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ABSTRACT: 

Hyperspectral image classification has been one of the most popular research areas in the remote sensing community in the past decades. 

However, there are still some problems that need specific attentions. For example, the lack of enough labeled samples and the high 

dimensionality problem are two most important issues which degrade the performance of supervised classification dramatically. The main 

idea of semi-supervised learning is to overcome these issues by the contribution of unlabeled samples, which are available in an enormous 

amount. In this paper, we propose a graph-based semi-supervised classification method, which uses both spectral and spatial information 

for hyperspectral image classification. More specifically, two graphs were designed and constructed in order to exploit the relationship 

among pixels in spectral and spatial spaces respectively. Then, the Laplacians of both graphs were merged to form a weighted joint graph. 

The experiments were carried out on two different benchmark hyperspectral data sets. The proposed method performed significantly better 

than the well-known supervised classification methods, such as SVM. The assessments consisted of both accuracy and homogeneity 

analyses of the produced classification maps. The proposed spectral-spatial SSL method considerably increased the classification accuracy 

when the labeled training data set is too scarce. When there were only five labeled samples for each class, the performance improved 5.92% 

and 10.76% compared to spatial graph-based SSL, for AVIRIS Indian Pine and Pavia University data sets respectively. 

1. INTRODUCTION

Supervised classification methods rely only on labeled samples for 

training procedure. As a result, their performance strongly depends 

on the amount and representability of this data. Representative 

labeled data can estimate the true underlying distribution of the 

classes correctly (Persello and Bruzzone 2014). However, in most 

of the remote sensing image classification problems, this 

assumption is not established because the labeled samples are 

obtained randomly (Tuia, Volpi et al. 2010). Moreover, to avoid the 

ill-posed problem, the number of labeled training samples must be 

adequate regarding the data dimensionality. Therefore, for 

supervised classification of hyperspectral data, obtaining an 

appropriate training data set is one of the most challenging, 

expensive, and time-consuming steps. Whereas, plenty of 

unlabeled samples are available without any extra costs.  

In semi-supervised learning (SSL), in addition to the available 

labeled training samples, a huge number of unlabeled samples are 

employed, in order to improve the classification performance. 

Participation of unlabeled samples in the learning procedure would 

be helpful under certain conditions. The information, added by 

unlabeled data, must be relevant to the classification problem 

(Chapelle, Schokopf et al. 2006). Otherwise, semi-supervised 

learning has no advantages over the supervised learning. Even in 

some cases, it may lead to degradation of classification 

performance.  

The curse of dimensionality, or Hughes phenomenon, is a well-

known problem in machine learning for hyperspectral data analysis 

(Shahshahani and Landgrebe 1994). This problem occurs when a 

fixed number of labeled samples is used to estimate the statistical 

model. As a result, when the dimension of data is increased, the 

accuracy of these parameters decreases. Thus, parametric 

classifiers, such as SVM, are deeply affected by this phenomenon. 

Several solutions have been proposed in the literature to address 

this problem (Fauvel, Dechesne, et al. 2015, Zhang, Tian, et al. 

2015, Zhou, Peng, et al. 2015). These solutions mostly contain two 

main strategies; applying the dimension reduction methods, such as 

feature extraction and feature selection methods (Jia, Kuo, et al. 

2013) or trying to enhance the quality and the quantity of training 

data using the available unlabeled samples (Li, Bioucas-Dias, et al. 

2010).  

In SSL methods, the manifold assumption must be established to 

avoid the curse of dimensionality. This assumption states if the data 

lies on a low-dimension manifold, the learning algorithm can be 

properly operated in this space (Chapelle, Schokopf, et al. 2006). 

In real world problems, when a real manifold is not available, it 

needs to be approximated using the finite number of samples. In 

graph-based SSL methods, the affinity matrix of the constructed 

graph represents the approximation of the manifold. Therefore, the 

labeling function must be smooth over the graph, as the manifold’s 

representative.  

