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ABSTRACT: 

Geodetic data processing is usually performed by the least squares (LS) adjustment method. There are two different forms for the LS 

adjustment, namely the batch form and recursive form. The former is not an appropriate method for real time applications in which 

new observations are added to the system over time. For such cases, the recursive solution is more suitable than the batch form. The 

LS method is also implemented in GPS data processing via two different forms. The mathematical model including both functional 

and stochastic models should be properly defined for both forms of the LS method. Proper choice of the stochastic model plays an 

important role to achieve high-precision GPS positioning. The noise characteristics of the GPS observables have been already 

investigated using the least squares variance component estimation (LS-VCE) in a batch form by the authors. In this contribution, we 

introduce a recursive procedure that provides a proper stochastic modeling for the GPS observables using the LS-VCE. It is referred 

to as the recursive LS-VCE (RLS-VCE) method, which is applied to the geometry-based observation model (GBOM). In this 

method, the (co)variances parameters can be estimated recursively when the new group of observations is added. Therefore, it can 

easily be implemented in real time GPS data processing. The efficacy of the method is evaluated using a real GPS data set collected 

by the Trimble R7 receiver over a zero baseline. The results show that the proposed method has an appropriate performance so that 

the estimated (co)variance parameters of the GPS observables are consistent with the batch estimates. However, using the RLS-VCE 

method, one can estimate the (co)variance parameters of the GPS observables when a new observation group is added. This method 

can thus be introduced as a reliable method for application to the real time GPS data processing. 

* Corresponding author

1. INTRODUCTION

The least squares (LS) parameter estimation has been 

extensively employed in geodetic data processing. There are 

two different forms for the LS namely batch form and recursive 

LS (RLS) form. In the batch form, the whole measurements are 

simultaneously processed through the adjustment procedure 

while the RLS processes the observations sequentially in time. 

The RLS method is therefore suitable for real time applications 

in which observations are collected sequentially over time.  

To obtain the best linear unbiased estimation (BLUE) using the 

least squares method, either in batch form or in recursive form, 

the realistic choice of the stochastic model of the observables is 

an essential issue. This describes the statistical properties of 

observables by means of a covariance matrix. The covariance 

matrix of observables is relatively known and expressed as an 

unknown linear combination of known cofactor matrices for 

most geodetic applications. The estimation of the unknown 

(co)variance parameters is referred to as variance component 

estimation (VCE). There are many different methods for VCE 

such as best invariant quadratic unbiased estimator (BIQUE) 

(Koch 1978, 1999), minimum norm quadratic unbiased 

estimator (MINQUE) (Rao 1971 and Junhuan et al 2011), 

restricted maximum likelihood (REML) estimator (Koch, 1986) 

and the least squares variance component estimation (LS-VCE) 

(Teunissen 1988; Teunissen and Amiri-Simkooei 2006, 2008 

and Amiri-Simkooei 2007). 

GPS data processing is usually performed using the LS method 

in a recursive manner via a sequential filter, i.e., a least squares 

sequential filter or discrete Kalman filter. A realistic stochastic 

model for the GPS observables is therefore necessary for high-

precision GPS positioning. The noise characteristics of GPS 

observables has been investigated by Amiri-Simkooei and 

Tiberius (2007), Amiri-Simkooei et al. (2006, 2007, 2009, 

2013), Bischoff et al. (2006), Tiberius and Kenselaar (2000, 

2003), Teunissen et al. (1998), Hartinger and Brunner (1999), 

Wang et al. (1998, 2002), and Satirapod et al. (2002). Amiri-

Simkooei et al. (2009, 2013) have been applied the LS-VCE 

algorithm to GPS observables using the geometry-free 

observation model (GFOM) and the geometry-based 

observation model (GBOM), respectively. They applied the LS-

VCE to the GPS observables in a batch form. This causes the 

high computational time needed for the batch solution. To 

overcome such a problem, the entire time span of the GPS 

observations was divided into a few groups, each consisting of a 

few consecutive epochs. The unknown (co)variance parameters 
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k p   can then be separately estimated for each group 

using the LS-VCE method. For a Kronecker and block structure 

of the functional and stochastic models, one can show that the 

final estimates are just the arithmetic mean of the individual 

estimates over the groups.  

In the case of GPS data processing, the stochastic model can 

represent unmodeled systematic errors, multipath and noise. 

