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ABSTRACT: 

Nowadays change detection is an important role in civil and military fields. The Synthetic Aperture Radar (SAR) images due to its 

independent of atmospheric conditions and cloud cover, have attracted much attention in the change detection applications. When 

the SAR data are used, one of the appropriate ways to display the backscattered signal is using covariance matrix that follows the 

Wishart distribution. Based on this distribution a statistical test for equality of two complex variance-covariance matrices can be 

used. In this study, two full polarization data in band L from UAVSAR are used for change detection in agricultural fields and 

urban areas in the region of United States which the first image belong to 2014 and the second one is from 2017. To investigate the 

effect of polarization on the rate of change, full polarization data and dual polarization data were used and the results were 

compared. According to the results, full polarization shows more changes than dual polarization. 

1. Introduction

Change detection is a process that used a pair of remote 

sensing data from a geographical area at different times to 

obtain the changes. It plays an important role in civil and 

military fields. 

Various types of remote sensing data can be used for this 

purpose. SAR data due to its capability that it is independent 

of atmospheric conditions and solar radiation and cloud 

cover, has attracted much attention in change detection 

(Conradsen, Nielsen, Schou, & Skriver, 2003) and has been 

applied to examine changes in land use and land cover, 

disaster management, land surface materials and etc. 

The Radar backscattering is sensitive to the dielectric 

characteristics of the plant and the soil, to the plant structure, 

to the surface roughness and to the canopy structure (F. T. 

Ulaby, Moore, & Fung, 1986) (Skriver, Svendsen, & 

Thomsen, 1999). 

The polarimetric SAR measure the amplitude and phase of 

the backscattered signal in four combinations of the linear 

receive and transmit polarizations: horizontal–horizontal 

(HH), horizontal–vertical (HV), vertical–horizontal (VH), 

and vertical– vertical (VV) (Fawwaz T. Ulaby & Elachi, 

1990). These signals make the complex backscattering 

metrics that relates to the incident and scattered electric field. 

Another way to show backscattered signal is using the 

covariance matrix. The average covariance matrix is shown 

in Equation (1) (Conradsen et al., 2003). 

< 𝐶 >full= [

< 𝑆hhS∗
hh > √2 < 𝑆hhS∗

hv > < 𝑆hhS∗
vv >

√2 < 𝑆hvS∗
hh > 2 < 𝑆hvS∗

hv > √2 < 𝑆hvS∗
vv >

< 𝑆vvS∗
hh > √2 < 𝑆vvS∗

hv > < 𝑆vvS∗
vv >

] (1) 

* Corresponding author 

Where <∙> is ensemble averaging; * is complex 

conjugation; and Srt is the complex scattering amplitude for

receive polarization r and transmit polarization t. 

 Reciprocity, which normally applies to natural targets, gives 

Shv=Svh  and results in the covariance matrix (1) with rank

3. < 𝐶 > follows a complex Wishart distribution.

Change detection methods with SAR data are divided into

two categories: the supervised method and unsupervised

method. The supervised methods require prior information

and training data but the unsupervised method makes a direct

comparison between two SAR images (Camps-Valls,

Gomez-Chova, Munoz-Mari, Rojo-Alvarez, & Martinez-

Ramon, 2008).

Unsupervised methods generally consist of the following

three steps, 1) pre-processing of  the two images including

geometric correction and removal SPECKLE noise by using

filters such as mean filter, median filter or Lee filter, 2)

Generating different images from SAR data by using

operators such as the subtraction or the ratio operator and

etc., 3) the change map is generated through analysing the

difference image that this analysis generally is threshold

method or  feature extraction method (Hao Li, Maoguo

Gong, & Jia Liu, 2015).

Nowadays many studies have been done in this field, various

methods are proposed for change detection with SAR

images. Like the log-ratio method or likelihood ratio

operator which is a statistically optimized approach to detect

changes within a pair of SAR images.

