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ABSTRACT: 
 
Movement of point objects are highly sensitive to the underlying situations and conditions during the movement, which are known as 
contexts. Analyzing movement patterns, while accounting the contextual information, helps to better understand how point objects 
behave in various contexts and how contexts affect their trajectories. One potential solution for discovering moving objects patterns 
is analyzing the similarities of their trajectories. This article, therefore, contextualizes the similarity measure of trajectories by not 
only their spatial footprints but also a notion of internal and external contexts. The dynamic time warping (DTW) method is 
employed to assess the multi-dimensional similarities of trajectories. Then, the results of similarity searches are utilized in 
discovering the relative movement patterns of the moving point objects. Several experiments are conducted on real datasets that were 
obtained from commercial airplanes and the weather information during the flights. The results yielded the robustness of DTW 
method in quantifying the commonalities of trajectories and discovering movement patterns with 80% accuracy. Moreover, the 
results revealed the importance of exploiting contextual information because it can enhance and restrict movements. 
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1. INTRODUCTION 

Progress in sensing, navigation, and tracking technologies, such 
as global navigation satellite system (GNSS), multi-functional 
sensors, and so forth, enable access to unprecedented amounts 
of moving point object (MPO) data. The sequence of a tracked 
point object represents the spatial and temporal history of it, 
which is known as trajectory (Spaccapietra, Parent, & Spinsanti, 
2013). However, the goal is to not only collect spatio-temporal 
information of objects’ movements but also to generate 
knowledge from their trajectories. Therefore, analyzing the 
spatial behaviors of MPOs by studying their trajectories and 
discovering their movement patterns have been of great interest 
to the cartography and GIScience community recently. 

Normally, movement pattern discovery can be fulfilled through 
similarity measurement of trajectories. However, in spite of the 
recent progress in the similarity measure of trajectories, most of 
the existing methods deal only with the positional information 
of the MPOs over time, and very little attention has been paid to 
the influential factors, which are known as contexts, during the 
move. Movements are highly affected by internal and external 
contexts in real world applications. The former is any factor that 
is related to the MPO’s characteristics, states, and conditions 
(e.g., intension, mode), while the latter is dedicated to the 
geographical and environmental conditions (e.g., weather 
condition, landscape) during the move (Nathan et al., 2008). 
Both types of contexts cause MPOs to react differently 
according to their variations.  

On the one hand, a review of the relevant literature reveals a 
few research contributions that have solely exploited the 
external (geographic) context information in the trajectory 
similarity measure process. For example, a conceptual model 

for context-aware movement analysis was proposed based on 
events and was validated by exploring the relation of moving 
objects (roe deer and lynxes) with each other and moving 
objects to their geographic context (open areas) (Andrienko, 
Andrienko, & Heurich, 2011). Buchin and her colleagues 
incorporated geographic context factors in a trajectory similarity 
measurement process (Buchin, Dodge, & Speckmann, 2014). 
Their proposed method was based on Hausdorff, Fréchet, and 
equal time distances and ran by the subdivision modeling of 
context. In that research, contexts were modeled as a polygonal 
subdivision of land use (sea/land) and meteorological 
parameters for a North Atlantic hurricane dataset and albatross 
tracking data in Euclidean space.  

On the other hand, discovering patterns among trajectories 
based on their similarity search results has received less 
attention, so far. According to related research on pattern 
mining of MPOs, Dodge and her colleagues  used the Euclidean 
distance approach for a similarity measure of trajectories while 
aiming to find the so-called coincidence (spatio-temporal) and 
concurrence (movement parameters) patterns of North Atlantic 
hurricanes (Dodge, Weibel, & Laube, 2011). From the 
methodological standpoint, the employed Euclidean distance is 
a very brittle distance measure because it can be applied only to 
trajectories of the same size (length). Therefore, a robust 
alternative method that is capable of accommodating 
trajectories that have different sizes is crucial. From 
dimensional perspective, this study covers only the space, time, 
and a number of movement parameters in pattern mining among 
trajectories. 

To the best of our knowledge, no other research has been 
conducted in incorporating both internal and external contextual 
information for similarity measure and pattern discovery of 
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trajectories. This research contributes to fill this gap by 
contextualizing the pattern discovery of multi-size trajectories 
while incorporating both internal and external contextual 
information along with positional data in similarity 
measurement of trajectories.  