Therefore to adapt the stochastic model with the environment, 

the stochastic model must be properly chosen in real time so 

that the unknown parameters and the stochastic model are both 

updated as new data arrive over time. In this contribution, we 

look for a recursive procedure providing a proper stochastic 

modeling for GPS observables using the LS-VCE method. 

This paper is organized as follows. The RLS method is first 

introduced and described in details in the next section. We then 

explain how the recursive LS-VCE is implemented in GPS 

relative positioning. In order to assess the noise characteristics 

of GPS observables, the implementation results of the proposed 

method are then provided and compared with those obtained by 

the batch solution. Finally we draw some conclusions in the last 

section. 

 

2. RECURSIVE LEAST SQUARES (RLS) 

The RLS is an appropriate method for sequential rather than 

batch processing. Consider the following partitioned linear 

model of observation equations:   
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where E and D denote the mathematical expectation and 

dispersion operators, respectively, 
1

y
 

and 
2

y
 

are the m1-

vector of the old observations and the m2-vector of the new 

observations, respectively, x
 

is the n-vector of unknown 

parameters, 
1

A
 

and 
2

A  are the 
1

m n  and 
2

m n  

corresponding design matrices, respectively, and 
1

y
Q

 
and 

2
y

Q  

are the covariance matrices of the observables 
1

y
 
and 

2
y , 

respectively. The correlation between 
1

y
 
and 

2
y  is assumed to 

be absent (i.e. 
1 2

0
y y

Q  ). 

The model of observation equations in Eq. (1) is also equivalent 

to the following model (Teunissen 2000)   
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where  
(1)

x̂   and 
( 1 )

x̂
Q , the least squares estimate of the 

unknowns
 

and its covariance matrix obtained from the first 

group of observations, i.e., 
1

1 1 1
( ) ; ( )

y
E y A x D y Q  , are 

of the form  
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The recursion of the LS solution of Eq. (2) is then of the form 

(Teunissen 2000, 2001, 2005) 
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   is the gain matrix of 

the recursive least squares. Also the covariance matrix of the 

least squares estimate of 
(2)x̂  is as follows 
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The RLS method can be implemented in GPS data processing 

so that the estimated unknowns (relative receiver position and 

double difference (DD) integer ambiguities on the L1 or L2 in 

the case of GPS relative positioning) are updated when new 

observations are added in sequential epochs. In the next 

subsection, the GBOM model is briefly explained, which here is 

considered to be the functional model for assessing the noise 

characteristics of GPS observables in a recursive manner.  

 

2.1 GPS Geometry-Based Observation Model (GBOM) 

 

The GBOM model is a commonly used model for high-

precision GPS positioning from code and phase observations 

using a relative GPS receiver setup. In the model, the 

observations are the DD pseudorange and phase observation on 

the L1 or L2 frequency. The unknown vector consists of the 

unknown baseline components between the reference and rover 

receivers and the DD integer ambiguities on the L1 or L2 

(Teunissen, 1997, Odijk 2008 and Amiri-Simkooei et al. 2013). 

Ignoring the DD atmospheric (ionospheric and tropospheric) 

delays, the observation equations of the GBOM at epoch 
k

t  is 

of the form  
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 (6) 

In the preceding equation, 
DD

P  and 
DD

  denote the DD 

pseudorange and phase observations between two receivers and 

two satellites on the L1 or L2 frequency, respectively, 
k

A  is the 

design matrix, the vector g consists of the unknown baseline 

components between the reference and rover receivers and a is 

the vector of DD integer ambiguities on the L1 or L2.  

At first, the unknowns of Eq. (6) are obtained using some initial 

epochs. The unknown vector can then be updated using Eqs. (3-

5) recursively when new observations related to the consecutive 

epochs are added.    

2.2 A realistic stochastic model of GPS observables 

 

The complete structure of stochastic model of the GPS 

observables considering different variance components for 

observables (C1, P1, L1 and L2), correlations among 

observations, satellites elevation dependence of GPS 

observables precision and temporal correlations of observables 

is of the form (Amiri-Simkooei et al. 2009; 2013) 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W4, 2017 
Tehran's Joint ISPRS Conferences of GI Research, SMPR and EOEC 2017, 7–10 October 2017, Tehran, Iran

This contribution has been peer-reviewed.   
https://doi.org/10.5194/isprs-archives-XLII-4-W4-531-2017 | © Authors 2017. CC BY 4.0 License.