When the covariance matrix is used for SAR, the complex

Wishart distribution considered for it, based on this

distribution a statistical test for equality of two variance-

covariance matrices and the associated asymptotic

probability of obtaining a smaller value of the test statistic

are given.
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2. METHODOLOGY

A fully polarimetric SAR measures the 2×2 complex 

scattering matrix at each resolution cell on the ground. 

If 𝑆𝑟𝑡 denotes the complex scattering amplitude for receive

and transmit polarizations, then reciprocity, which normally 

applies to natural targets, gives 𝑆ℎ𝑣 = 𝑆𝑣ℎ (F. T. (Fawwaz T.

Ulaby & Elachi, 1990). 

 Assuming reciprocity, the scattering matrix is represented 

by the three-component complex target vector s = 

[𝑆ℎℎ𝑆ℎ𝑣𝑆𝑣𝑣]Tthat T means transpose.

The speckle noise in the SAR data can be filtered by using 

spatial averaging. In this so-called multilook case 

appropriate representation of the backscattered signal is the 

covariance matrix in which the average properties of a group 

of resolution cells can be expressed in a single matrix formed 

by the outer products of the averaged target vectors.  

The average covariance matrix is defined as equation 1. 

The covariance matrix contain both co- and cross-polarized 

scattering matrix components (< 𝑆hvS∗
hv > and <

𝑆hvS∗
vv >) often have little information.

For randomly distributed targets with azimuthal symmetry, 

the elements are zero [16] so the covariance matrix is: 

< 𝐶 >azim= [

< 𝑆hhS∗
hh > 0 < 𝑆hhS∗

vv >
0 2 < 𝑆hvS∗

hv > 0
< 𝑆vvS∗

hh > 0 < 𝑆vvS∗
vv >

] (2) 

Spaceborne instruments often send only one polarization, 

say horizontal, and receive both polarizations giving rise to 

dual polarization data. In this instrument the components are 

< 𝑆hhS∗
hh >, < 𝑆hhS∗

hv >and < 𝑆hvS∗
hv >and covariance

matrix has rank 2 and is showed in equation3. 

< 𝐶 >dual= [
< 𝑆hhS∗

hh > < 𝑆hhS∗
hv >

< 𝑆hvS∗
hh > < 𝑆hvS∗

hv >
] 

(3) 

2.1 Complex normal distribution 

We say that a -dimensional random complex vector Z 

follows a complex multivariate normal distribution 

with mean 0 and dispersion matrix Σ, i.e., 

𝑍 = [𝑍1, … , 𝑍2]𝑇 ∈ 𝑁𝑐(0, Σ)    (4) 

If the frequency function is 

𝑓𝑧 =
1

𝜋𝑝|Σ
exp{−𝑧∗Σ−1𝑧} =

1

𝜋𝑝|Σ
exp {−𝑡𝑟[Σ−1𝑧𝑧∗𝑇]}   (5)

tr denotes the trace of a matrix; and ∗ 𝑇 denotes 

complex conjugation ( *) and transpose (T). 

2.2 Complex Wishart distribution 

We say that a Hermitian positive definite random p × 

p matrix X follows a complex Wishart distribution, i.e. 

𝑋 ∈ 𝑊𝑐(𝑝, 𝑛, Σ)  (6) 

If the frequency function is 

𝑤(𝑥) =
1

Γ𝑝(𝑛)

1

Σ𝑛 𝑥𝑛−𝑝 exp{−𝑡𝑟[Σ−1𝑤]}   (7) 

Where 

Γ𝑝 = 𝜋
𝑝(𝑝−1)

2 ∏ Γ
𝑝
𝑗=1 (𝑛 − 𝑗 + 1)  (8) 

The frequency function is defined for w positive 

definite. If X and Y are independent and both follow 

complex Wishart distributions 

𝑋 ∈ 𝑊𝑐(𝑝, 𝑛, Σ)𝑎𝑛𝑑, 𝑌 ∈ 𝑊𝑐(𝑝, 𝑚, Σ)       (9) 

