
INDOOR SPATIAL DATA CONSTRUCTION FROM TRIANGLE MESH

Dongmin Kim, Azamat Bolat, Ki-Joune Li∗

 Dept. of Computer Science&Engineering, Pusan National University, Kumjeong-Gu, 46241, Busan, South Korea
- (dongmin.kim, azamat.bolat, lik)@pnu.edu

Commission IV, WG IV/4

KEY WORDS: Triangle Mesh, Mesh Simplification, Solid, Indoor Space, Indoor Data, IndoorGML

ABSTRACT:

The 3D triangle mesh is widely used to represent indoor space. One of widely used methods of generating 3D triangle mesh data of
indoor space is the construction from the point cloud collected using LIDAR. However, there are many problems in using generated
triangle mesh data as a geometric representation of the indoor space. First, the number of triangles forming the triangle mesh is
very large, which results in a bottleneck of the performance for storage and management. Second, no consideration on the properties
of indoor space has been done by the previous work on mesh simplification for indoor geometric representation. Third, there is no
research to construct indoor spatial standard data from triangle mesh data. For resolving these problems, we propose the a method
for generating triangular mesh data for indoor geometric representation based in the observations mentioned above. First this method
removes unnecessary objects and reduces the number of surfaces from the original fine-grained triangular mesh data using the properties
of indoor space. Second, it also produces indoor geometric data in IndoorGML - an OGC standard for indoor spatial data model. In
experimental studies, we present a case study of indoor triangle mesh data from real world and compare results with raw data.

1. INTRODUCTION

3D indoor spatial data can be created from a variety of methods.
Recently, in order to collect 3D indoor data many studies build
point cloud data using LIDAR scanning technology, (Choi et al.,
2013). Simple visualization with raw point cloud data is possi-
ble, but it is difficult to perform queries about indoor space and to
store and manage indoor space data due to its geometric incom-
pleteness. Therefore, instead of point cloud, we need to represent
the indoor spatial data with 3D Boundary Representation, B-rep,
(Stroud, 2006) geometry data to query indoor space.

We can group points in point cloud in an appropriate way to
generate 3D B-rep geometry data consisting of triangle meshes.
However, querying this data will increase the computational com-
plexity exponentially. It happens due to composition of numerous
triangles, even if it is a single wall. So we have reduce the number
of triangles. This could be accomplished through several means.
The first method is to sample proper points from the raw data
and reconstruct the triangle mesh using sampled points. The sec-
ond method is to create simple mesh data through previous mesh
simplification work. However, these methods are not suitable for
constructing indoor space data, because the original geometric in-
formation is distorted or properties of the indoor spatial data are
not considered.

We construct indoor space data from raw triangle mesh by us-
ing properties of indoor space. Several considerations need to
be taken into account at the outset. Firstly, the surface of in-
door space data should be one of walls, floors, ceiling surfaces
(architectural elements) surrounding indoor space, or one of sur-
faces (non-architectural elements) surrounding furniture in in-
door space. We must determine the surfaces, to which each tri-
angle mesh belongs to. Secondly, it is important to distinguish

∗Corresponding author

between architectural and non-architectural elements in the con-
structed point cloud. The method presented in (ChangHyun et
al., 2017) creates point cloud data by exploiting elements differ-
ences. (ChangHyun et al., 2017) suggests how to divide objects
in indoor space into architectural and non-architectural elements.
In triangle mesh data constructed from this point cloud, archi-
tectural and non-architectural elements do not share boundaries
with each other. And thirdly, the points in cloud data collected
in indoor space are valid only in the corresponding indoor space.
It means the data is not representation of outdoor or other in-
door space. Therefore, triangular mesh data generated from point
cloud collected in indoor space is also valid only in the same in-
door space. We construct indoor spatial data from triangular mesh
data considering these observations.

Figure 1. Problem definition

The following approaches were used to build indoor spatial data:

• We merge coplanar surfaces into one surface.
• We construct triangular mesh graph to distinguish architec-

tural and non-architectural elements of interior space.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W8, 2018
FOSS4G 2018 – Academic Track, 29–31 August 2018, Dar es Salaam, Tanzania

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-W8-101-2018 | © Authors 2018. CC BY 4.0 License.

101

mailto:lik)@pnu.edu

Figure 2. Data change and conversion procedure

• We handle noise that can occur during indoor space data
collection.

• We create standard data in indoor spatial data model - OGC
IndoorGML.