 
532



 

D

y C T E
Q                                                                 (7) 

where   is the Kronecker product of two matries. Table (1) 

represents the matrices 
C

 , 
T

  and 
E

  given in Eq. (7). 
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consisting of 10 unknown components (4 variances and 6 

covariances). 
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representing time correlation of the observables (K is the epochs 

of observations). 
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describing the satellite elevation dependence of GPS 

observables precession (k is the number of satellites, and the 

satellite number [1] is assumed to be the reference satellite). 

 

Table 1 Matrices 
C

 , 
T

  and 
E

  given in Eq. (7) 

 

In this contribution, the time correlation of observations is 

ignored, i.e., 
T K

I   where 
K

I  is an identity matrix of size 

K. However, to consider the satellites elevation effect on the 

GPS observables precision, an elevation-angle based sine 

function model is employed as follows  

2

[ ] 2

1

sin ( )
i

i
E

                                                                     (8) 

where 
2

[ ]i
 , the variance factors of 

E
 and 

i
E , denotes the 

elevation angle of the satellites. The unknown variance and 

covariance components of 
C

  are then estimated by the LS-

VCE method.  These parameters can be estimated in a batch 

form or in a recursive form. The first has been already 

investigated in Amiri-Simkooei et al. (2009; 2013). For more 

information the reader is referred to Amiri-Simkooei et al. 

(2009; 2013). In this contribution, we look for a recursive 

procedure providing a proper stochastic modeling for GPS 

observables using the LS-VCE method. 

 

3. LEAST-SQUARES VARIANCE COMPONENT 

ESTIMATION (LS-VCE) 

The structure of the covariance matrix 
y

Q  is generally 

expressed as an unknown linear combination of some known 

cofactor matrices as  

0
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k

Q Q Q


                                                              (9) 

where 0
Q  is the known part of the covariance matrix and 

; 1, ...,
k

Q k p  are the cofactor matrices such that the sum 

0
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p

y k k

k

Q Q Q


   is non-negative definite. The unknown 

(co)variance parameters ,  1, ...,
k

k p   can then be 

estimated as 
1

ˆ N l


 , where the entries of matrix N and 

vector l are given as (Amiri-Simkooei 2007)  
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  is an orthogonal 

projector and ˆ
A
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denotes the m-vector of residuals. The 

variances of the estimates ̂  is also expressed by the diagonal 

entries of the covariance matrix of the estimated (co)variance 

components, which is obtained as 
1

Q N



 . For more 

information about LS-VCE we refer to Teunissen and Amiri-

Simkooei (2008) and Amiri-Simkooei (2007). 

 

3.1 Application of LS-VCE to GPS observables stochastic 

modelling    

The covariance matrices of the observables should be properly 

defined for high-precision GPS positioning applications. We 

aim to assess the noise characteristics of the GPS observables 

using the GBOM in a recursive manner.  

To obtain the realistic stochastic model of the GPS observables, 

one should properly determine the three matrices 
C

 , 
T

  and 

E
  given in Eq. (7). In this contribution, the time correlation of 

observations is ignored, i.e., 
T K

I   and the satellites 

elevation effect on the GPS observables precision is modeled 

using an elevation-angle based sine function given in Eq. (8), 

i.e., the matrix 
E


 
is also known. However, the components of 

the matrix 
C

 are estimated using the LS-VCE method. These 

parameters can be estimated in a batch form or in a recursive 

form as follows: 

• Batch form: In this method, the entire time span of the 

GPS observations is divided into a few groups, each 

consisting of a few consecutive epochs. The unknown 

(co)variance parameters (here the components of the 

matrix 
C

 ) can then be separately estimated for each 

group. The final estimates of the unknown (co)variance 
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parameters are just the arithmetic mean of the individual 

estimates over the groups (Amiri-Simkooei et al. 2009; 

2013). 

• RLS-VCE: In this method, the components of the matrix 

C


 
are estimated recursively so that the (co)variance 

parameters are estimated when the new group of 

observations is added. Further descriptions are given 

hereinafter.  

3.2 Application of recursive LS-VCE to GBOM model  

In the first step, assume 
1
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y
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The least squares estimate of the unknowns
 

along with its 

covariance matrix can then be obtained which are denoted by  

(1)
x̂  and 

( 1 )
x̂

Q , respectively. The components of the matrix 
C

  

(4 variances and 6 covariances) can also be obtained using the 

LS-VCE method.  