Then their sum also follows a complex Wishart 

distribution 

𝑆 = 𝑋 + 𝑌 ∈ 𝑊𝑐(𝑝, 𝑛 + 𝑚, Σ)    (10) 

2.3 Test to detect changes of Two Complex Covariance 

Matrices 

If the independent p × p Hermitian matrices X and Y have 

Wishart distribution (X = n< 𝐶 >X and Y = m< 𝐶 >Y, n and

m are the number of looks), i.e., X ∈ WC(p, n,Σx) with Σˆx=
1 

n
X and Y ∈WC (p, m,Σy) with Σˆy = 

1

m
Y, then the statistic to 

test the so-called null hypothesis H0 for equality of the two

complex Wishart matrices is 

H0:     Σx  =Σy     (11) 

Against all alternatives, is 

Q =
(n + m)p(n+m)

npnmpm

|X|n|Y|m

|X + Y|m+n       (12) 

Where | · | shows the determinant; Q ∈ [0, 1] with Q = 1 for 

equality. For the logarithm of Q, we have 

ln Q = p[(n + m) ln(n + m) − n ln(n) -mln(m)] + n 

ln |X|+ mln |Y| − (n + m) ln |X + Y|       (13) 

If n = m 

ln Q = n(2p ln 2 + ln |X|+ ln |Y| − 2 ln |X + Y|)       (14) 

If 

ρ = 1 −
2ρ2−1

6ρ
(

1

n
+

1

m
−

1

n+m
)    (15) 

And 

ω2 =
p2

4
(1 −

1

ρ
)

2
+

p2(p2−1)

24ρ2 . (
1

n2 +
1

m2 −
1

(n+m)2)   (16) 

If the detected value of −2ρln Q is z = −2ρln qobs, then the

probability of finding a smaller value of −2ρln Q is: 

P{−2ρ ln Q ≤ Z}≈ P{X2(p2)  ≤ Z}+ω2[P{X2(p2 +
4) ≤ Z − P{X2(p2)  ≤ Z}] 

 (17) 

P {Q <qobs} is equal to 1 − P {−2ρ ln Q ≤ z} that it is the

probability of equality, for example, the probability of no 

change. 

We know that for full polarimetry data the p is 3, and for 

dual polarimetry the p is 2, and for HH, HV, or VV data p = 

1. If p is equal to 1, the equation 12 converts to:
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Q =
(n + m)(n+m)

nnmm

|X|n|Y|m

|X + Y|m+n 
 

(18) 

 

Which is similar to the likelihood ratio test statistic for the 

equality of two gamma parameters (Touzi, Lopes, & 

Bousquet, 1988) (LOPES, NEZRY, TOUZI, & LAUR, 

2010).  

In this case, the test statistic (mY ) / (nX) used an F(2m, 2n) 

distribution.  

The expression in (17) is a second-order series expansion. 

Studies show that inclusion of more terms improves the 

approximation only very little. 

In azimuthal symmetry case, the products between the co- 

and cross-polarized terms (i.e., the absolute values of 

ShhS∗
hv and ShvS∗

vv) often contain little information, and 

for the azimuthal symmetry case they are set to zero. In this 

case, by swapping first rows and then columns two and three 

in < 𝐶 >azim in (2), we have: 

 

[

< 𝑆hhS∗
hh > < 𝑆hhS∗

hv > 0
< 𝑆hvS∗

hh > < 𝑆vvS∗
vv > 0

0 0 < 𝑆hvS∗
hv >

] = [
X1 0

0 X2
] 

 

(19) 

 

Where X1is p1 × p1 and X2 = < 𝑆hvS∗
hv > isp2 × p2. If 

f1 = p1
2 

f2 = p2
2 

f = f1 + f1 

ρ
1

= 1 −
2f1

2 − 1

6ρ
1

(
1

n
+

1

m
−

1

n + m
) 

ρ
2

= 1 −
2f2

2 − 1

6ρ
2

(
1

n
+

1

m
−

1

n + m
) 

ρ =
1

f
(f1ρ

1
+ f2ρ

2
) 

ω2 =
f

4
(1 −

1

ρ
)

2
+

f1(f1−1)+f2(f2−1)

24ρ2 . (
1

n2 +
1

m2 −
1

(n+m)2)   

(20) 

 

So the probability of finding a smaller value of −2ρ ln Q is 

equation 21. 