In experiment steps, we compare the original and result data. We
show how the proposed method preserves the indoor properties
during the simplification and production of indoor spatial data.
In addition, we demonstrated the differences in results of method
in construction process. Finally, we validate the generated In-
doorGML through visualization.

The structure of the paper is as follows: Section II gives a brief
overview of related work and the motivations of this study. Sec-
tion III defines basic concepts. Section IV describes indoor spa-
tial data properties. Sections V and VI describes the overall con-
version and the specific process. Section VII presents the exper-
imental results and analyzes the performance. Section VIII con-
cludes our work and discusses future work and open problems.

2. RELATED WORKS AND MOTIVATIONS

In terms of data size, we have to reduce the number of surfaces
in the data and consequently need mesh simplification. (Cignoni
et al., 1998) introduces several studies for mesh simplification
and compares performance and accuracy. In based on controlled
vertex/edge/face decimation method, (Schroeder et al., 1992)
uses local operations on geometry and topology. Coplanar facets
merging method is used in (Hinker and Hansen, 1993) and (Kalvin
and Taylor, 1996). (DeCoro and Tatarchuk, 2007) proposed
general-purpose data structure designed for streaming architec-
tures called the probabilistic octree for mesh simplification with
GPU implementation.

Several mesh simplification studies are underway. However, these
studies do not take into consideration the characteristics of the
target objects, and therefore they do not properly to produce in-
door spatial data. Mesh simplification studies mentioned above
are too generic to apply on indoor spatial data. Therefore, it is
necessary to study the properties of indoor space for the con-
struction of indoor spatial data. We perform the simplification
of triangular mesh more efficiently by using the characteristics of
indoor space. The elimination of non-architectural elements of
indoor space results in more indoor-meaningful products than in
previous studies.

Additionally, there is no study that generates geometric data ac-
cording to indoor spatial standard data model. When we deal with

indoor spatial data, we need standard data model for the interop-
erability between services and reusability of indoor maps. There
are standards, CityGML (Kolbe et al., 2005) and IndoorGML
(Kang and Li, 2017), providing frameworks of standard data mod-
els for indoor spaces. (Ryoo et al., 2015) compared them with
advantages and disadvantages. For utilization of cellular space
model, we generate IndoorGML rather than CityGML, and we
explain IndoorGML in detail in Section 3.4.

3. BASIC CONCEPT

Figure 2 shows the data change and conversion procedure of this
work. First, an adjacent graph is constructed by using adjacent
relationship of triangles in mesh data. The graph is used to re-
move non-architectural elements. Next, we perform solidification
to construct solid data from triangle mesh data that contains only
architectural elements. Finally, we generate IndoorGML from
the solid data. For explanation of this procedure, we define and
explain several concepts, Triangle mesh data, Adjacency relation-
ship, Solid data, and IndoorGML.

3.1 Triangle mesh data:

The triangle mesh geometric representation is defined by data
model in ISO 19107. Related geometries are defined in ISO
19107 (Spatial Schema) are as follows:

• A GM TriangulatedSurface is a GM PolyhedralSurface that
is composed only of triangles(GM Triangle). There is no re-
striction on how the triangulation is derived.

• A GM Triangle is a planar GM Polygon defined by 3 cor-
ners.

• A GM Polygon is a surface patch defined by a set of bound-
ary curves and an underlying surface to which these curves
adhere. Curves are coplanar by default.

• A GM PolyhedralSurface is a GM Surface composed of
polygon surfaces (GM Polygon) connected along their com-
mon boundary curves.

• GM Surface is the basis for 2-dimensional geometry. Un-
orientable surfaces such as the Mobius band are not allowed.

Figure 3 shows relationship of above models simply.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W8, 2018
FOSS4G 2018 – Academic Track, 29–31 August 2018, Dar es Salaam, Tanzania

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-W8-101-2018 | © Authors 2018. CC BY 4.0 License.

102

Figure 3. Relationship of GM TriangulatedSurface and other
types in ISO 19107

3.2 Adjacency relationship

In triangle mesh data, two triangles are considered to be adjacent
when they have the opposite edge in relation to each other. In this
study, edge and triangle are defined as follows:

Figure 5. GM Solid illustration

the smallest structural indoor unit space. We represent cells in
IndoorGML using only the geometric representation. Figure 6
shows an example of an IndoorGML document.

