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ABSTRACT: 

Recently, there have been many debates to analyse backscatter data from multibeam echosounder system (MBES) for seafloor 

classifications. Among them, two common methods have been used lately for seafloor classification; (1) signal-based classification 

method which using Angular Range Analysis (ARA) and Image-based texture classification method which based on derived Grey 

Level Co-occurrence Matrices (GLCMs). Although ARA method could predict sediment types, its low spatial resolution limits its 

use with high spatial resolution dataset. Texture layers from GLCM on the other hand does not predict sediment types, but its high 

spatial resolution can be useful for image analysis. The objectives of this study are; (1) to investigate the correlation between MBES 

derived backscatter mosaic textures with seafloor sediment type derived from ARA method, and (2) to identify which GLCM texture 

layers have high similarities with sediment classification map derived from signal-based classification method. The study area was 

located at Tawau, covers an area of 4.7km2, situated off the channel in the Celebes Sea between Nunukan Island and Sebatik Island, 

East Malaysia. First, GLCM layers were derived from backscatter mosaic while sediment types (i.e. sediment map with classes) was 

also constructed using ARA method. Secondly, Principal Component Analysis (PCA) was used determine which GLCM layers 

contribute most to the variance (i.e. important layers). Finally, K-Means clustering algorithm was applied to the important GLCM 

layers and the results were compared with classes from ARA. From the results, PCA has identified that GLCM layers of Correlation, 

Entropy, Contrast and Mean contributed to the 98.77% of total variance. Among these layers, GLCM Mean showed a good 

agreement with sediment classes from ARA sediment map. This study has demonstrated different texture layers have different 

characterisation factors for sediment classification and proper analysis is needed before using these layers with any classification 

technique.  

1. INTRODUCTION

Analysis and determination of physical properties of the 

seafloor is a crucial element for important marine activities, 

including coral reef management, fisheries habitat management 

and marine geology studies (Hedley et al., 2016; Buhl-

Mortensen et al., 2015; Robidoux et al., 2008; Hughes Clarke et 

al., 1996). Over the last decades, the rapid developments in 

marine acoustic survey methods have revolutionised the 

formation of detailed maps of seafloor for the purpose of seabed 

habitat mapping (Brown et al., 2011b). The use of high-

resolution acoustic technique, in particular multibeam 

echosounder system (MBES) in providing full coverage 

topography (i.e. bathymetry) and acoustic backscatter (i.e. 

intensity returns) is vital for sediment and habitat types 

prediction (De Falco et al., 2010; Medialdea et al., 2008; 

Sutherland et al., 2007). Backscatter returns from MBES is one 

of the potential dataset from acoustic technique that is seen to 

consist of important acoustic scattering information of the 

sediment types and offers huge possibility of remote 

identification of seafloor as well as proxy for habitat classes.  

For sediment classification using backscatter from MBES, 

image analysis such as the use of image textural analysis is 

probably the most widely used technique in many studies 

(Herkül et al., 2017; Lucieer et al., 2016; Blondel et al., 2015; 

Zhi et al., 2014; Che Hasan, 2014; Hill et al., 2014; Siwabessy 

et al., 2013; Lucieer et al., 2013; Fakiris et al., 2012; Micallef et 

al., 2012; Huang et al., 2012; Lucieer et al., 2011; Díaz, 2000). 

The technique, known as Grey Level Co-Occurrence (GLCM) 

method originated from textural analysis method of radar image 

using Haralick textures (Haralick et al., 1973). As many texture 

layers can be derived from one image (in this case backscatter 

image), it is important to perform a detail assessment of which 

texture layers represent sediment classes. This is important 

because many habitat mapping process such as classification 

technique requires high spatial resolution data that can be 

incorporated with high spatial resolution bathymetry maps. 

As backscatter data can be also represented by backscatter as a 

function of incidence angle, some studies have also used 

angular backscatter intensity (also known as signal-based 

backscatter) as one of the techniques to extract scattering 

information (Monteys et al., 2016; Huang et al., 2013; 

Lamarche et al., 2011; Fonseca et al., 2009; Parnum, 2007). 