2. METHODOLOGY 

This section first focuses on the state-of-the-art 
conceptualization of context as the basis for contextualizing 
trajectory analysis. Second, it describes the method by which 
the similarities of trajectories are going to be contextually 
quantified. Third, the pattern discovery procedure is explained. 
The key elements of the methodology are illustrated in Figure 1 
and more descriptions are provided in the rest of this section. 
 
2.1 Context 

The term context has a wide range of meanings with regard to 
the variety of applications and research domains. Various 
definitions, descriptions, and classifications have been provided 
for context in the literature. In this research we adhere to Dey’s 
comprehensive definition of context as “any information that 
can be used to characterize the situation of an entity. An entity 
is a person, place, or object that is considered relevant to the 
interaction between a user and an application, including the 
user and applications themselves” (Dey, 2001). Context is 
about the entire situation (current state) relevant to movement. It 
specifies the elements that must be collected to model a 
situation (Crowley, Coutaz, Rey, & Reignier, 2002). Context 
provides information regarding the present status of people 
(individuals, groups), places (indoors, outdoors), and things 
(physical objects, computing devices) in the environment. For 
example, an individual’s situation can be characterized by the 
contexts of the individual’s profile, the individual’s 
surroundings, the individual’s social interactions, the 
individual’s activity, etc. Consequently, context is categorized 
into (1) internal context, which consists of all of the properties 
that directly relate to the MPOs, and (2) external context, which 
refers to any outer factor that influences the process of 
movement extrinsically. 
 
2.2 Contextualizing the Similarity Measure of Trajectories 

The majority of research contributions have focused on spatial 
or spatio-temporal similarity measures of trajectories in 2- or 3-
dimensional spaces (x, y, t). In this research we add another 
dimension to trajectories, called context dimension (c), in the 
sense that each element of trajectory can be annotated by D 
dimension. The D dimension, with regard to the definition of 
context, can be labelled as any quantitative value (e.g., speed, 
direction) of internal and external contexts, and be represented 
as (x, y, (z), t, c).  

Several similarity measure methods have been introduced and 
developed to gauge the commonalities of MPOs’ trajectories. 
We focus on a method that belongs to the time series family, 
which is known as dynamic time warping (DTW). Its initial 
version was proposed for speech recognition by Sakoe and 
Chiba (Sakoe & Chiba, 1978), and has been commonly 

employed in diverse fields of science. The DTW method relies 
on pair-wise comparisons of trajectory sampling points and 
warps the time to measure the similarities of trajectories. DTW 
is suitable for matching trajectories that have missing 
information, supports local time shifting, addresses parametric 
data very well, and handles dissimilar trajectory lengths (sizes). 
In contrast to Euclidean distance, DTW enables trajectories to 
be compressed or stretched along the temporal dimension to 
measure their match non-linearly. The computational time of 
DTW is O(n*m) which directly relates to the lengths of the 
trajectories. 

For two trajectories S[s1,...,sn] and T[t1,...,tm] of lengths n and m, 
respectively, the DTW distance is calculated as follows, 
 

DTW (j,j) = 0 
DTW (si,j) = DTW (j,tj) = ¥ 

DTW (si,tj) = ||si,tj||+ min  
{DTW (si,tj-1), DTW (si-1,tj), DTW (si-1,tj-1)} 

(1) 

 
where j is the empty trajectory. The results of the above 
equations are imported into a new matrix, called the similarity 
matrix, which displays the relative similarities of all of the 
trajectories (Figure 2). This matrix is a squared symmetric 
matrix whose dimension depends on the number of trajectories 
(n). 
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Figure 2. Relative similarity measure of the trajectories 

2.3 Multi-dimensional Pattern Discovery based on 
Similarity Search 

The phrase pattern discovery is denoted as “fitting a model to 
data, revealing structures, or inferring high-level delineation 
from the dataset” (Fayyad, Piatetsky-Shapiro, & Smyth, 1996). 
This sub-section, therefore, intends to discover the most 
prominent patterns among the trajectories with respect to the 
commonalities in their movement parameters and contexts. To 
this aim, the results of similarity measures are used as the basis 
for discovering patterns among trajectories. For this, it is 
required to define a reference range in which the trajectories 
that fit into it will share identical patterns. Normally, such 
ranges are distinguished by thresholds (e). We calculate the 
matching thresholds as one-quarter of the maximum standard 
deviation of the trajectory similarities in each movement 
parameter or context, which is also confirmed by Chen and his 
colleagues (Chen, Özsu, & Oria, 2005). Next, a reference 
trajectory is selected, and trajectories for which their distances 
are equal and/or smaller than e fit into the reference range and 
demonstrate similar patterns. 
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Figure 1. Methodology for contextualizing similarity measure and pattern discovery for trajectories 

3. IMPLEMENTATION AND RESULTS 

After describing the concept of context and providing theories 
for contextualizing similarity measure and pattern discovery 
among trajectories, it is time to assess the theories by applying 
them on a real dataset. We first introduce the case study. 
Second, we apply the DTW method on the dataset and measure 
the relative similarities of trajectories. Third, we mine 
multifarious patterns among trajectories in accordance with 
their similarity values. 