Edge(a, b) = a directed edge with
start vertex a and end vertex b

= opposite edge of Edge(b, a).
I=Edge(b, a)

Triangle(a, b, c) ={Edge(a, b), Edge(b, c),

Edge(c, a)}

(1)

(2)

We construct an adjacent graph using this adjacency relation-
ship. In this graph, all triangles, in the triangle mesh data that we
deal with, have only three neighboring triangles. Figure 4 shows
example of triangle mesh and adjacency graph.

Figure 6. Part of the IndoorGML document

4. INDOOR SPATIAL DATA PROPERTIES

In this section we discuss the properties of indoor space that we
will consider for our approach. First, the surfaces surrounding a
cell in IndoorGML data model are defined as follows:

WS ={sw|sw is a planar wall surface}

Figure 4. Construction adjacency graph from triangle mesh

FS ={sf |sf is a planar floor surface}
CS ={sc|sc is a planar ceiling surface}
IS ={si|si is a planar indoor furniture surface}

(3)

3.3 Solid data

The solid geometric representation is defined in this study ac-
cording the data model in ISO 19107. GM Solid is the basis of
3-dimensional geometry and the extent of a solid is defined by
the boundary surfaces. We can illustrate ISO 19107 models as
shown in Figure 5. We build surfaces, which surround a solid as
Figure 5.

3.4 IndoorGML document

The final goal of this study is to produce data in IndoorGML
(Kang and Li, 2017), an international indoor standard data model.
IndoorGML provides an open data model and XML schema for
indoor spatial information. It aims to provide a common frame-
work of representation and exchange of indoor spatial informa-
tion. Indoor space can be a set of cells, which are defined as

where WS, FS, CS, IS are disjoint sets.

Indoor spatial triangle mesh T satisfy the following conditions.

For any triangle t in T, there is always one surface S,
(4)

which is one of WS, FS, CS, IS.

Architectural and non-architectural elements have the following
characteristics.

• Architectural elements should be solid bounded by surfaces
of WS, FS, CS.

• Non-architectural element should be solid only bounded by
surfaces of IS.

Figure 7 shows these geometric properties of indoor spatial data.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W8, 2018
FOSS4G 2018 – Academic Track, 29–31 August 2018, Dar es Salaam, Tanzania

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-W8-101-2018 | © Authors 2018. CC BY 4.0 License.

103

Figure 7. Surface types of indoor spatial data

5. CONSTRUCTION PROCEDURE

This section provides a detailed description of the building pro-
cess introduced in Section 3. In the whole process we use the
Computational Geometry Algorithms Library (The CGAL Project,
2018). CGAL is a software project that provides easy access to
efficient and reliable geometric algorithms in a form of C++ li-
brary.

5.1 Input Triangle Mesh data

We load triangle mesh data stored in one of the file formats TMD
(Triangle Mesh Datafile), 3DS and COLLADA as input. 3DS and
COLLADA are widely used file formats which can store 3D trian-
gle mesh. And TMD is file format which is defined by ourselves.
In Figure 8, there is an example of TMD file format structure.
We utilize data during whole procedure including the loaded tri-
angle mesh data as a data model which is shown in Figure 2. In
this section, Solid, Surface, Triangle, Vertex and Edge are class
or class instances of this model, in Figure 9.

Figure 8. An example of TMD file format

5.2 Construction triangle adjacency graph

Two triangles with adjacent relationship are represented as two
node and connecting edge in the adjacency graph. In this process,
we establish adjacent relationships for all adjacent Triangle pairs,

Figure 9. Data model for construction procedure

and then a triangle mesh graph is constructed based on these re-
lationships. Within this graph, there is one or more connected
components. Each connected component represents an architec-
tural cell in IndoorGML or a non-architectural element.

5.3 Non-architectural elements elimination

We must determine whether each connected component of the
graph represents either an architectural cell or a non-architectural
element. We assume that normal vectors of all Surfaces that make
up architectural cell are oriented towards the inside of the cell.
From this assumption, if normal vectors of all connected triangles
are directed to inward, this component represents an architectural
cell. If not, it represents a non-architectural element. Figure 10
visualizes this assumption by example. In this process, we elimi-
nate triangles corresponding to non-architectural elements.

Figure 10. An Example of architectural and non-architectural

normal vector

5.4 Solidification

This section presents a series of steps to build solid data from
fine-grained triangle mesh data to planar surfaces. Figure 11
shows these steps in this section. Solid data is constructed by

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W8, 2018
FOSS4G 2018 – Academic Track, 29–31 August 2018, Dar es Salaam, Tanzania

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-W8-101-2018 | © Authors 2018. CC BY 4.0 License.