Compared to backscatter image or mosaic, signal-based 

backscatter from MBES does not have high spatial resolution as 

the mosaic and thus might not be difficult to be integrated with 

other high spatial resolution maps such as bathymetry. 

However, one of the classification methods for signal-based 

backscatter, known as Angular Range Analysis (ARA) has been 

developed to automatically predict seafloor sediment types 

using acoustic inversion process (Fonseca and Mayer, 2007).  

Consequently, the objectives of this paper are; (1) to investigate 

the correlation between MBES derived backscatter mosaic 
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texture with seafloor sediment type, and (2) to identify which 

GLCM texture layers (i.e. from the image-based method) 

produce sediment classification map that have the highest 

similarities with signal-based classification method. Figure 2 

shown the overall methodology flow chart conducted for this 

study. 

 

 

2. METHODS 

2.1 Study area 

The study site is located in Tawau, Sabah, Malaysia which 

covers an area of 4.7km2. It is situated off the channel in the 

Celebes Sea between Nunukan Island and Sebatik Island, East 

Malaysia (Figure 1). The site is adjacent to the international 

maritime border between Malaysia and Indonesia, located at 

about 1.5 km northwest of the Nunukan Island and 2.0 km 

southwest of the Sebatik Island. 

 

 

2.2 Acoustic data acquisition 

Acoustic data from MBES were acquired on the 26th of 

November 2017 until 1st of December 2016 using a hull- 

mounted Kongsberg EM2040c multibeam bathymetric system. 

With a swath of seafloor ensonified four to five times the water 

depth on each survey line, offset for line spacing is set to three 

times water depth in order to provide ensonification overlap 

between adjacent survey lines. The positioning of the vessel 

during the survey was achieved by using C-Nav3050 DGPS 

system (horizontal accuracy: ± 0.45 m + 3 ppm and vertical 

accuracy: ± 0.90 m + 3 ppm) (Dubilier, 2016), integrated with 

an Kongsberg Seatex Motion Reference Unit MRU-5 (roll and 

pitch accuracy: 0.02° RMS at a ±5° amplitude)(Kongsberg, 

2016), for roll, pitch and heave corrections. Multibeam data 

logging, Real-time navigation, display and quality control were 

using Seafloor Information System (SIS) software version 4.2.1 

provided by Kongsberg. A sound velocity profile (SVP) through 

the water column in the survey area were daily collected in the 

beginning and at the end of survey process using Valeport 

 

 

 

Midas SVX2 equipment in order to obtain the speed of sound 

propagation in the water column at the survey area.  

 

2.3 Acoustic data processing  

Backscatter data can be divided into two formats which are; (1) 

signal based data or backscatter intensity as a function of 

incidence angle, and (2) image-based data (i.e. backscatter 

mosaic). As a result, different classification methods have been 

established for each dataset (Brown et al., 2011a). The raw 

MBES backscatter data were processed in Fledermaus 

Geocoder Toolbox software version 7.4 (FMGT) to obtain (a) 

backscatter mosaic, and (b) prediction of sediment types using 

Angular Range Analysis (ARA) technique (Fonseca and Mayer 

2007). An automated FMGT processing procedure was applied 

for both types of backscatter data (Quas et al., 2017). The 

corrections such as signal level adjustments and transmission 

loss, beam incidence angle, adjustments of beam footprint area 

and, Lambertian scattering adjustments were applied for each 

raw backscatter time series beam (QPS, 2016). Next, the 

backscatter intensity data were filtered based on beam angle , 

and then an anti-aliasing pass was run on the resulting 

backscatter swath data (QPS, 2016). For signal based seafloor 

classification, ARA technique was applied to the angular 

backscatter intensity to predict sediment types. This process 

produced estimated bottom sediment map by comparing the 

angular response/impedance estimates from calibrated 

backscatter values to empirical sediment models (Fonseca and 

Mayer 2007). The resulting seafloor characterisation map or 

ARA map was then exported to raster format for subsequent 

process. Note that in general, the spatial resolution from ARA 

map is low, with the size is half of the MBES swath width. 