 

P{−2ρ ln Q ≤ Z}≈ P{X2(f) Z}+ω2[P{X2(f + 4) ≤ Z −
P{X2(f)  ≤ Z}]                                                         (21) 

 

In this project, there are some issues of computer 

implementation such as calculation of determinants and 

calculation of probability. This section addresses these 

issues. 

If we consider that z = n < C > as (n is the number of looks) 

Z = n [

< ShhS∗
hh > < ShhS∗

hv > < ShhS∗
vv >

< ShvS∗
hh > < ShvS∗

hv > < ShvS∗
vv >

< SvvS∗
hh > < SvvS∗

hv > < SvvS∗
vv >

] =

[

k α ρ
α∗ ξ b
ρ∗ b∗ ζ

]                                                               (22) 

The determinant will be 

|𝑍| = 𝑘𝜉𝜁 + 𝛼𝑏𝜌∗ + 𝜌𝛼∗𝑏∗ − |𝜌|2𝜉 − |𝑏|2𝑘 − |𝛼|2𝜁    (23) 

The first, fourth, fifth, and sixth terms are real. The second 

and third terms are complex and each other's conjugate 

 

αbρ∗ = (aR + iaI)(bR + ibI)(ρR − iρI)
= ρR(aRbR − aIbI) + ρI(aIbR + aRbI)
+ i[ρR(aIbR + aRbI) − ρI(aRbR − aIbI)] 

ρα∗b∗ = (aR − iaI)(bR − ibI)(ρR + iρI)
= ρR(aRbR − aIbI) + ρI(aIbR + aRbI)
− i[ρR(aIbR + aRbI) − ρI(aRbR − aIbI)] 

 
In this equation, the imaginary sections are removed and the 

real parts are combined together. 

To find that there are a smaller value of −2ρ lnQ, this 

probability can be found by the gamma function γ(
ϑ

2
,

X2

2
). 

Where ϑ is the number of degrees of freedom and X2 is the 

test statistic 

P{−2ρ ln Q ≤ Z}≈ [1 − ω2]γ (
f

2
, −ρ lnQ) + ω2γ (

f

2
+

2, −ρ lnQ)                                                                     (24) 

3. Experiment and results 

 

 

 

Full polarimetry UAVSAR data are used in this research. 

UAVSAR is an L-band synthetic aperture radar (SAR) that 

specifically designed to acquire airborne repeat track SAR 

data for differential interferometric measurements. The radar 

is designed to be operable on a UAV (Unpiloted Aerial 

Vehicle) but initially be demonstrated on a NASA 

Gulfstream III aircraft (Fore et al., 2015). Table 1 shows the 

main characteristics of the UAVSAR. The images are 

acquired from NASA/JPL dataset which are at SLC (Single 

Look Complex) format. General information about these 

images is represented in table 2. 

According to the SAR geometry imaging, these images 

include geometric distortions that should be geometrically 

calibrated. As the radar systems are side looking, geometric 

distortion such as foreshortening and layover are occurred. 

To remove these distortions, information about sensor 

position, imaging geometry and altitude from ellipsoid 

should be available (Esmaeilzadeh & Amini, 2016). 

Elimination of the geometric errors and georeferencing of 

two UAVSAR images perform as a pre-processing step. The 

elevation model which used for georeferencing is SRTM v3 

digital elevation model. 

