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ABSTRACT: 
 

The 3D triangle mesh is widely used to represent indoor space. One of widely used methods of generating 3D triangle mesh data of 
indoor space is the construction from the point cloud collected using LIDAR. However, there are many problems in using generated 
triangle mesh data as a geometric representation of the indoor space. First, the number of triangles forming the triangle mesh is 
very large, which results in a bottleneck of the performance for storage and management. Second, no consideration on the properties 
of indoor space has been done by the previous work on mesh simplification for indoor geometric representation. Third, there is no 
research to construct indoor spatial standard data from triangle mesh data. For resolving these problems, we propose the a method 
for generating triangular mesh data for indoor geometric representation based in the observations mentioned above. First this method 
removes unnecessary objects and reduces the number of surfaces from the original fine-grained triangular mesh data using the properties 
of indoor space. Second, it also produces indoor geometric data in IndoorGML - an OGC standard for indoor spatial data model. In 
experimental studies, we present a case study of indoor triangle mesh data from real world and compare results with raw data. 

 
 

1. INTRODUCTION 
 

3D indoor spatial data can be created from a variety of methods. 
Recently, in order to collect 3D indoor data many studies build 
point cloud data using LIDAR scanning technology, (Choi et al., 
2013). Simple visualization with raw point cloud data is possi- 
ble, but it is difficult to perform queries about indoor space and to 
store and manage indoor space data due to its geometric incom- 
pleteness. Therefore, instead of point cloud, we need to represent 
the indoor spatial data with 3D Boundary Representation, B-rep, 
(Stroud, 2006) geometry data to query indoor space. 

 
We can group points in point cloud in an appropriate way to 
generate 3D B-rep geometry data consisting of triangle meshes. 
However, querying this data will increase the computational com- 
plexity exponentially. It happens due to composition of numerous 
triangles, even if it is a single wall. So we have reduce the number 
of triangles. This could be accomplished through several means. 
The first method is to sample proper points from the raw data 
and reconstruct the triangle mesh using sampled points. The sec- 
ond method is to create simple mesh data through previous mesh 
simplification work. However, these methods are not suitable for 
constructing indoor space data, because the original geometric in- 
formation is distorted or properties of the indoor spatial data are 
not considered. 

 
We construct indoor space data from raw triangle mesh by us- 
ing properties of indoor space. Several considerations need to 
be taken into account at the outset. Firstly, the surface of in- 
door space data should be one of walls, floors, ceiling surfaces 
(architectural elements) surrounding indoor space, or one of sur- 
faces (non-architectural elements) surrounding furniture in in- 
door space. We must determine the surfaces, to which each tri- 
angle mesh belongs to.  Secondly, it is important to distinguish 
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between architectural and non-architectural elements in the con- 
structed point cloud. The method presented in (ChangHyun et 
al., 2017) creates point cloud data by exploiting elements differ- 
ences. (ChangHyun et al., 2017) suggests how to divide objects 
in indoor space into architectural and non-architectural elements. 
In triangle mesh data constructed from this point cloud, archi- 
tectural and non-architectural elements do not share boundaries 
with each other. And thirdly, the points in cloud data collected 
in indoor space are valid only in the corresponding indoor space. 
It means the data is not representation of outdoor or other in- 
door space. Therefore, triangular mesh data generated from point 
cloud collected in indoor space is also valid only in the same in- 
door space. We construct indoor spatial data from triangular mesh 
data considering these observations. 

 

 
 

Figure 1. Problem definition 
 
 
 

The following approaches were used to build indoor spatial data: 
 

• We merge coplanar surfaces into one surface. 
• We construct triangular mesh graph to distinguish architec- 

tural and non-architectural elements of interior space. 
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Figure 2. Data change and conversion procedure 
 
 

• We handle noise that can occur during indoor space data 
collection. 

• We create standard data in indoor spatial data model - OGC 
IndoorGML. 

 

In experiment steps, we compare the original and result data. We 
show how the proposed method preserves the indoor properties 
during the simplification and production of indoor spatial data. 
In addition, we demonstrated the differences in results of method 
in construction process. Finally, we validate the generated In- 
doorGML through visualization. 