3.1 Data 

To evaluate the proposed theory, DTW is applied on 324 real 
commercial airplane trajectories (Flightaware, 2016) by 
considering the weather conditions (Aviation Weather Center, 
2016) during the flights. Studying airplane movements and 
measuring their trajectory similarities in different contexts not 
only enables the extraction of movement-behavior patterns of 
airplanes but also helps the decision makers in better planning 
of the flights and predicting their trajectories according to the 
contexts (Hurter et al., 2014). Commercial airplanes normally 
fly through predefined routes, called airways. An airway 
connects two locations and is defined with segments within a 
specific altitude and corridor width and between fixed 
geographic coordinates, called waypoints. In this case study, an 
airway is chosen from the eastern part of the United States of 
America, between the Orlando international airport in Orlando, 
Florida (ICAO code: KMCO), and the John F. Kennedy 
international airport in New York City, New York (ICAO code: 
KJFK), as depicted in Figure 3. 
 

 
Figure 3.  The study area between KMCO and KJFK airports 

(Flightaware, 2016) 

3.2 Similarity Search based on Underlying Context 

First, the DTW method measures the distance between several 
trajectories by using spatial data and contextual information in a 

multi-dimensional space. More specifically, multifarious 
implementations of (i) positional data (i.e., airplanes’ latitude, 
longitude, and altitude), (ii) internal context information (i.e., 
airplane’s speed and heading), and (iii) external context 
information (i.e., wind speed and direction) are conducted 
individually and collaboratively to measure the distance of 
trajectories in each implementation. 

To more clarify how internal and external contexts can affect 
the similarity measure results, four sample trajectories (Figure 
4a and b) along with the weather condition during the flights 
(Figure 4c) are chosen from the dataset and numerically 
analyzed. Trajectories K and L are generated via Airbus 
airplanes, while trajectories M and N are generated by Boeing 
and McDonnell Douglas airplanes. A 4-by-4 similarity matrix is 
generated for each examination, where the elements represent 
the relative similarity values. By applying DTW method, the 
distance (similarity) of trajectories K and L (Figure 4 red and 
green lines) at two- and three-spatial dimensions are measured 
as 7.65 and 2.56, respectively (Figure 5a, 5b). By incorporating 
airplane’s speed and heading parameters, this value decreases to 
1.89 (Figure 5c). Given the far similarity distance of these two 
trajectories in wind speed and direction (42.07) (Figure 5d), the 
ultimate similarity of trajectories K and L increased to 13.37 
(Figure 5e).  

In contrast, two trajectories M and N (Figure 5 blue and black 
lines) had high two- and three-spatial similarity values of 45.27 
and 15.10, respectively (Figure 5a, 5b). By incorporating 
airplanes’ speed and heading parameters, this value decreased to 
9.62 (Figure 5c). Considering the commonalities of these 
trajectories in wind speed and direction (30.60) (Figure 5d), the 
final relative similarity of trajectories M and N was increased to 
15.61 (Figure 5e). Comparing these two procedures, for 
trajectories K and L, the similarity value was increased from 
7.65 (in 2D) to 13.37 (for all dimensions); while, for trajectories 
M and N, this value was decreased from 45.27 (in 2D) to 15.61 
(for all dimensions). This example reveals that how internal and 
external contexts can positively/negatively influence the 
similarity values of trajectories. 
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(a)  

(b)  

(c)  

Figure 4. Representation of four trajectories between KMCO 
and KJFK airports: (a) Airplanes latitude and longitude; (b) 

Airplanes latitude, longitude, and altitude; (c) Wind (direction 
and magnitude) rose diagram. 

3.3 Pattern Discovery based on Similarity Search Result 

It is feasible to investigate the added values and the role of 
internal and external contextual information in discovering 
patterns individually and collaboratively. For this purpose, in 

this sub-section the results of similarity searches are utilized for 
discovering the multi-dimensional movement patterns of the 
airplanes’ trajectories. To this aim, a reference trajectory is 
selected; the one that has the least deviation from the airway 
and the minimum difference between the scheduled and flown 
flight durations. Then, the implementations are conducted based 
on this reference trajectory.  