The graph-based SSL (GBSSL) method has recently attracted some 

attentions in the hyperspectral classification (Camps-Valls, Bandos 

Marsheva, et al. 2007, Ma, Crawford, et al. 2015). However, most 

of these researches employ only the spectral information to 

construct the graph Laplacian, and do not consider the advantage 

of the spatial information. While some recently introduced spatial-

spectral classifiers have achieved a significant improvement in 

supervised classification of hyperspectral data (Chen and Wang 

2016, Liu, Tang, et al. 2017). Therefore, the inclusion of spatial 

information in SSL methods can also be beneficial and improve the 

performance of classification. 
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In this paper, we proposed a graph-based method to exploit directly 

the spatial information. In our method, the Laplacian matrices of 

spectral and spatial graphs are formed by computing spectral 

distance among K-nearest spectral and L-nearest spatial neighbors 

respectively. The joint graph Laplacian is constructed by a 

weighted sum of two matrices. In this way, the classification 

performance will be improved significantly.  

2. METHODOLOGY

The proposed Spectral-Spatial GBSSL method consists of two 

steps, 1) two distinct spectral and spatial graphs are constructed to 

exploit the relationship among pixels in spectral and spatial spaces 

respectively, and then 2) the Laplacians of both constructed graphs 

are merged in order to form a weighted joint graph. Figure 1 

illustrates the flowchart of the proposed framework. 

2.1. Graph-based SSL 

The graph-based is built based on the geometry of the whole data 

including both labeled and unlabeled ones. Each vertex of the graph 

is a data point, and edges represent the similarity between samples. 

The similarity between data points is calculated by RBF kernel of 

width σ: 

𝑤𝑖𝑗 = exp⁡(
−‖𝑥𝑖−𝑥𝑗‖

2

2𝜎2
)  (1) 

To avoid self-similarity, 𝑤𝑖𝑖 ⁡is set to zero.

There are various methods to connect the vertices, in the fully-

connected graph. Each data point is connected to all the other 

samples. In the K-nearest neighbors graph method, two points will 

be connected, if one of them is among k-nearest neighbors of the 

other point. In this way, the affinity matrix is sparse, and 

computational advantages of sparse matrices can be utilized. In 

addition to the advantages such as speed and the required storage 

reduction, some studies have indicated that the sparse graphs can 

provide better modeling of manifold assumption (Chapelle, 

Schokopf, et al. 2006). 

The main goal of graph-based SSL is finding a labeling function, 

which must be consistent with both the labels of initial training 

samples and the geometry of the whole data represented by graph 

structure.  

Consistency with the initial labeled data can be calculated by: 

∑ (𝑓𝑖 − 𝑦𝑖)
2 = ‖𝑓𝑙 − 𝑌𝑙‖

2𝑙
𝑖=1  (2) 

Where 𝑌𝑙 = {𝑦1, 𝑦2, … , 𝑦𝑙} is the l first labeled data, and 𝑓𝑙 ⁡is the

predicted labels of these l samples by the labeling function. The 

equation (2) shows the empirical risk have to be minimized. But 

with the few labeled samples, the minimization problem will be ill-

posed and the, solution would not be unique. Therefore, we need a 

regularization term limiting function space to provide well-posed 

condition (Chapelle, Schokopf et al. 2006). On the other hand, 

consistency with the data geometry is motivated by smoothness 

assumption on the manifold. For this purpose, the labels of 

neighbor vertices should be close together, the difference between 

labels is given by: 

∑ 𝑤𝑖𝑗(𝑓𝑖 − 𝑓𝑗)
2𝑙+𝑢

𝑖,𝑗=𝑙 = 2𝑓𝑇𝐿𝑓  (3) 

      𝐿 = 𝐷 −𝑊   (4) 

Where L is the un-normalized graph Laplacian, W is the affinity 

matrix and D is a diagonal matrix defined by 𝐷𝑖𝑖 = ∑ 𝑤𝑖𝑗𝑗 .

Equation (3) will be used as the regularization term and states as 

much higher value of 𝑤𝑖𝑗  two points are more similar, and rapid

changes in their labels is penalized severely. 