The structure of the paper is as follows: Section II gives a brief 
overview of related work and the motivations of this study. Sec- 
tion III defines basic concepts. Section IV describes indoor spa- 
tial data properties. Sections V and VI describes the overall con- 
version and the specific process. Section VII presents the exper- 
imental results and analyzes the performance. Section VIII con- 
cludes our work and discusses future work and open problems. 

 
2. RELATED WORKS AND MOTIVATIONS 

 
In terms of data size, we have to reduce the number of surfaces 
in the data and consequently need mesh simplification. (Cignoni 
et al., 1998) introduces several studies for mesh simplification 
and compares performance and accuracy. In based on controlled 
vertex/edge/face decimation method,   (Schroeder et al., 1992) 
uses local operations on geometry and topology. Coplanar facets 
merging method is used in (Hinker and Hansen, 1993) and (Kalvin 
and Taylor, 1996). (DeCoro and Tatarchuk, 2007) proposed 
general-purpose data structure designed for streaming architec- 
tures called the probabilistic octree for mesh simplification with 
GPU implementation. 

Several mesh simplification studies are underway. However, these 
studies do not take into consideration the characteristics of the 
target objects, and therefore they do not properly to produce in- 
door spatial data. Mesh simplification studies mentioned above 
are too generic to apply on indoor spatial data. Therefore, it is 
necessary to study the properties of indoor space for the con- 
struction of indoor spatial data. We perform the simplification 
of triangular mesh more efficiently by using the characteristics of 
indoor space. The elimination of non-architectural elements of 
indoor space results in more indoor-meaningful products than in 
previous studies. 

Additionally, there is no study that generates geometric data ac- 
cording to indoor spatial standard data model. When we deal with 

 
indoor spatial data, we need standard data model for the interop- 
erability between services and reusability of indoor maps. There 
are standards, CityGML (Kolbe et al., 2005) and IndoorGML 
(Kang and Li, 2017), providing frameworks of standard data mod- 
els for indoor spaces. (Ryoo et al., 2015) compared them with 
advantages and disadvantages. For utilization of cellular space 
model, we generate IndoorGML rather than CityGML, and we 
explain IndoorGML in detail in Section 3.4. 

 
 

3. BASIC CONCEPT 
 

Figure 2 shows the data change and conversion procedure of this 
work. First, an adjacent graph is constructed by using adjacent 
relationship of triangles in mesh data. The graph is used to re- 
move non-architectural elements. Next, we perform solidification 
to construct solid data from triangle mesh data that contains only 
architectural elements. Finally, we generate IndoorGML from 
the solid data. For explanation of this procedure, we define and 
explain several concepts, Triangle mesh data, Adjacency relation- 
ship, Solid data, and IndoorGML. 

 

3.1 Triangle mesh data: 
 

The triangle mesh geometric representation is defined by data 
model in ISO 19107. Related geometries are defined in ISO 
19107 (Spatial Schema) are as follows: 

 
 

• A GM TriangulatedSurface is a GM PolyhedralSurface that 
is composed only of triangles(GM Triangle). There is no re- 
striction on how the triangulation is derived. 

• A GM Triangle is a planar GM Polygon defined by 3 cor- 
ners. 

• A GM Polygon is a surface patch defined by a set of bound- 
ary curves and an underlying surface to which these curves 
adhere. Curves are coplanar by default. 

• A GM PolyhedralSurface is a GM Surface composed of 
polygon surfaces (GM Polygon) connected along their com- 
mon boundary curves. 

• GM Surface is the basis for 2-dimensional geometry. Un- 
orientable surfaces such as the Mobius band are not allowed. 

 
 

Figure 3 shows relationship of above models simply. 
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Figure 3. Relationship of GM TriangulatedSurface and other 
types in ISO 19107 

 
 

3.2 Adjacency relationship 
 

In triangle mesh data, two triangles are considered to be adjacent 
when they have the opposite edge in relation to each other. In this 
study, edge and triangle are defined as follows: 

 
 

Figure 5. GM Solid illustration 
 
 

the smallest structural indoor unit space. We represent cells in 
IndoorGML using only the geometric representation. Figure 6 
shows an example of an IndoorGML document. 