104

performing these steps for each triangle mesh data correspond-
ing to each connected component of the graph. The first step is
to make multiple fine-grained Surfaces into a single Surface by
merging them. The second step simplifies edges between the cre-
ated Surfaces by decimating intermediate Vertices. The third step
is to construct solid data composed of planar surfaces by polygo-
nizing each Surface. The following sections describe each step in
detail.

Figure 11. Solidification

5.4.1 Merging Surfaces (Step 1): This step merges multiple
Surfaces into a single Surface. We propose a greedy algorithm
1 for this. This algorithm first selects two adjacent Surfaces and
verifies that those Surfaces can be merged. If possible, we merge
two Surfaces and repeat the same operation for all Surfaces. At
this stage we ease the mergeability condition of this algorithm
gradually to the limit and iterate the algorithm until there are no
more Surfaces to be merged. We describe these steps in detail in
Section 6.

input : SL : List of Surfaces
output: SL‘ : List of Surfaces after merging
hasMerged ← true ;
while hasMerged do

hasMerged ← false ;
sort SL by the number of V ertexs of each Surface;
foreach Surface Pair(Si, Sj) in SL do

if Si can be merged with Sj then
hasMerged ← true ;
merge(Si, Sj) ;

end
end

end
Algorithm 1: mergeSurfaces

5.4.2 Edge simplification (Step 2): This step simplifies Edges
between every two adjacent Surfaces. The edge between two ad-
jacent Surfaces not merged in the preceding Step 1 should be
straight if both Surfaces are planar. All Surfaces in current data
are not on a plane, but we assume that all Surfaces are planar at
this stage because they represent surfaces in WS, FS, or CS.
Based on that assumption, this step makes edges of all adjacent
Surface pairs straight. In connected Edges shared by two Sur-
faces, we decimate all points except the start Vertex of the first
Edgeand the end Vertex of the last edge, and recreate new edge
between two surfaces. However, if a self-intersection occurs in
one of the two Surfaces after simplification, it returns to the pre-
vious state. This step proceeds until every shared edge of all ad-
jacent Surface pairs is simplified.

5.5 Surface Polygonization (Step 3):

The goal of solidification is to create solid data surrounded by
planar surfaces. However, Surfaces after completing Step 2 may

not be planar. So, the purpose of step 3 is to make each Surface
consist of one polygon (planar Surface) or polygons. In other
words, this step converts solid data which consists of non-planar
surfaces into solid data consisting only of planar surfaces. We
propose three ways to achieve the purpose of this step.

Surface Planarization : The first method is to make each Sur-

face into a single plane. Then we can easily build solid data
surrounded by planar Surfaces. There are several ways to
convert a Surface to a plane (PCA, plane creation using nor-
mal vectors and sample points on Surface). However, the
problem of making every Surfaces planar at once, with tak-
ing into account the topological information is NP-problem.
Sometimes it may not be possible to flatten all the Surfaces.
Therefore, we are implementing a heuristic algorithm. This
work is currently in progress and requires verification.

Coarse-grained triangulation (method CT) : When we flatten
a non-planar Surface, distortions in the geometry are almost
inevitable. But it is possible to maintain Surface geometry
without distortion when Surface is triangulated. The sec-
ond method is to triangulate each Surface. Since computer
graphics studies perform triangulation to store and visualize
3D geometry data, storing results as a triangle mesh does not
cause much damage. Here, the coarse-grained triangulation
means dividing Surface into minimum number of Triangles,
rather than going back to the original fine-grained triangle
mesh data. These triangles are distinguished from the orig-
inal triangle mesh data by not only geometric data informa-
tion, but also using belonging to architectural Surface (FS,
WS, CS). Our triangulation function utilizes CGAL trian-
gulation function (Hert and Seel, 2018), which uses only
point location information. To keep the topology informa-
tion, we divide the Surface into convex hulls and triangulate
each convex hull. Finally, we construct solid data with tri-
angles created by triangulating all surfaces.

Divided polygonization (method DP) : When we triangulate Sur-
face, some planar portions of the Surface are also divided
into multiple Triangles, so the Triangles are not the min-
imum number of polygons. We propose a way to make
the polygons be as large as possible. Resulting polygons
are made by applying Algorithm 1 to Triangles, which are
made by method CT in each Surface. Because these poly-
gons should be planar, we should tighten the planarity deci-
sion. For more strict planarity decision, we set threshold to
lower value than Section 5.4.1 in execution of Algorithm 1.