The learning on the graph is performed by minimization of a 

quadratic cost function derived by combining empirical risk and the 

regularization term: 

𝑓∗ = argmin
𝑓

∑ (𝑦𝑖 − 𝑓𝑖)
2 + 𝛾𝑓𝑇𝐿𝑓𝑙

𝑖=1    (5) 

By solving the optimization problem (5), we will have the labeling 

function, ⁡𝑓∗,⁡as follows:

𝑓∗ = (𝑆 + 𝛾𝐿)−1𝑆𝑌  (6) 

Y is a n×c matrix where  {𝑌𝑖𝑗 = 1|𝑦𝑖 = 𝑗⁡, 𝑖 = 1,… , 𝑙}, and n is the

number of labeled and unlabeled samples and c is the number of 

classes. The parameter 𝛾 ∈ (0,1)⁡is the weight of the Laplacian of 

the graph. The diagonal S n×n matrix is given by ⁡𝑆𝑖𝑖 = [𝐼]𝑙. To

avoid singularity problem of Laplacian matrix and degenerate 

situation a small regularization term can also be added that has been 

called Tikhonov regularization (Tikhonov and Arsenin 1977). 

𝑓∗ = (𝑆 + 𝛾𝐿 + 𝜇𝐼)−1𝑆𝑌  (7) 

The parameter μ is the Tikhonov regularization term which must 

be tuned appropriately. 

2.2. Spatial-Spectral Graph Construction 

As mentioned before, in this proposed method two graphs are 

constructed in order to address both spatial and spectral 

information. To construct the spectral graph, each pixel is 

connected to its K nearest neighbor pixels in spectral space. This 

implies smoothness assumption on the manifold where the close 

samples should have similar labels.  

The spatial-based graph is constructed using computing spectral 

distance between each pixel and its spatial neighbors. Based on the 

size of the image, each pixel can be connected to L= 4, 8, 12, 20 

and 24 spatial neighbors, the different spatial neighborhood 

definitions are illustrated in Figure 2 (a)-(e). 

The spectral graph Laplacian (L1) and the spatial graph Laplacian 

(L2) are integrated by weighted summation and is replaced in (7), 

yields: 

Figure 1.Flowchart of the proposed spectral-spatial GBSSL 

method. 
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           𝑓∗ = (𝑆 + 𝛾1𝐿1 + 𝛾2𝐿2 + 𝜇𝐼)−1𝑆𝑌                  (8) 

 

 

In this way, the equation (8) guarantees the smoothness of labeling 

function on both spectral and spatial graphs simultaneously. The 

labeling function estimates the probability of a sample belonging 

to each class. At the end of the learning process, the predicted label 

of each sample is obtained as follows. 

𝑦𝑖 = max
𝑗

𝑃(𝑐𝑗|𝑥𝑖) = max
𝑗

𝑓𝑖𝑗                          (9) 

 

2.3. Speed-up Inversion Method 

 

Although the spatial and spectral Laplacian matrices have large n×n 

size, they are sparse. This mainly because each graph have k×n 

edges and the affinity matrix has (k+1)×n non-zero elements. 

Although, 𝑆 + 𝛾1𝐿1 + 𝛾2𝐿2 + 𝜇𝐼 is sparse, but not necessarily its 

inverse model. Therefore, calculating and storing of the inverse 

matrix induce a high computational complexity of O(n3) and O(n2) 

respectively. There is a need to utilize the high speed numerical 

methods in order to approximate the inverse of large sparse 

matrices accurately. 

Conjugate Gradient (CG) method is the most distinguished iterative 

algorithm for solving sparse systems with too large size to be 

implemented by direct methods (Plaza and Chang 2007). To apply 

CG method on the linear equation⁡𝐴𝑥 = 𝑏, A must be a symmetric, 

positive definite and sparse matrix. Theoretically CG, method 

converges to the solution in n steps, but with good preconditioner 

choosing can get good approximation of solution in <<n steps 

(Fornasier, Peter et al. 2015). 