Default ARA map yielded 30 sediment classes but then were 

regrouped to four (4) major sediment classes; sand, silt, clay, 

and gravel (Figure 3) as these classes are the dominant sediment 

types in ARA map. A set of random point was then generated 

Figure 1: Location map of study area. The inset map shows the 

 location of the study area relative to the location of Malaysia 
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from ARA map to be used as ground truth point. Along with 

ARA map, a backscatter mosaic image was produced at 1m 

pixel resolution for further analysis. In this study, sampling of 

ground truth was not available and therefore classes from ARA 

map were used as known classes to compare results with the 

classification map produced from texture layers of backscatter 

mosaic. 

 

2.4 Derived GLCM and Image Statistics 

Texture from image is an important characteristic for image 

classification such as used in many terrestrial remote sensing 

image processing and analysis. Eight (8) Haralick texture layers 

(Haralick et al., 1973) were derived from backscatter mosaic 

using ENVI 4.8 software; mean, variance, contrast, correlation, 

homogeneity, dissimilarity, entropy and angular second moment 

based on previous literature studies (Herkül et al., 2017; 

Diesing et al., 2016; Blondel et al., 2015; Lucieer et al., 2013; 

Huang et al., 2012; Lucieer et al., 2011). All texture layers were 

derived using Grey Level Co-occurrence Matrix (GLCM) 

method. GLCM calculates statistics by determining distinctive 

textural properties from an acoustic image showing the 

relationships between a given pixel and a specific neighbor 

(Díaz, 2000). For this study, Haralick texture layers were 

derived from GLCM calculated for a local rectangular window 

of 3x3 pixels. 

 

 
 

Figure 2: Study Flowchart  

 

2.5 Principal Component Analysis (PCA) 

Principal Component Analysis (PCA) method has been widely 

used in the previous study for data reduction and to avoid 

multicollinearity of the abiotic variables prior to clustering 

process (Ismail, 2016; Che Hasan, 2014; Verfaillie et al., 2009; 

Robidoux et al., 2008; Díaz, 2000). PCA has also been used to 

recognise which textural layers contributing most to the 

clustering map. PCA computes a set of new and linearly 

independent variables known as principal components (PCs) 

that account for most of the variance of the original variables. 

The PCs are produced from a linear combination of the original 

variables. PCA was used to determine; (a) which texture layers 

have the most contributions to the total variance of each rotated 

PC, and (b) correlations between different texture layers with 

each PC. Results from this will give a broad idea of which 

layers are important. 

 

2.6 Clustering and comparison 

After important texture layers have been identified, a K-Means 

clustering algorithm was applied to these texture layers. The K-

Means clustering technique is widely being used for data 

segregating for terrestrial remote sensing and also in the marine 

environment. For this clustering process, the number of the 

cluster was set to be equal to the number of sediment classes in 

ARA map (i.e. four classes). A set of 148 points from ARA map 

were generated by creating random points inside the study area. 

Cross-tabulations of ground truth and clustered data for four 

PCs variables resulted from PCA were conducted to compare 

the occupancy of sediment within each cluster groups. 

 

3. Results 

The results from PCA analysis produced four (4) PCs, 

explaining 98.77% of the total variance. The rotated component 

matrix (Table 1 and Table 2) shows the correlations between the 

rotated PCs and the original variables. The main GLCM 

variables that contributed to the highest variance of the PCA are 

Correlation (PCA1 -0.49%), Entropy (PCA1 -0.49%), Contrast 

(PCA2 0.57%), and Mean (PCA3 0.87%). This four GLCM 

layer obtained from PCA will be used for next cross tabulation 

analysis. 

 

PCA Layer % Variance 

1 

2 

3 

4 

5 

6 

7 

8 

90.98 

5.35 

1.61 

0.83 

0.52 

0.43 

0.22 

0.06 

Table 1. The contribution of all principal component analysis 

(PCA) bands to total variance. 