The first examination discovers the flights that are close in their 
duration (i.e., the difference between take-off and landing 
times). The discovered trajectories are illustrated in Figures 6a 
(in dark green) in the whole dataset (in light green) based on a 
reference trajectory (in red). The second examination is 
dedicated to trajectories that share similar patterns in terms of 
altitude, time, and airplane’s ground speed in Figure 6b. The 
computed counts of these trajectories are summarized in Table 
1.  

It is desired to discover patterns of four airplane models in the 
dataset as the third experiment. To reach this goal, one reference 
trajectory is selected for each model, and the corresponding 
spatial patterns of 324 trajectories in three dimensions are 
extracted. Figures 6c, 6d, 6e, and 6f illustrate these patterns for 
Boeing, Airbus, McDonnell Douglas, and Embraer, 
respectively, and the computed counts are summarized in Table 
1 (Experiments 3a-3d). The outcome suggests that the Airbus 
trajectories are the stabilized trajectories in this test because 
they have the least distances to the reference pattern. 
The rest of this sub-section is dedicated to three settings of 
spatial and contextual information. In this context, the fourth 
and fifth experiments discover the combined patterns of spatial 
and internal context (i.e., airplane’s speed and heading), and 
spatial and external context (i.e., wind speed and direction), 
respectively. The former examination discovers 254 trajectories 
and the later examination distinguishes 193 trajectories that 
share similar patterns. Finally, for the combined context 
assessment, the sixth experiment accounts all the previous 
variables and discovers 175 multi-dimensional similar patterns 
among the dataset. The results of the above implementations 
demonstrate a large variation in the number of discovered 
trajectories despite the fact that their reference trajectory is the 
same. The results ascertain the robustness of this technique in 
quantifying the commonalities of trajectories and discovering 
movement patterns with overall 80% accuracy.

 

 
(a) (b) (c) (d) (e) 

Figure 5. Relative similarity values of four trajectories: (a) Latitude and longitude (2D); (b) Latitude, longitude, and altitude (3D); (c) 
Latitude, longitude, altitude, airplane speed, and airplane heading; (d) Wind speed and wind direction; (e) All the previous 

dimensions together 
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Table 1. Multi-dimensional pattern discovery of trajectories 

Experiment 
Spatial Temporal Internal Context External Context 

No. of discovered 
trajectories Latitude Longitude Altitude Flight 

duration 
Airplane’s 

speed 
Airplane’s 

heading 
Wind 
speed 

Wind 
direction 

1 ✓ ✓ - ✓ - - - - 281 out of 324 
2 - - ✓ ✓ ✓ ✓ - - 267 out of 324 
3a ✓ ✓ ✓ - - - - - 35 out of 44 
3b ✓ ✓ ✓ - - - - - 177 out of 218 
3c ✓ ✓ ✓ - - - - - 37 out of 44 
3d ✓ ✓ ✓ - - - - - 13 out of 18 
4 ✓ ✓ ✓ - ✓ ✓ - - 254 out of 324 
5 ✓ ✓ ✓ - - - ✓ ✓ 193 out of 324 
6 ✓ ✓ ✓ - ✓ ✓ ✓ ✓ 175 out of 324 

 

(a)  (b)  

(c)  (d)  

(e)  (f)  

Figure 6. Discovered patterns (in dark green) from the dataset (in light green) based on the reference trajectory (in red): (a) latitude, 
longitude, and time; (b) Altitude, airplane’s ground speed, and time; (c) Boeing pattern; (d) Airbus pattern; (e) McDonnell Douglas 

pattern; (f) Embraer pattern

4. CONCLUSION 

This paper provided new insights into the multi-dimensional 
similarity analysis and pattern discovery of trajectories based on 

contextual information. To this end, the DTW method was 
employed for assessing the similarities of trajectories, by 
including not only their spatial footprints but also a notion of 
internal and external contexts. The effectiveness of the theory 
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was examined in several experiments on real commercial 
airplanes dataset. The results demonstrated that the DTW 
method can be successfully applied in similarity analysis of 
trajectories and can help to provide multi-dimensional pattern 
discovery in large datasets. Furthermore, the results underpin 
the fact that the movements of point objects are highly affected 
by both internal and external contexts in positive and negative 
manners. 
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