 

3. EXPERIMENTAL RESULTS 

 

3.1. Hyperspectral Data Sets    

 

To evaluate the performance of our method, we used two different 

commonly used hyperspectral data sets with different spectral and 

spatial resolutions: 

 Indian Pines: the AVIRIS Indian Pine Image data set. This 

data set contains 145 by 145 pixels with 20m spatial 

resolution. The AVIRIS sensor provides 220 spectral bands 

originally, but 35 bands include noisy and water absorption 

bands, and then are removed ([1-3], [103-112], [148-165], 

[217-220]), and finally, 185 bands are used in our 

experiments. There are 16 land cover classes in the scene with 

the size of 20 to 2468 pixels per class. The classes with size 

less than 100 pixels are removed, and 13 classes remain. The 

true color composite and the available labeled ground truth are 

presented in Figure 3 (a) and 3 (b) respectively. 

 

 

 

(a) (b) 

Figure 3. The 145×145 AVIRIS Indian Pine data set, (a) 

True color composite with bands R:26, G:14, B:8. (b) 

Ground truth reference map. 

 

 Pavia University: This hyperspectral data set was acquired by 

Reflective Optics System Imaging Spectrometer (ROSIS) 

with 610 by 340 in size. The spatial and spectral resolutions 

provided by ROSIS sensor are 1.3 m and 115 bands 

respectively. Pavia University is an urban area with nine 

different classes with the size of 610×340 pixels. The high 

spatial resolution of ROSIS creates a challenging 

classification problem that our proposed method can 

appropriately handle. Figure 4 illustrates the true color 

composite of Pavia University and the available labeled 

ground truth.  

 

 

  
(a) (b) 

Figure 4. The 610×340 ROSIS Pavia University data set (a) 

True color composite with bands R:53, G:31, B:8. (b) Ground 

truth reference map. 

 

The hyperspectral data set is normalized by using: 

𝑥̃𝑖 = 𝑥𝑖/(√∑ ‖𝑥𝑖‖
2𝑛

𝑖=1 )                          (10) 

Where xi is the spectral vector of each pixel. 

 

3.2. Free Parameters Tuning 

 

 

Figure 2. The spatial-based graph construction using (a-e): 4, 

8, 12, 20 1nd 24 spatial neighbors. 
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Selecting the optimum values for free parameters is one of the most 

sensitive and time-consuming steps in SSL and have a serious 

influence on the method’s performance. In the proposed method, 

there are three continuous parameters⁡𝛾1, 𝛾2⁡and µ indicate the

weight of spectral, spatial graph and Tikhonov regularization term 

respectively. To optimize these parameters, grid search is 

implemented, which is an exhaustive search method. Before 

applying grid search, it is necessary to define a finite values for 

each parameter, we choose {0.05, 0.1, 0.15, … ,0.95} for search 

space.  

3.3 Results 

The proposed method is evaluated in ill-posed classification 

problem scenario where there is a very limited number of labeled 

samples compared to the high dimension of data. For Indian Pine 

data set, we used only {5, 10, 15, 30 and 50} labeled pixels per 

class and {5, 10, 15, 30, 50, 100} for ROSIS Pavia University as 

training set. To evaluate the classification performance for the 

classes with enough labeled samples, 350 sample per class were 

considered as a testing set. For the other classes, the rest of the 

labeled samples composed a testing set. The training and testing 

labeled samples are selected randomly using 10-fold cross-

validation, and the results were reported as the Average Accuracy 

(AA).  

The superiority of our method was demonstrated in comparison 

with the state-of-the-art SVM method and graph-based SSL 

method using only spectral or spatial information. The optimum 

SVM parameters  (C, γ) were also selected by grid search method. 

Figure 5. Illustrates the comparison of different methods with 

different labeled training size for AVIRIS Indian Pine data set. The 

same comparison results for Pavia University data are presented in 

Figure 6. 

The effect of the number of used spatial and spectral neighbors are 

shown in Figure 7 and Figure 8 respectively. As shown in the 

results, we selected the best values as K=10 and L=8 to be 

employed in the proposed method for AVIRIS Indian Pine data set. 

