝑖   (6) 

𝑥𝑖−1 = 𝑥𝑖−1 + 𝑒𝑖−1
0      (7) 

𝑥𝑖
𝑇𝐶𝑥𝑖 = 𝑐0     (8) 

 Here 𝐸𝐴𝑖
 and 𝐸𝛷𝑖

 are the corresponding random noise of 

the 𝐴𝑖 and 𝛷𝑖, 𝐶 is a symmetric matrix and 𝑐0 is a 

nonnegative scalar. In such a case the EKF algorithm needs 

to be improved. In the next section we present the WTKF 

algorithm (Mahboub et al. (2016)) and explain how WTKF, 

IKF and CIKF algorithms deal with the above dynamic 

model for integrated navigation.  

  

Section 3: The new family of Kalman filter algorithms 

for integrated navigation 
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The weighted total Kalman filter (WTKF) algorithm which 

was proposed by Mahboub et al (2016)  can deal with 

equations (5) to (8) if they are simplified as follows i. e. 𝐶 =
0 and 𝐸𝛷𝑖

= 0: 

𝑦𝑖 = (𝐴𝑖 − 𝐸𝐴𝑖
)𝑥𝑖 + 𝑒𝑖    (9) 

𝑥𝑖 = 𝛷𝑖𝑥𝑖−1 + 𝑓𝑖 + 𝑢𝑖    (10) 

𝑥𝑖−1 = 𝑥𝑖−1 + 𝑒𝑖−1
0      (11) 

In contrast to Schaffrin and Iz (2008), here an arbitrary 

dispersion matrix can be considered for the random observed 

quantities as follows: 

[

𝐸𝑖

𝑢𝑖

𝑒𝑖−1
0

]~([
0
0
0
] , [

𝑄 0 0
0 𝜃𝑖 0

0 0 Σ𝑖−1
0

])   (12) 

Where 𝑄 the fully correlated dispersion matrix of size 
(𝑚𝑛 + 𝑚) × (𝑚𝑛 + 𝑚) and the random error vector 𝐸𝑖 of 

size (𝑚𝑛 + 𝑚) × 1 is given by: 

𝐸𝑖 = [
𝑣𝑒𝑐(𝐸𝐴𝑖

)
𝑒𝑖

]     (13) 

𝑣𝑒𝑐(𝐸𝐴𝑖
) = 𝑀𝐸𝑖     (14) 

𝑒𝑖 = 𝑁𝐸𝑖      (15) 

With 𝑀 = [𝐼𝑛𝑚×𝑛𝑚 ⋮ 𝑂𝑛𝑚×𝑚] and 𝑁 =
[𝑂𝑚×𝑛𝑚 ⋮ 𝐼𝑚×𝑚].  

The following Lagrange target function is given in order to 

compute the weighted total least-squares prediction of this 

problem: 

Ф(𝐸𝑖 , 𝜆𝑖 , 𝜇𝑖) ≔ 𝐸𝑖
𝑇𝑄−1𝐸𝑖 + 𝜇𝑖

𝑇(𝜃𝑖 + 𝛷𝑖𝛴𝑖−1
0 𝛷𝑖

𝑇)
−1

𝜇𝑖 +

2𝜆𝑖
𝑇(𝑦𝑖 − 𝐴𝑖(𝜇𝑖 + 𝑥̌𝑖) + ((𝜇𝑖 + 𝑥̌𝑖)

𝑇 ⊗ 𝐼𝑚)𝑀𝐸𝑖 − 𝑁𝐸𝑖) 

     (19) 

where𝜆𝑖 is a 𝑚 × 1 vector of Lagrange multipliers, 𝜇𝑖 =

𝑢𝑖 − 𝛷𝑖𝑒𝑖−1
0 = 𝑥𝑖 − 𝑥̌𝑖 and 𝑥̌𝑖 = 𝛷𝑖𝑥𝑖−1 + 𝑓𝑖 . 

For optimization, the following necessary conditions must 

hold: 

𝜕Ф

𝜕𝐸𝑖
| 𝐸̃𝑖, 𝜆̂𝑖,𝜇𝑖 =2(𝐸̃𝑖

𝑇
𝑄−1 − 𝜆̂𝑖

𝑇
(𝑁 − ((𝜇𝑖 + 𝑥̌𝑖)

𝑇 ⊗

𝐼𝑚)𝑀)) = 0     (20) 

𝜕Ф

𝜕𝜇𝑖
| 𝐸̃𝑖𝜆̂𝑖, 𝜇𝑖=2 (𝜇𝑖

𝑇(𝜃𝑖 + 𝛷𝑖𝛴𝑖−1
0 𝛷𝑖

𝑇)
−1

− 𝜆̂𝑖
𝑇
(𝐴𝑖 −

𝐸̃𝐴𝑖)) = 0               (21) 