 

Texture Layer PCA1 PCA2 PCA3 PCA4 PCA5 PCA6 PCA7 PCA8

Contrast -0.22 0.57 0.07 0.03 0.47 -0.03 -0.15 -0.61

Correlation -0.49 -0.26 -0.21 0.50 0.06 -0.62 0.06 -0.01

Dissimilarity -0.30 0.41 -0.02 -0.09 0.38 0.03 0.08 0.76

Entropy -0.49 -0.24 -0.13 0.26 0.04 0.76 0.18 -0.10

Homogeneity 0.41 0.05 0.36 0.76 0.18 0.14 -0.21 0.16

Mean -0.35 -0.26 0.87 -0.20 0.02 -0.08 -0.03 0.00

SecondMoment 0.21 0.08 0.15 0.08 0.14 -0.08 0.94 -0.11

Variance -0.22 0.55 0.14 0.21 -0.76 0.01 0.08 0.02  
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Table 2: Component matrix showing a correlation between 

rotated PCs and the original variables. Highest factor loads in 

each PC are highlighted in bold 

 

The results from clustering map showed that, for GLCM 

Correlation and Entropy layers (Figures 4 and 5), the cluster 

map only showed two dominant classes. For the Contrast layer, 

the clustering was also showing poor cluster boundary although 

successfully produced four classes (Figure 5). Only clustering 

results from GLCM Mean layer showed cluster map with four 

classes and well delineated class boundary  (Figures 6 and 7). 

 

 
 

Figure 3: Sediment classes produced using Angular Range 

Analysis (ARA) and used for ground truthing  

 

 
 

Figure 4: GLCM Correlation Cluster Map 

 

 
 

Figure 5: GLCM Entropy Cluster Map 

 
 

Figure 6: GLCM Contrast Cluster Map 

 

 
 

Figure 7: GLCM Mean Cluster Map 

 

Cross tabulation analysis (Tables 3-6 and Figures 8-11) 

obtained from comparing sediment types and cluster maps in 

general produced inconsistent results except for GLCM Mean. 

For GLCM Entropy, only cluster 2 and cluster 4 have strong 

associations with a specified sediment class. For example, 100% 

of cluster 2 was related to Gravel and 67% of cluster 4 was 

identified as sand. For GLCM Contrast layer, three different 

clusters (clusters 2, 3 and 4) in the map showed high agreements 

with a single sediment type (i.e. sand), at 67%, 74% and 63% 

respectively. GLCM Correlation cluster map has identified two 

clusters with two different sediment types; cluster 1 with silt 

(67%) and cluster 4 with sand (65%).  

 

However, for GLCM Mean, each cluster was showing relation 

to a unique sediment type, although there were some small 

percentage of other sediment types. For example, cluster 1 with 

gravel (42%), cluster 2 with silt (83%), cluster 3 with clay 

(43%) and cluster 4 with sand (74%). 

 

Sediment 

Type 

Number 

of Ground 

Truth 

Cluster 

1(%) 

Cluster 

2(%) 

Cluster 

3(%) 

Cluster 

4(%) 

Gravel 

Sand 

Silt 

Clay 

36 

94 

13 

5 

17 

17 

33 

33 

100 

0 

0 

0 

50 

0 

50 

0 

24 

67 

7 

2 

 

Table 3: Cross tabulation between the GLCM Entropy cluster 

map and ground truth observations 
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Sediment 

Type 

Number 

of Ground 

Truth 

Cluster 

1(%) 

Cluster 

2(%) 

Cluster 

3(%) 

Cluster 

4(%) 

Gravel 

Sand 

Silt 

Clay 

36 

94 

13 

5 

0 

0 

50 

50 

11 

67 

19 

4 

23 

74 

3 

0 

30 

63 

5 

2 

Table 4: Cross tabulation between the GLCM Contrast cluster 

map and ground truth observations  

 

Sediment 

Type 

Number 

of Ground 

Truth 

Cluster 

1(%) 

Cluster 

2(%) 

Cluster 

3(%) 

Cluster 

4(%) 

Gravel 

Sand 

Silt 

Clay 

36 

94 

13 

5 

0 

0 

67 

33 

0 

0 

0 

0 

0 

0 

0 

0 

25 

65 

8 

3 
 

Table 5: Cross tabulation between the GLCM Correlation 

cluster map and ground truth observations 

 