 

Edge(a, b) = a directed edge with 
start vertex a and end vertex b 

= opposite edge of Edge(b, a). 
I=Edge(b, a) 

 
Triangle(a, b, c) ={Edge(a, b), Edge(b, c), 

Edge(c, a)} 

 
 

(1) 
 
 
 
 

(2) 
 

We construct an adjacent graph using this adjacency relation- 
ship. In this graph, all triangles, in the triangle mesh data that we 
deal with, have only three neighboring triangles. Figure 4 shows 
example of triangle mesh and adjacency graph. 

 
 
 

Figure 6. Part of the IndoorGML document 
 
 

4. INDOOR SPATIAL DATA PROPERTIES 
 

In this section we discuss the properties of indoor space that we 
will consider for our approach. First, the surfaces surrounding a 
cell in IndoorGML data model are defined as follows: 

WS ={sw|sw is a planar wall surface} 
 
 

Figure 4. Construction adjacency graph from triangle mesh 

FS ={sf |sf is a planar floor surface} 
CS ={sc|sc  is a planar ceiling surface} 
IS ={si|si is a planar indoor furniture surface} 

 
(3) 

 
 

3.3 Solid data 
 

The solid geometric representation is defined in this study ac- 
cording the data model in ISO 19107. GM Solid is the basis of 
3-dimensional geometry and the extent of a solid is defined by 
the boundary surfaces. We can illustrate ISO 19107 models as 
shown in Figure 5. We build surfaces, which surround a solid as 
Figure 5. 

 
3.4 IndoorGML document 

 
The final goal of this study is to produce data in IndoorGML 
(Kang and Li, 2017), an international indoor standard data model. 
IndoorGML provides an open data model and XML schema for 
indoor spatial information. It aims to provide a common frame- 
work of representation and exchange of indoor spatial informa- 
tion.  Indoor space can be a set of cells, which are defined as 

where WS, FS, CS, IS are disjoint sets. 
 

Indoor spatial triangle mesh T satisfy the following conditions. 
 

For any triangle t in T, there is always one surface S, 
(4) 

which is one of WS, FS, CS, IS. 
 

Architectural and non-architectural elements have the following 
characteristics. 

 

• Architectural elements should be solid bounded by surfaces 
of WS, FS, CS. 

• Non-architectural element should be solid only bounded by 
surfaces of IS. 

 

Figure 7 shows these geometric properties of indoor spatial data. 
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Figure 7. Surface types of indoor spatial data 
 
 

5. CONSTRUCTION PROCEDURE 
 

This section provides a detailed description of the building pro- 
cess introduced in Section 3.  In the whole process we use the 
Computational Geometry Algorithms Library (The CGAL Project, 
2018). CGAL is a software project that provides easy access to 
efficient and reliable geometric algorithms in a form of C++ li- 
brary. 

 
5.1 Input Triangle Mesh data 

 
We load triangle mesh data stored in one of the file formats TMD 
(Triangle Mesh Datafile), 3DS and COLLADA as input. 3DS and 
COLLADA are widely used file formats which can store 3D trian- 
gle mesh. And TMD is file format which is defined by ourselves. 
In Figure 8, there is an example of TMD file format structure. 
We utilize data during whole procedure including the loaded tri- 
angle mesh data as a data model which is shown in Figure 2. In 
this section, Solid, Surface, Triangle, Vertex and Edge are class 
or class instances of this model, in Figure 9. 

 

 
Figure 8. An example of TMD file format 

 
 

5.2 Construction triangle adjacency graph 
 

Two triangles with adjacent relationship are represented as two 
node and connecting edge in the adjacency graph. In this process, 
we establish adjacent relationships for all adjacent Triangle pairs, 

 

 
Figure 9. Data model for construction procedure 

 
 

and then a triangle mesh graph is constructed based on these re- 
lationships. Within this graph, there is one or more connected 
components. Each connected component represents an architec- 
tural cell in IndoorGML or a non-architectural element. 