Assuming the new group of observations is also added to the 

problem. Now again consider the following partitioned model 

of observation equations which is equivalent to the model of 

observation equations of Eq. (1)  
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where 
2

y C T E
Q      .  

The unknown components of the matrix 
C

  (4 variances and 6 

covariances) can also be obtained using the LS-VCE as 
1

ˆ N l


  where N and l are given by Eqs. (10 and 11). Note 

that in the batch method, these parameters are obtained for each 

group of observation, separately, i.e., we used only 

2
2 2 2

( ) ; ( )
y C T E

E y A x D y Q     . However, 

in the RLS-VCE algorithm, these parameters are estimated 

using the model given in Eq. (13) including both the LS 

estimates of the unknowns obtained from the previous groups 

and the new observations related to the next one. This is the 

main difference of the method with the batch method. Similarly, 

the final estimates of the unknown (co)variance parameters are 

the arithmetic mean of the individual estimates over the groups. 

 

4. RESULTS AND DISCUSSIONS  

To apply the RLS-VCE method, we used one zero baseline GPS 

data set. The receiver used in this experiment is Trimble R7 

corresponded to January 1th, 2004, from 12:25:00 to 13:15:00 

UTC. The total number of epochs is then 3000. The data set is 

collected at a meadow area close to Delft, the Netherlands with 

1-sec intervals providing the code and phase observations on 

both the L1 and L2 frequencies (namely, C1–P2–L1–L2).  

The noise characteristics of GPS observations are now 

investigated for both batch and recursive solution procedures. 

This section consists of two subsections. In the first part, the 

variances of the GPS observables for C1, P2, L1 and L2 

observables are provided. The covariances/correlations among 

the GPS observables are given in the second subsection.  

4.1 Variances of GPS observables        

In this contribution, the matrices 
E


 
and 

T
  are assumed 

known. The components of the matrix 
C

  are then estimated 

using the LS-VCE method in a batch form or in a recursive 

form. The elements on the principal diagonal of the matrix are 

the variances of the GPS observables (
1

2

C
 ,

1

2

P
 ,

1

2


  and 

2

2


 ) 

whereas the off-diagonal elements are the covariances between 

the observables.  

At first, the entire time span of the GPS observations for the 

data set we used is divided into 300 groups, each consisting of a 

10 consecutive epochs. The (co)variance parameters can then be 

estimated using the LS-VCE method in a batch manner or in a 

recursive manner. Applying the LS-VCE in a batch form, one 

can obtain the (co)variance parameters for each group of 

observations (here 300 groups) separately. In the recursive 

form, the (co)variances parameters can be estimated recursively 

when the new group of observations is added. Use is made of 

the model given in Eq. (13). Figures 1 and 2 show the 

groupwise estimate of the standard deviations of C1 and P2 and 

L1 and L2 for the Trimble R7 receiver, respectively, for both 

batch and recursive solutions. The results confirm the 

consistency between the batch estimates and the recursive ones. 

However, applying the LS-VCE method in a recursive manner 

provides a real time stochastic modeling for GPS observables as 

new data arrive over time. This is a great advantage of the RLS-

VCE compared to the batch one.  
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Fig. 1 Estimated standard deviations of GPS code observations 

(C1 and P2) for Trimble R7 receiver in cm for both batch and 

recursive methods 

For a better view, the estimated standard deviations of four GPS 

observation types for both solutions are presented in Table 2 (in 

mm). As mentioned, the final estimates of the unknown 

(co)variance parameters are just the arithmetic mean of the 

individual estimates over the 300 groups for both batch and 

recursive methods.  
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Fig. 2 Estimated standard deviations of GPS phase observations 

(L1 and L2) for Trimble R7 receiver in mm for both batch and 

recursive methods 

 

Table 2 Estimated standard deviations of four GPS observation 

types for both solution forms in mm 

Method C1 P2 L1 L2 

Batch 51.7 55.1 0.8 0.9 

RLS-VCE 51.8 55.1 0.8 0.9 

 

4.2 Correlations among GPS observables        

According to the description provided in the previous section, 

the covariances/correlations among the GPS observables are 

estimated using the LS-VCE method in both batch and 

recursive forms. We estimated the six correlations among C1 

and P2, C1 and L1, C1 and L2, P2 and L1, P2 and L2 and L1 

and L2, among them , for example, figure 3 provides the 

estimated correlations among the phase observations L1 and 

L2ferquencies for Trimble R7 receiver using both batch and 

recursive methods. The results indicated a significant 

correlation between the phase observations L1 and L2 of about 

0.9 for Trimble R7 receiver. Similarly again, the consistency 

between the batch estimates and the recursive ones is 

confirmed. 
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Fig. 3 Estimated correlations among phase observations on L1 

and L2 frequencies for Trimble R7 receiver for both batch and 

recursive methods 

5. CONCLUDING REMARKS  

The least squares (LS) adjustment procedure can be extensively 

used in geodetic data processing in two different but equivalent 

forms: 1) batch form and 2) recursive least squares (RLS) form. 