Sediment 

Type 

Number 

of Ground 

Truth 

Cluster 

1(%) 

Cluster 

2(%) 

Cluster 

3(%) 

Cluster 

4(%) 

Gravel 

Sand 

Silt 

Clay 

36 

94 

13 

5 

42 

8 

33 

17 

0 

17 

83 

0 

14 

14 

29 

43 

24 

74 

2 

0 
 

Table 6: Cross tabulation between the GLCM Mean cluster map 

and ground truth observations 

 

 

 

Figure 8: Per cluster sediment composition percentage for 

GLCM Correlation texture layer 

 

 
 

Figure 9: Per cluster sediment composition percentage for 

GLCM Entropy texture layer 

 

 
 

Figure 10: Per cluster sediment composition percentage for 

GLCM Contrast texture layer 

 

 
 

Figure 11: Per cluster sediment composition percentage for 

GLCM Mean texture layer 

 

 

4. DISCUSSION 

 

The approach of this study is to identify the correlation between 

MBES derived backscatter mosaic texture with seafloor 

sediment type and to identify the capability of texture based 

method to differentiate seafloor sediment classes. The research 

used sediment classes from ARA as substitute for ground truth 

and subsequently a set of random ground truth point was 

generated inside the study area. From the result obtained, it can 

be clearly seen that only clustering from GLCM Mean layer can 

provide significant discrimination compare with others three 

GLCM layers. Previous studies on texture-based sediment 

classification techniques have shown that the indices ‘Mean’ 

capture most of the textural variability within the data (Huvenne 

et al., 2007). Mean from backscatter has also been used in some 

of the sediment classification (Hill et al., 2014; Lucieer et al., 

2013; Díaz, 2000). 

 

The results from PCA analysis is able to identify some of the 

important layers in general. Principal component analysis has 

been broadly used to recognise which textural layers 

contributing most to the clustering map (Ismail et al., 2015; Che 

Hasan, 2014; Verfaillie et al., 2009; Robidoux et al., 2008; 

Díaz, 2000). GLCM Correlation, Entropy, Contrast and Mean 

are the main texture layer resulted from principal component 

analysis with percentage eigenvalue more than 1%. However, in 

this study, the PCA results of identifying the most significant 

layer disagree with the clustering map analysis. For example, 

PCA identified GLCM layers of Correlation and Entropy as the 

most influenced layers (PCA1), but the clustering map analysis 

has identified different layers (i.e. GLCM Mean). This is due to 
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the small ratio of clay and silt within the study area. According 

to Che Hasan (2014); Müller and Eagles (2007), different 

sediment proportion within a sediment class also may cause 

backscatter intensity and texture analysis to diverge and 

unsupervised classification methods do not allow the control of 

such factors.  

 

The study identified some relationships between the MBES 

backscatter mosaic and resulting clusters map with the 

backscatter derivatives GLCM Mean. Although GLCM Mean at 

the fourth place in the sequence of most contributing GLCM 

layer, previous researchers (Che Hasan, 2014) suggested that 

GLCM mean demonstrates the most significant layer for 

sediment clustering map. 

 

 

5. CONCLUSION 
 

A total of 4.7km2 of multibeam sonar backscatter data from 

Tawau coastal area, Malaysia, was classified using GLCM and 

K-Means algorithms to find correlations between signal and 

image based backscatter. Notably, our approach is only using 

random ground truth point created in GIS software due to 

limitation during the survey. Hypothetically, if the ground-truth 

point of the survey had been carried out on a targeted K-Means 

clustering, the agreement observed may have been more 

convincing. However, on the basis of the comparisons with 

randomly created ground-truth data, the cross tabulation 

analysis conducted has shown encouraging results. In summary, 

only GLCM Mean texture layer show the significant similarities 

with signal based sediment classification map and demonstrate 

the ability to successfully delineating the major type of 

sediment. Overall, it can be concluded that image-based 

backscatter classification can assist the interpretation of 

multibeam backscatter data for the production of sediment 

maps. 
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