5.6 Generating IndoorGML data

We show how to generate IndoorGML data. In order to generate
IndoorGML data, we have to create cells. The creation of a cell
can be divided into two stages:

Cell identification : In order to create a cell, we have to deter-

mine which part of the total data each cell occupies (e.g.
room). This study considers one architectural connected
component of the graph constructed in Section 5.2 as one
cell. Because one connected component become one Solid
data, we also think of one Solid as one cell.

Determination of cell geometry : We also need to determine cell
geometry. In Cell identification, we regard one Solid as one
cell, so the cell geometry can be completed from the Solid
geometry.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W8, 2018
FOSS4G 2018 – Academic Track, 29–31 August 2018, Dar es Salaam, Tanzania

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-W8-101-2018 | © Authors 2018. CC BY 4.0 License.

105

Finally, we produce one IndoorGML document from all cells de-
fined in this way.

6. MERGING SURFACES METHOD

In this section, we describe the procedure of Section 5.4.1 in de-
tail. This section shows how to merge two adjacent Surfaces, one
of the core processes of this study. In addition, we present prob-
lems that may arise during merging process and their solutions.

Figure 12. Illustration of threshold and angles.

1) Two normal vectors of Surfaces. 2) ∠A 3) ∠B

We proceed with this step using the normal vectors of two Sur-
faces. Let two Surfaces be Sa, Sb, and normal vectors of each
Surface is Va, Vb. For explanation of this section, we utilize def-
inition as follows:

Vsum =Va + Vb (5)

Va if Sa.area > Sb.area

its neighbor in the actual indoor space, ∠A can be large. So, for
assumption of noise surface, we set θ1 to high value (e.g. 10.0 ◦,
20.1 ◦). But, if θ1 is set to a large value, two different non-noise
surfaces may be merged. So we exclude that case through con-
dition 2 and apply only to a noise surface. The characteristic of
noise surface is usually smaller than surrounding Surface. To use
it, we calculate the angle ∠B between Vsum and Vbig . We also
let normal vector of Surface imply Surface area information (This
is explained in detail in the next section). Thus, if one of the two
Surfaces is overwhelmingly large and the other is small (if it is a
Noise surface), the angle B is calculated to be a low value. We set
θ2 to a low value, and merge only if ∠A is large but ∠B is small.
If ∠A is small, both conditions are satisfied since ∠A ≥ ∠B.

The second problem is Surface normal vector calculation. Most
of the Surfaces used at this stage are not planar. To deal with the
noise in indoor spatial data we merge Surfaces even if they are
not coplanar. So it is infeasible to calculate singal normal vector
of each Surface. Instead, we set Vsum to normal vector of the
merged Surface. Since Triangle in raw triangle mesh is always
planar, we can compute normal vector of each Triangle. Then,
we select two consecutive Edges of one Triangle, convert them
into vectors, cross-product them, and set the resulting vector as
Triangle normal vector. The magnitude of the result vector means
the area of Triangle. (In fact, magnitude of result vector / 2 =
Triangle area) Since we merge Triangles into Surfaces and repeat
merging, each Surface in last iteration has a normal vector. The
magnitude of the normal vector is the sum of all triangles area that
have been merged to form the Surfaces. Thus, this value implies
the area of the Surface.

The greedy merging method in solving two problems presented
above makes different results depends on Surfaces selection or-
der. We present a heuristic method to determine the proper merge
order by gradient ascent of θ1. This method iterates the algo-
rithm 1 with gradually increasing θ1 from a small to a large value.
Merging order properly adjusted because pair of Surfaces with a
smaller ∠A merged first. In addition, there is a possibility to er-

Vbig =
Vb otherwise

(6) roneously merge Surfaces when θ1 is large. In contrast, if the
value is small, only a small number of Surfaces are merged. By
sequentially setting values we address issue of determination θ1

There are several problems to consider at this stage. The first
problem is to determine feasibility of merging Surfaces. We say
that merging is possible if Surfaces pair satisfies the following
conditions:

too.