Because of the different spatial resolution of Pavia University, 

these parameters were chosen as K=10 and L=12 to obtaining the 

maximum classification accuracy.  

4. DISCUSSION

The parameter K is the number of used neighbors to construct a 

spectral graph. Figure 7 provides overall accuracy curves 

concerning the variation of K for different labeled training data 

sets. When K is too small, each vertex is connected to only a few 

similar pixels, and the classification performance is poor. 

When K increases to an optimum value equal to 5 or 10 for different 

training data sets, the classification accuracy is also increasing. 

Nonetheless, after this point, the performance remains unchanged 

or even degrades. Because when K becomes too large, the 

discriminative ability of the constructed graph decreases.  

The similar experimental results for the variation of spatial 

neighbors, (See Figure 8), confirmed the previous analysis. 

Therefore, by employing the best number of spectral and spatial 

neighbors the performance can be improved. The same analysis 

was done for the Pavia University data set, in order to select the 

optimum values and to construct the most discriminative graphs. 

Figure 7. Classification performance of various spectral 

neighbors (K) with different size of labeled training samples in 

AVIRIS Indian Pine data set 

Figure 5. Classification performance of various methods with 

different size of labeled training samples in AVIRIS Indian 

Pine data set. 

Figure 6. Classification performance of various method with 

different size of labeled training samples in Pavia University 

data set. 
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Figure 8. Classification performance of various spatial 

neighbors (L) with different size of labeled training samples in 

AVIRIS Indian Pine data set 

 

To demonstrate the effectiveness of the proposed method, we 

consider the worst scenario with only five labeled samples per 

class. The obtained classified maps by the proposed method and the 

baseline ones for AVIRIS Indian Pine and Pavia University data 

sets are given in Figure 9 and Figure 10 respectively. As it can be 

seen, our method has the best performance in term of overall 

classification accuracy. Moreover, the classified maps consisting of 

homogeneous regions. In other words, employing the spatial 

information in graph construction provides the ability to solve 

classification and segmentation optimization problems 

simultaneously. Therefore the classes’ boundaries were extracted 

more precisely.  

As shown in Figures 9(c) and 10(c), the spatial graph-based SSL 

results indicate that applying the spatial graph alone can also ensure 

the smoothness of labeling function on the spectral graph and 

consequently achieves high classification performance. Although, 

the performance of SSL classification, by using only the spectral 

graph (Figure 9(b) and 10(b)) is not satisfactory. However, the 

contribution of both graphs to construct a joint Laplacian can 

improve the results. This improvement is more significant when the 

labeled training data set is too scarce, i.e. when there are only five 

labeled samples for each class. In this condition, the proposed 

method increases the classification accuracy by 5.92% and 10.76% 

compared to the spatial graph-based SSL for AVIRIS Indian Pine 

and Pavia University data sets respectively. 

 

 

 

 

 

 

    
(a) (b) (c) (d) 

Figure 9. Classification results on the AVIRIS Indian Pine data set, classification maps with five labeled samples per class using: (a) 

SVM  method (OA=52.99%), (b) Spectral GBSSL (OA=57.4%), (c) Spatial GBSSL (OA=76.29%), (d) Spatial-Spectral GBSSL 

(OA=82.8%). 

    
(a) (b) (c) (d) 

Figure 10. Classification results on the ROSIS Pavia University data set, classification maps with five labeled samples per class using: 

(a) SVM  method (OA= 68.41%), (b) Spectral GBSSL (OA=70.80%), (c) Spatial GBSSL (OA=79.21%), (d) Spatial-Spectral GBSSL 

(OA=89.77%). 
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5. CONCLUSION

In this paper, we proposed a graph-based semi-supervised learning 

algorithm which uses both spectral and spatial information to 

construct the graph Laplacian. Experimental results from the 

AVIRIS Indian Pine and the ROSIS Pavia University data sets 

showed the superiority of the proposed method over the supervised 

SVM classifier. In addition, compared to SSL methods using only 

a single spectral/spatial graph, the proposed framework of spectral-

spatial SSL method improved the classification performance. As 

shown in the numerical results, when the number of labeled training 

samples was very limited, the proposed method had the largest 

increase in the classification accuracy. In other words, the proposed 

spectral-spatial SSL method was able to efficiently overcome the 

Hughes phenomena and also had an outstanding performance. 