To reduce the speckle noise of SLC images, the images must 

be multi-looked in range and azimuth directions. The 

number of looks in range and azimuth is determined such 

that the spatial resolution of the image in the range and 

azimuth direction are approximately equal. For both images, 

the number of look in range direction (n) and azimuth 

direction (m) are 3 and 12, respectively. Subsequently, the 

number of line and sample are reduced to 14044 and 3300 

for the first dataset, 14109 and 3300 for the second dataset, 

respectively. Multi-looking results show that the spacing in 

range and azimuth are 5 m and 7.2 m for both datasets, 

respectively. After georeferencing the images and for seeing 
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the images visually better, the images are resampled such 

that the spatial resolution in both directions are equal to 5 m. 

both images have the same size because, in proposed change 

detection algorithm, the input images must have the same 

size and must be coregistered together. Figure 1 shows the 

georeferenced and multilooked images in Google Earth 

software. The red rectangles show the Pauli image of 

covered area that was acquired by UAVSAR in 2014 and 

2017.

Frequency Wavelength 
Intrinsic 

resolution 
Polarization 

Swath wide 

at altitude 

13800 m 

Look 

angle 

range 

Operating 

altitude range 

Ground 

speed 

range 

1.2575 GHz 

(L-band) 
23.79 cm 

1.8 m slant range 

– 0.8 m azimuth 
Full 16 Km 25˚ - 65˚ 

2000 m – 

18000 m 

100 – 250 

m/s 

Table 1 Key parameters of UAVSAR  

 

Area 
Approximate 

center latitude 

Approximate 

center longitude 

Processing 

level 

Acquisition 

data 
Line Sample 

Slant 

range 

spacing 

Azimuth 

spacing 

Sacramento, 

USA 
38.32˚ N 121.95˚ W SLC 

2014 

August 29 
168533 9900 1.6655m 0.6 m 

2017 march 

3 
169312 9900 1.6655m 0.6 m 

Table 2 Information of UAVSAR used images 

  
a b 

Figure 1 Georeferenced and multi-looked Pauli images in Google Earth software. a) 2014 data – b) 2017 data

  

Up to now, these processes are considered as the pre-

processing step. Due to the volume of the used data, we crop 

six same area that namely A to F from both images to 

illustrate the performance of proposed method. Three small 

areas are cropped in both datasets that named as A, B and C. 

These small areas are chosen because the changes in these 

images are clearly visible and we can create change maps by 

manual digitizing for validation of proposed method. So that, 

the digitized maps consider as ground truth. Another three 

larger areas are selected in both dataset that named as D, E 

and F. the proposed algorithm is applied in these areas, but 

these areas are larger than first all and we can’t create ground 

truth digitized maps. So, the achieved change maps are 

presented just for showing the performance of proposed 

method in the urban and agricultural area. In area A, B and 

C, by comparison of figure 2 and 3, we can clearly see that 

some new buildings are constructed and some are destroyed. 

Figure 2 and 3 show the cropped areas A to F of reference 

images with a white rectangle for 2014 and 2017 images, 

respectively. The red, green and blue bands are HH, HV and 

VV polarization, respectively. Changes in both images are 

visually obvious. Now, we want to show these changes in 

these six areas with proposed method in this article. 

The proposed method is performed in dual and full 

polarimetry to comprehend that what is the effect of the 

polarization in change detection. For full polarimetry, four 

polarization images, HH, HV, VH and VV are used. For dual 

polarimetry, three combinations of polarization are 

considered. First of all, is using HH and VH polarizations. 

Another one is using VV and HV polarization and the last 

one is using HH and VV polarizations as inputs of the 

change detection algorithm. The impact if polarization is 

evaluated for areas A to F which have urban and agricultural 

areas for all of the combinations. 

Table 3 represents the P and change map accuracy for dual 

and full polarimetry change detection of defined areas A to 

F. The accuracies represented in the second row are just for 

A, B and C area for full polarimetric change detection 

because the ground truth of them are available. As the P-

value for full polarimetric change detection in areas A, B and 

C are less than combinations of dual polarimetry change 

detection, the accuracies represented belong to full 

polarimetric change detection. 