𝜕Ф

𝜕𝜆𝑖
| 𝐸̃𝑖,𝜆̂𝑖,𝜇𝑖=2(𝑦𝑖 − 𝐴𝑖(𝜇𝑖 + 𝑥̌𝑖) + ((𝜇𝑖 + 𝑥̌𝑖)

𝑇 ⊗

𝐼𝑚)𝑀𝐸̃𝑖 − 𝑁𝐸̃𝑖) = 0   (22) 

Summarizing the general WTKF algorithm is proposed as 

follows:
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Figure 1: WTKF algorithm 

Later on Mahboub et al (2017a) proposed integrated Kalman 

filter (IKF) algorithm in order to solve the problem given by 

equations (5) to (7) which both of the coefficient matrix of 

the observation equations and system equations are 

corrupted by random noise. The algorithm us given by figure 

2: 
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Figure 2: IKF algorithm 

Eventually the constrained integrated Kalman filter (CIKF) 

proposed by Mahboub et al. (2017b) also considers equation 

(8). It is illustrated by figure 3: 
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Figure 3: CIKF algorithm 

 

In the next section we numerically compare four algorithms 

WTKF, IKF, CIKF and EKF.      

Section 3: numerical comparison of EKF algorithm with 

WTKF, IKF and CIKF algorithms 

In this section, three comparisons are made. Due to 

restriction for publication IN THE ISPRS, we avoid 

presenting big numerical matrixes which correspond to 

equations (5) to (8).    

Section 3-1: WTKF versus EKF  

Suppose that the dynamic equation is given in a local frame 

as follows:  

𝑥𝑖 = 𝑥𝑖−1 + 𝑓𝑖      (23)   

with𝑓𝑖 = [
𝑎(𝑡𝑖+1 − 𝑡𝑖)

03×1
]; 𝑎 = [

1.3
0.8
1

] 𝑥𝑖 = [
𝑃𝑖

𝑅𝑖
]; 𝑃𝑖 =

[

𝑥𝑖
𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛

𝑦𝑖
𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛

𝑧𝑖
𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛

]; 𝑅𝑖 = [

𝑟𝑜𝑙𝑙𝑖
𝑝𝑖𝑡𝑐ℎ𝑖

𝑎𝑧𝑖𝑚𝑢𝑡ℎ𝑖

] 

The observation equations of this example which may be 

produced by GPS and remote sensed data is given by 5 DEIV 

models at 5 epochs 𝑖 = 1,2,3,4,5. Note that the chosen time 

interval is 5 seconds i. e. 𝑡 = [5 10 15 20 25].  
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We apply three algorithms EKF, TKF (Schaffrin and Iz 

(2008)) and WTKF proposed here to this problem. The 

results are illustrated in figure 4 and compared with the true 

solution. The proposed WTKF approach can make the best 

improvement i.e. approximately 25% improvement in the 

solution of the predicted position in contrast to other 

algorithms. In particular this situation can be seen when the 

magnitude of the weights of the elements in the random 

design matrix are large. Although the TKF algorithm of 

Schaffrin and Iz (2008) is mathematically correct and 

improvement of WTKF algorithm relating to TKF solution 

is not so high especially for rotation angles, it cannot 

completely satisfy the given weight of this problem. 

Therefore, its predicted position differs from the position 

predicted by the WTKF algorithm and the true solution.  

This difference is increased when the magnitude of the 

weights of the observed quantities are lager which prove the 

important role of the weight matrixes. Furthermore, in both 

of the EKF algorithm and the TKF algorithm of Schaffrin 

and IZ (2008), the magnitude of the bias will be increased at 

the later epochs.  The other major point refers to the 

predicted position and attitude of the classic EKF algorithm. 

Not only its solution considerably differs from the true 

solution, but also it has an irregular treatment since this 

algorithm does not consider the random property of the 

design matrix within the DEIV model. Moreover, it can be 

demonstrated that both of the TKF algorithm proposed by 

Schaffrin and Iz (2008) and the WTKF algorithm give the 

same results in the the homoscedastic case. Also, if the 

coefficient matrix of the observation model has no random 

error, the results of three algorithms EKF, TKF and WTKF 

are the same. Note that all of the positions are in meters and 

angles are in radians.  

 

Figure 4-a: the solution of different algorithms for 3-D position of the sensor in a local frame 

 

Figure 4-b: the solution of different algorithms for 3-D attitude of the sensor in a local frame 

Section 3-2: IKF versus EKF and WTKF  

Now suppose that for an integrated geo-referencing of a 

mobile sensor, we are going to determine the position and 

attitude of a mobile sensor at five epochs. The system 

equations are produced by IMU. Due to equations (5) to (8), 

the components of the DEIV model of the system equations 

at these epochs are determined.  
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The observation equations which can be produced by GPS 

and remote sensed data are given by 5 DEIV models at 5 

epochs 𝑖 = 1,2,3,4,5.  