For real time applications in which observations are collected 

sequentially over time, the RLS method is preferred compared 

to the batch one. Concerning the LS adjustment method either 

in batch form or in recursive form, both functional and 

stochastic models should be properly defined. The realistic 

choice of the stochastic model of the observables is required to 

obtain the best linear unbiased estimation (BLUE). This is 

important for GPS data processing as well. The model we used 

here is the geometry-based observation model (GBOM). The 

model consisting of two parts: the functional and the stochastic 

models. The former is completely established. Therefore, the 

choice of the functional model for the GPS observables is not 

the subject of discussion in this contribution. However, 

choosing a realistic stochastic model for the GPS observables is 

necessary for high-precision GPS positioning which was the 

subject of the research. At first, the covariance matrix of 

observables has been expressed as an unknown linear 

combination of known cofactor matrices. The unknown 

(co)variance parameters can then be estimated using the 

different variance component estimation (VCE) methods. Here, 

we investigated the noise characteristics of the GPS observables 

using the least squares variance component estimation (LS-

VCE) method. The LS-VCE algorithm can be implemented to 

GPS observables in a batch manner or in a recursive manner. 

The former has already been investigated by Amiri-Simkooei et 

al. (2009, 2013). We proposed a recursive procedure providing 

a proper stochastic modeling for GPS observables using the LS-

VCE method.  

To consider the performance of the proposed method and to 

access the proper GPS observable covariance matrix, real data, 

collected by one GPS receiver Trimble R7 was used.  We 

employed the LS-VCE algorithm on the GPS observations for 

the two different cases batch and recursive forms. Applying the 

LS-VCE in a batch form, one can obtain the (co)variance 

parameters of the GPS observables for each group of 

observations separately. In the recursive form, the (co)variances 

parameters can be estimated recursively when the new group of 

observations is added. This is a great advantage of the RLS-

VCE rather than the batch one. The results confirmed that the 

proposed method has an appropriate performance so that the 

estimated (co)variance parameters of the GPS observables are 

completely consistent with the batch estimates. This method can 

thus be introduced as an efficient method to the GPS processing 

stage.   

 

REFERENCES 

Amiri-Simkooei, A.R., 2007. Least-squares variance component 

estimation: Theory and GPS applications. Ph.D. thesis, Delft 

Univ. of Technology, Delft, The Netherlands.   

Amiri-Simkooei, A.R., Tiberius, C.C.J.M., and Teunissen, 

P.J.G., (2006). Noise characteristics in high precision GPS 

positioning. P. Xu, J. Liu, A. Dermanis, eds., Proc., 6th Hotine-

Marussi Symp. of Theoretical and Computational Geodesy, 

Springer, Berlin, pp. 280–286. 

Amiri-Simkooei, A.R., and Tiberius, C.C.J.M., 2007. Assessing 

receiver noise using GPS short baseline time series. GPS 

Solutions, 11(1), pp. 21–35. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W4, 2017 
Tehran's Joint ISPRS Conferences of GI Research, SMPR and EOEC 2017, 7–10 October 2017, Tehran, Iran

This contribution has been peer-reviewed.   
https://doi.org/10.5194/isprs-archives-XLII-4-W4-531-2017 | © Authors 2017. CC BY 4.0 License.

 
535



Amiri-Simkooei, A.R, Teunissen, P.J.G., Tiberius, C.C.J.M., 

2009. Application of least-squares varinace component 

estimation to GPS observables. J Surv Eng., 135(4): pp. 149-

160. 

Amiri-Simkooei, A.R., Zangeneh-Nejad, F., and Asgari, J., 

2013. Least-squares variance component estimation applied to 

GPS geometry-based observation model. J Surv Eng., 139(4): 

pp. 176-187. 

Bischoff, W., Heck, B., Howind, J., and Teusch, A., 2006. A 

procedure for estimating the variance function of linear models 

and for checking the appropriateness of estimated variances: A 

case study of GPS carrier-phase observations. J. Geodesy, 

Berlin, 79(12), pp. 694–704. 