If P equals to 0, it is demonstrated that all the scene has 

changed and if P equals to 1, it is demonstrated that no 

change occurs in the scene. As the table 3 shows, the highest 
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rate of change in all areas A to F is achieved when full 

polarimetric data is used. 

According to the table 3 that shows the change probabilities 

(P), you can see that using the full polarimetric data in 

change detection algorithm is more accurate than all of the 

combinations of dual polarization change detection.  

Figures 4, (a) to (f) show the change map for areas A to F 

according to full polarimetric change. These figures show 

the highest rate of change in all of the combinations. It is 

noticeable that the pixel size of selected areas A to D are not 

equal but the size of data has no effect on the value of 

parameter P. Full polarimetry change detection is the best 

input for proposed method then all of the dual polarization 

combinations and full polarimetric change maps are slightly 

better than dual polarization for these selected scenes but 

dual polarization may be appropriate for other scenes which 

they have different targets and landscapes. 

 

 

4. CONCLUSION 

 

In this paper, a statistical test for equality of complex 

Wishart distributed covariance matrix and an associated 

asymptotic probability value of the test statistic have been 

determined. According to the potential of the proposed test 

statistic, the extracted values have been performed to change 

detection in full and dual polarization UAVSAR data for six 

test area with predominant agricultural and urban area. Two 

images acquired with 3-year interval have been used. 

Data have been downloaded from NASA/JPL dataset which 

they have speckle noise, inherently. For reducing speckle 

noise, multi-looking in range and azimuth direction have 

been applied. The multi-looked SAR images have the 5m 

spatial resolution in both directions. Then, the images have 

been coregistered together and georeferenced as inputs of 

change detection algorithm. 

In change detection algorithm, full polarization and the 

combination of dual polarization change detection have been 

performed in selected areas. The impact of polarization in 

change detection has been checked out and the results 

showed that the full polarimetric change detection 

demonstrates more changes rate than all combinations of the 

dual polarization change detection algorithm. It must be said 

that the changes in selected areas were visually obvious and 

distinct especially in the urban area and constructed 

buildings but in this article, the percentage of changes have 

not been determined in large areas. It was due to the lack of 

ground truth data and we could not provide an SAR data with 

the reliable source of ground truth. If the ground truth was 

available for these areas, the percentage of changes in areas 

could be calculated.

 A B C D E F 

Overall Accuracy 79.85 80.41 87.33 - - - 

Full polarimetry 0.0715 0.0477 0.0646 0.1156 0.0239 0.0614 

Dual (HH/HV) 

polarimetry 
0.1032 0.0644 0.0888 0.1262 0.0289 0.0643 

Dual (HH/VV) 

polarimetry 
0.0740 0.0501 0.0754 0.1289 0.0270 0.0911 

Dual (VV/VH) 

polarimetry 
0.0790 0.0557 0.0703 0.1263 0.0290 0.0723 

Table 3 Change probability (P) over area A to D for L-band UAVSAR data 
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Figure 2 Georeferenced image, A (260×128 pixel), B (200×87 pixel), C (94×48 pixel), D (541×1025 pixel), E (2252×1202) and F 

(1672×1051 pixel) of 2014 UAVSAR image. The red, green and blue bands are HH, HV and VV polarization, respectively. 

 
Figure 3 Georeferenced image, A (260×128 pixel), B (200×87 pixel), C (94×48 pixel), D (541×1025 pixel), E (2252×1202) and F 

(1672×1051 pixel) of 2017 UAVSAR image. The red, green and blue bands are HH, HV and VV polarization, respectively 
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. 

 
  

a b c 

 
d 

 
e 

 
f 

Figure 4 a-f) Change maps of area A to F due to full polarimetric change detection, respectively 
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