Three algorithms EKF, TKF and IKF were applied to this 

direct geo-referencing problem which both of the 

observation equations and system equations are in fact DEIV 

models and compare the result with true solution. The results 

are shown in figures 5 and 6 for 3-D position and attitude of 

the mobile sensor in a local frame respectively. Note that 

after computing the attitudes in quaternion representation, 

we converted them into three rotations about three axis in 

degrees.    

 

Figure 5: solutions of different algorithms for 3-D position of the mobile sensor in a local frame 

\  

Figure 6: solutions of different algorithms for 3-D attitude of the mobile sensor in a local frame 

The results given by the figures 5 and 6 demonstrated that 

the proposed IKF approach can improve the solution of the 

predicted position and attitude in contrast to other algorithms 

particularly when the magnitude of the weights of the 

elements in the random design matrixes 𝐴𝑖 and 𝛷𝑖 cannot be 

neglected. The improvement of the predicted position is 

more considerable than the predicted attitude. However, the 

TKF solution has larger difference respect to true solution 

than the ITKF solution since it does not consider the random 

property of the random design matrix 𝛷𝑖. This situation gets 

worse for the EKF solution in which not only we neglect the 

random property of the noisy design matrix 𝛷𝑖 but also the 

random design matrix 𝐴𝑖 is considered deterministic i. e. 

with no noise. Furthermore, an irregular treatment can be 

seen in the solution of the EKF approach in contrast to other 

methods. Another point of interest is that the general 

treatment of the TKF and IKF approach are similar, 

however, we can see a significant bias in the TKF solution 

respect to the IKF solution which is because of inappropriate 

modeling of the system equations made by the TKF 

approach.   

Section 3-3: IKF versus CIKF  

In some numerical examples we see that considering a 

quadratic constraint may improve the solution of the ITKF 

algorithm for integrated direct geo-referencing. This 

situation can be seen when we want to impose the quadratic 

constraints of Quaternion angles for instance. In other words 

if we want to use the quaternion angles 𝑞1, 𝑞2, 𝑞3 and 𝑞4, it 
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is well-known that the following quadratic condition must 

hold: 

𝑞1
2 + 𝑞2

2 + 𝑞3
2 + 𝑞4

2 = 1    (24) 

The matrix 𝐶 and the scalar 𝑐0 in quadratic constraint given 

by equation (8) can be obtained as follows due to equation 

(25): 

 𝐶 =

[
 
 
 
 
 
 
0 0 0
0 0 0
0 0 0

0
0
0

0 0 0
0 0 0
0 0 0

0 0 0 1 0 0 0
0 0 0
0 0 0
0 0 0

0
0
0

1 0 0
0 1 0
0 0 1]

 
 
 
 
 
 

;  𝑐0 = 1; 

Now suppose that for an integrated geo-referencing of a 

mobile sensor, we are going to determine the position and 

attitude of a mobile sensor at five epochs. We applied the 

CIKF and  IKF i. e. unconstraint algorithms to the above 

example. Figures 7 and 8 illustrate the results for 3-D 

position and attitude of a mobile sensor. As it can be seen 

from figure 5, the CIKF algorithm shows approximately 2 

degrees improvement for attitude in contrast to the IKF 

approach since the CIKF algorithm considered the quadratic 

constraint given by equation (24). Nevertheless, figure 4 

demonstrates that the results of two algorithms are the same 

for 3-D position since the quadratic constraint (24) is not 

relevant to position. Otherwise it can also improve the 

solutions to the position of the sensor.    

   

Figure 7: solutions of the CIKF and IKF algorithms for 3-D position of the mobile sensor in a local frame 

 

Figure 8: solutions of the CIKF and IKF algorithms for 3-D attitude of the mobile sensor in a local frame 

Conclusions 

Here we introduced and compared a new family of Kalman 

filters including WTKF, IKF and CIKF with the traditional 

EKF algorithms for integrated navigation. We made three 

comparisons. First we examined the WTKF algorithm 

versus EKF algorithm. Then the IKF algorithm versus 

WTKF algorithm was investigated. Eventually the CIKF and 

IKF algorithms were compared. The results demonstrate that 

the proposed WTKF approach can make improvement 

compared to the existing EKF algorithms since not only it 

considers the random coefficient matrix in the DEIV model 

but also a general structure for the stochastic model can be 

satisfied with this algorithm. Moreover, for a more 

appropriate modeling of an integrated direct geo-referencing 

problem, we found that the IKF algorithm should be used 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W4, 2017 
Tehran's Joint ISPRS Conferences of GI Research, SMPR and EOEC 2017, 7–10 October 2017, Tehran, Iran

This contribution has been peer-reviewed.   
https://doi.org/10.5194/isprs-archives-XLII-4-W4-503-2017 | © Authors 2017. CC BY 4.0 License.

 
511



since it consider the noise of the design matrix 𝛷𝑖 in the

system equation. Furthermore, the CTKF algorithm shows 

approximately 2 degrees improvement for attitude in 

contrast to the IKF approach since the CIKF algorithm 

considered the quadratic constraint given by equation  
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