Hartinger, H., and Brunner, F. K., (1999). Variances of GPS 

phase observations: The SIGMA- model. GPS Solutions, 2(4), 

pp. 35–43. 

Junhuan, P., Yun, S., Shuhui, L., and Honglei, Y., 2011. 

MINQUE of variance-covariance components in linear Gauss-

Markov models. J. Surv. Eng., 137(4), pp. 129–139. 

Koch, K.R., 1978. Schätzung von varianzkomponenten. 

Allgemeine Vermessungs-Nachrichten, 85: pp. 264–269.  

Koch, K.R., 1986. Maximum likelihood estimate of variance 

components. Boll. Geod. Sci. Affini, 60: pp. 329–338. (Ideas by 

A.J. Pope). 

Koch, K.R., 1999. Parameter estimation and hypothesis testing 

in linear models. Springer Verlag, Berlin. 

Odijk, D., 2008. GNSS Solutions: What does geometry-based 

and geometry-free mean in the context of GNSS? Inside GNSS, 

3(2), pp. 22–24. 

Rao, C.R., 1971. Estimation of variance and covariance 

components - MINQUE theory. Journal of multivariate 

analysis, 1(3): pp. 257–275. 

Satirapod, C., Wang, J., and Rizos, C., 2002. A simplified 

MINQUE procedure for the estimation of variance-covariance 

components of GPS observables. Survey Rev., 36(286), pp. 

582–590. 

Teunissen, P.J.G., 1997. The geometry-free GPS ambiguity 

search space with a weighted ionosphere. J. Geodesy, Berlin, 

71(6), pp. 370-383.  

Teunissen, P.J.G., 1988. Towards a least-squares framework for 

adjusting and testing of both functional and stochastic model. 

Internal research memo, Geodetic Computing Centre, Delft. A 

reprint of original 1988 report is also available in 2004, No. 26. 

Teunissen, P.J.G., Jonkman, N.F., and Tiberius, C.C.J.M., 

1998. Weighting GPS dual frequency observations: Bearing the 

cross of cross-correlation. GPS Solutions, 2(2), pp. 28–37. 

Teunissen, P.J.G., 2000. Adjustment theory: an introduction. 

VSSD: Delft University Press. Series on Mathematical Geodesy 

and Positioning. 

Teunissen, P.J.G., 2001. Dynamic data processing: Recursive 

least-squares. VSSD: Delft University Press. Series on 

Mathematical Geodesy and Positioning. 

Teunissen, P.J.G., Simons, D.G., and Tiberius, C.C.J.M., 2005. 

Probability and observation theory. Delft: Delft University of 

Technology. 

Teunissen, P.J.G., and Amiri-Simkooei, A.R., 2006. Variance 

component estimation by the method of least-squares. Proc., 

6th Hotine-Marussi Symp. of Theoretical and Computational 

Geodesy, IAG Symposia, Vol. 132, P. Xu, J. Liu, and A. 

Dermanis, eds., Springer, Berlin, 273–279 

Teunissen, P.J.G., and Amiri-Simkooei, A.R., 2008. Least-

squares variance component estimation. J. Geodesy, Berlin, 

82(2), pp. 65–82 

Tiberius, C.C.J.M., and Kenselaar, F., 2000. Estimation of the 

stochastic model for GPS code and phase observables. Survey 

Rev., 35(277), pp. 441–454. 

Tiberius, C.C.J.M., and Kenselaar, F., 2003. Variance 

component estimation and precise GPS positioning: Case study. 

J. Surv. Eng., 129(1), pp. 11–18.

Wang, J., Stewart, M.P., and Tsakiri, M., 1998. Stochastic 

modeling for static GPS baseline data processing. J. Surv. Eng., 

124(4), pp. 171–181. 

Wang, J., Satirapod, C., and Rizos, C., 2002. Stochastic 

assessment of GPS carrier phase measurements for precise static 

relative positioning. J. Geodesy, Berlin, 76(2), pp. 95–104. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W4, 2017 
Tehran's Joint ISPRS Conferences of GI Research, SMPR and EOEC 2017, 7–10 October 2017, Tehran, Iran

This contribution has been peer-reviewed.   
https://doi.org/10.5194/isprs-archives-XLII-4-W4-531-2017 | © Authors 2017. CC BY 4.0 License. 536