7. EXPERIMENTS

Condition 1 :∠A ≤ θ1

Condition 2 :∠B ≤ θ2

where ∠A is angle between two Surfaces normal vector,

∠B is angle between Vsum and Vbig ,
θ1 and θ2 are thresholds

(7)

7.1 Dataset

In this work we used indoor spatial data with several rooms and
objects. Data represents triangle mesh made from point cloud
collected inside of apartment. The data is in TMD format, the
number of data vertices is 21732, and the number of triangles is
43368. The range of total space is (11.66, 10.12, 3.49) and the
average size of triangles is 0.00832192.

Figure 12 shows these conditions and angles. If two conditions
are satisfied, two adjacent Surfaces are merged into one. In con-
dition 1, another studies that merge coplanar adjacent facets set a
low value (e.g. 0.1◦, 0.01◦) for a θ1. However, since our project is
aimed at indoor space and most of data is collected in real space,
the data maybe has some noise surfaces.

Noise surface is a surface that has wrong geometry about the ac-
tual indoor space. Therefore, even the noise surface is planar with

Table 1. Data spec.

During the process of Section 5.2 an adjacent graph of a trian-
gle mesh with 18 connected components constructed. Triangles
of 17 connected components among them belong to IS (Indoor

Data Spec. Value
Vertices number 21732
Triangles number 43368
Range of Space (11.66, 10.12, 3.49)
Average triangle size 0.00832192

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W8, 2018
FOSS4G 2018 – Academic Track, 29–31 August 2018, Dar es Salaam, Tanzania

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-W8-101-2018 | © Authors 2018. CC BY 4.0 License.

106

N i

furniture surfaces). In order to eliminate them we perform the
process of 5.3, leaving only one connected component of 18094
triangles. We summarize the apartment data in Table 1.

7.2 Performance Analysis

In Table 2, we show the workload parameter. Values in bold are
default. Figure 13 shows variation of the number of surfaces in
the whole process of a case. In this case, θ2 is 1.0 and Surface
Polygonization is done by DP method.

Figure 13. Surfaces number according to process

We specifically explored Step 1 and Step 3 of the 5.4 Solidifica-
tion process. In step 1, one iteration is a one-time operation of
Algorithm 1. Our measure in this experiment is defined as fol-
lows:

Figure 15. Two polygonization methods comparison

7.3 IndoorGML Document Validation

As a final step of our work we create an IndoorGML document.
The following Figure 16 shows generated IndoorGML document
visualization. We visualize IndoorGML data to confirm there
were no problems for representing the indoor space.

i th iteration reduction ratio r = Ni

0

where Ni = the number of surfaces in ith iteration

(8)

Figure 16. Visualization of IndoorGML Document

8. CONCLUSION & FUTURE WORK

Parameters Settings
θ1 (◦)
θ2 (◦)

1.0, 3.0, 5.0, . . . , 39.0
1.0

Table 2. Parameters & their settings

Figure 14 changes in reduction ratio of Step 1. Figure 14 also
shows changes in the average size of all surfaces.

Figure 14. Changes of the number of surfaces and average
Surface size in Soldification step 1

Figure 15 compares results of two polygonization methods CT
and DP. The method CT makes from each surface multiple tri-
angles, whereas DP makes from each surface multiple polygons.
In this experiment, we demonstrate that DP provides a stronger
reduction than CT.

In this paper, we proposed a novel method for the simplification
of triangular mesh data collected from point cloud. While a num-
ber of researches have been done for the triangular mesh simpli-
fication, the main difference of our work is that we considered
the properties of indoor space based on the data model defined
in OGC IndoorGML. The main contributions of this work are as
follows:

• We built appropriate indoor spatial geometry data from fine-
grained triangle mesh.

• We simplified indoor spatial data by using properties of in-
door space.

• We suggested the method to generate indoor spatial standard
data model from triangle mesh.

We demonstrated the achieved level of compression in experi-
ments. In addition, we visualize our intermediate and final out-
put. Experimental results show that DP method is more suitable
for the original purpose.

In future work, we plan to design a method for complex indoor
spaces (e.g. large exhibition halls, sports stadiums, etc.). We will
also implement the function of constructing a door or a virtual
door for data that is not distinguished from the outside or inside,
or data that cannot be not divided into cells.

We also open work to contribute to the open source spatial infor-
mation ecosystem. We release the source code on Github, see :
https://github.com/STEMLab/TMI-Converter.git.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W8, 2018
FOSS4G 2018 – Academic Track, 29–31 August 2018, Dar es Salaam, Tanzania

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-W8-101-2018 | © Authors 2018. CC BY 4.0 License.