6. REFERENCES

Camps-Valls, G., et al. (2007). "Semi-supervised graph-based 

hyperspectral image classification." Geoscience and Remote 

Sensing, IEEE Transactions on 45(10): 3044-3054. 

Chapelle, O., et al. (2006). Semi-supervised learning (Adaptive 

Computation and Machine Learning). Massachusetts, The MIT 

press. 

Chen, Z. and B. Wang (2016). "Spectral-Spatial Classification 

Based on Affinity Scoring for Hyperspectral Imagery." IEEE 

Journal of Selected Topics in Applied Earth Observations and 

Remote Sensing 9(6): 2305-2320. 

Fauvel, M., et al. (2015). "Fast Forward Feature Selection of 

Hyperspectral Images for Classification With Gaussian Mixture 

Models." Selected Topics in Applied Earth Observations and 

Remote Sensing, IEEE Journal of 8(6): 2824-2831. 

Fornasier, M., et al. (2015). "Conjugate gradient acceleration of 

iteratively re-weighted least squares methods." arXiv preprint 

arXiv:1509.04063. 

Jia, X., et al. (2013). "Feature mining for hyperspectral image 

classification." Proceedings of the IEEE 101(3): 676-697. 

Li, J., et al. (2010). "Semisupervised hyperspectral image 

segmentation using multinomial logistic regression with active 

learning." Geoscience and Remote Sensing, IEEE Transactions on 

48(11): 4085-4098. 

Liu, Z., et al. (2017). "Class-Specific Random Forest With Cross-

Correlation Constraints for Spectral-Spatial Hyperspectral Image 

Classification." IEEE Geoscience and Remote Sensing Letters 

PP(99): 1-5. 

Ma, L., et al. (2015). "Local-Manifold-Learning-Based Graph 

Construction for Semisupervised Hyperspectral Image 

Classification." IEEE transactions on Geoscience and Remote 

Sensing 53(5): 2832-2844. 

Persello, C. and L. Bruzzone (2014). "Active and semisupervised 

learning for the classification of remote sensing images." 

Geoscience and Remote Sensing, IEEE Transactions on 52(11): 

6937-6956. 

Plaza, A. J., and C.-I. Chang (2007). High-performance computing 

in remote sensing, CRC Press. 

Shahshahani, B. M. and D. A. Landgrebe (1994). "The effect of 

unlabeled samples in reducing the small sample size problem and 

mitigating the Hughes phenomenon." IEEE Transactions on 

Geoscience and Remote Sensing 32(5): 1087-1095. 

Tikhonov, A. N., and V. I. A. k. Arsenin (1977). Solutions of ill-

posed problems, Vh Winston. 

Tuia, D., et al. (2010). "A survey of active learning algorithms for 

supervised remote sensing image classification." Selected Topics 

in Signal Processing, IEEE Journal of 5(3): 606-617. 

Zhang, Q., et al. (2015). "Automatic spatial–spectral feature 

selection for the hyperspectral image via discriminative sparse 

multimodal learning." Geoscience and Remote Sensing, IEEE 

Transactions on 53(1): 261-279. 

Zhou, Y., et al. (2015). "Dimension reduction using spatial and 

spectral regularized local discriminant embedding for 

hyperspectral image classification." Geoscience and Remote 

Sensing, IEEE Transactions on 53(2): 1082-1095. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W4, 2017 
Tehran's Joint ISPRS Conferences of GI Research, SMPR and EOEC 2017, 7–10 October 2017, Tehran, Iran 

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-4-W4-91-2017 | © Authors 2017. CC BY 4.0 License.

 
96




