FUSION OF NON-THERMAL AND THERMAL SATELLITE IMAGES BY BOOSTED SVM CLASSIFIERS FOR CLOUD DETECTION
Keywords: boosted SVM, Landsat, cloud detection, majority vote
Abstract. The goal of ensemble learning methods like Bagging and Boosting is to improve the classification results of some weak classifiers gradually. Usually, Boosting algorithms show better results than Bagging. In this article, we have examined the possibility of fusion of non-thermal and thermal bands of Landsat 8 satellite images for cloud detection by using the boosting method. We used SVM as a base learner and the performance of two kinds of Boosting methods including AdaBoost.M1 and σ Boost was compared on remote sensing images of Landsat 8 satellite. We first extracted the co-occurrence matrix features of non-thermal and thermal bands separately and then used PCA method for feature selection. In the next step AdaBoost.M1 and σ Boost algorithms were applied on non-thermal and thermal bands and finally, the classifiers were fused using majority voting. Also, we showed that by changing the regularization parameter (C) the result of σ Boost algorithm can significantly change and achieve overall accuracy and cloud producer accuracy of 74%, and 0.53 kappa coefficient that shows better results in comparison to AdaBoost.M1.