107

9. ACKNOWLEDGMENT

This work was partially supported by BK21PLUS, Creative Hu-
man Resource Development Program for IT Convergence, a grant
(18NSIP-B135746-02) from National Spatial Information Research
Program (NSIP) funded by Ministry of Land, Infrastructure and
Transport of Korean government and the Global Frontier R&D
Program on <Human-centered Interaction for Coexistence> funded
by the National Research Foundation of Korea grant funded by
the Korean Government(MSIP) (2017M3A6A3052686).

REFERENCES

ChangHyun, J., Kang, J., Yeon, S., Choi, H., Chung, T.-Y. and
Doh, N. L., 2017. Towards a realistic indoor world reconstruc-
tion: preliminary results for an object-oriented 3D RGB-D map-
ping. Intelligent Automation & Soft Computing 23(2), pp. 207–
218.

Choi, H., Jun, C., Li Yuen, S., Cho, H. and Doh, N. L., 2013. Joint
solution for the online 3D photorealistic mapping using SfM and
SLAM. International Journal of Advanced Robotic Systems.

Cignoni, P., Montani, C. and Scopigno, R., 1998. A comparison
of mesh simplification algorithms. Computers & Graphics 22(1),
pp. 37–54.

DeCoro, C. and Tatarchuk, N., 2007. Real-time mesh simplifica-
tion using the GPU. In: Proceedings of the 2007 symposium on
Interactive 3D graphics and games, ACM, pp. 161–166.

Hert, S. and Seel, M., 2018. Convex Hulls and Delaunay Tri-
angulations. In: CGAL User and Reference Manual, 4.12 edn,
CGAL Editorial Board.

Hinker, P. and Hansen, C., 1993. Geometric optimization. In:
Proceedings of the 4th conference on Visualization’93, IEEE
Computer Society, pp. 189–195.

Kalvin, A. D. and Taylor, R. H., 1996. Superfaces: Polygonal
mesh simplification with bounded error. IEEE Computer Graph-
ics and Applications 16(3), pp. 64–77.

Kang, H.-K. and Li, K.-J., 2017. A Standard Indoor Spatial Data
ModelOGC IndoorGML and Implementation Approaches. IS-
PRS International Journal of Geo-Information 6(4), pp. 116.

Kolbe, T. H., Gröger, G. and Plümer, L., 2005. Citygml: Interop-
erable access to 3d city models. In: Geo-information for disaster
management, Springer, pp. 883–899.

Ryoo, H.-G., Kim, T. and Li, K.-J., 2015. Comparison between
two OGC standards for indoor space: CityGML and IndoorGML.
In: Proceedings of the Seventh ACM SIGSPATIAL International
Workshop on Indoor Spatial Awareness, ACM.

Schroeder, W. J., Zarge, J. A. and Lorensen, W. E., 1992. Deci-
mation of triangle meshes. In: ACM Siggraph Computer Graph-
ics, Vol. 26number 2, ACM, pp. 65–70.

Stroud, I., 2006. Boundary representation modelling techniques.
Springer Science & Business Media.

The CGAL Project, 2018. CGAL User and Reference Manual.
4.12 edn, CGAL Editorial Board.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W8, 2018
FOSS4G 2018 – Academic Track, 29–31 August 2018, Dar es Salaam, Tanzania

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-W8-101-2018 | © Authors 2018. CC BY 4.0 License.

108

	Commission IV, WG IV/4
	ABSTRACT:
	1. INTRODUCTION
	2. RELATED WORKS AND MOTIVATIONS
	3. BASIC CONCEPT
	3.1 Triangle mesh data:
	3.2 Adjacency relationship
	4. INDOOR SPATIAL DATA PROPERTIES
	3.3 Solid data
	3.4 IndoorGML document
	5. CONSTRUCTION PROCEDURE
	5.1 Input Triangle Mesh data
	5.2 Construction triangle adjacency graph
	5.3 Non-architectural elements elimination
	5.4 Solidification
	end
	5.5 Surface Polygonization (Step 3):
	5.6 Generating IndoorGML data
	6. MERGING SURFACES METHOD
	7. EXPERIMENTS
	7.1 Dataset
	7.2 Performance Analysis
	7.3 IndoorGML Document Validation
	8. CONCLUSION & FUTURE WORK
	9. ACKNOWLEDGMENT
	REFERENCES