 
5.3 Non-architectural elements elimination 

 
We must determine whether each connected component of the 
graph represents either an architectural cell or a non-architectural 
element. We assume that normal vectors of all Surfaces that make 
up architectural cell are oriented towards the inside of the cell. 
From this assumption, if normal vectors of all connected triangles 
are directed to inward, this component represents an architectural 
cell. If not, it represents a non-architectural element. Figure 10 
visualizes this assumption by example. In this process, we elimi- 
nate triangles corresponding to non-architectural elements. 

 

 
Figure 10. An Example of architectural and non-architectural 

normal vector 
 
 

5.4 Solidification 
 

This section presents a series of steps to build solid data from 
fine-grained triangle mesh data to planar surfaces. Figure 11 
shows these steps in this section.  Solid data is constructed by 
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performing these steps for each triangle mesh data correspond- 
ing to each connected component of the graph. The first step is 
to make multiple fine-grained Surfaces into a single Surface by 
merging them. The second step simplifies edges between the cre- 
ated Surfaces by decimating intermediate Vertices. The third step 
is to construct solid data composed of planar surfaces by polygo- 
nizing each Surface. The following sections describe each step in 
detail. 

 

 
Figure 11. Solidification 

 
 

5.4.1 Merging Surfaces (Step 1): This step merges multiple 
Surfaces into a single Surface. We propose a greedy algorithm 
1 for this. This algorithm first selects two adjacent Surfaces and 
verifies that those Surfaces can be merged. If possible, we merge 
two Surfaces and repeat the same operation for all Surfaces. At 
this stage we ease the mergeability condition of this algorithm 
gradually to the limit and iterate the algorithm until there are no 
more Surfaces to be merged. We describe these steps in detail in 
Section 6. 

input  : SL : List of Surfaces 
output: SL‘ : List of Surfaces after merging 
hasMerged ← true ; 
while hasMerged do 

hasMerged ← false ; 
sort SL by the number of V ertexs of each Surface; 
foreach Surface Pair(Si, Sj) in SL do 

if Si can be merged with Sj then 
hasMerged ← true ; 
merge(Si, Sj ) ; 

end 
end 

end 
Algorithm 1: mergeSurfaces 

 
5.4.2 Edge simplification (Step 2):   This step simplifies Edges 
between every two adjacent Surfaces. The edge between two ad- 
jacent Surfaces not merged in the preceding Step 1 should be 
straight if both Surfaces are planar. All Surfaces in current data 
are not on a plane, but we assume that all Surfaces are planar at 
this stage because they represent surfaces in WS, FS, or CS. 
Based on that assumption, this step makes edges of all adjacent 
Surface pairs straight.  In connected Edges shared by two Sur- 
faces, we decimate all points except the start Vertex of the first 
Edgeand the end Vertex of the last edge, and recreate new edge 
between two surfaces.  However, if a self-intersection occurs in 
one of the two Surfaces after simplification, it returns to the pre- 
vious state. This step proceeds until every shared edge of all ad- 
jacent Surface pairs is simplified. 

5.5 Surface Polygonization (Step 3): 
 

The goal of solidification is to create solid data surrounded by 
planar surfaces. However, Surfaces after completing Step 2 may 

not be planar. So, the purpose of step 3 is to make each Surface 
consist of one polygon (planar Surface) or polygons. In other 
words, this step converts solid data which consists of non-planar 
surfaces into solid data consisting only of planar surfaces. We 
propose three ways to achieve the purpose of this step. 

 
Surface Planarization : The first method is to make each Sur- 

face into a single plane. Then we can easily build solid data 
surrounded by planar Surfaces. There are several ways to 
convert a Surface to a plane (PCA, plane creation using nor- 
mal vectors and sample points on Surface). However, the 
problem of making every Surfaces planar at once, with tak- 
ing into account the topological information is NP-problem. 
Sometimes it may not be possible to flatten all the Surfaces. 
Therefore, we are implementing a heuristic algorithm. This 
work is currently in progress and requires verification. 

Coarse-grained triangulation (method CT) : When we flatten 
a non-planar Surface, distortions in the geometry are almost 
inevitable. But it is possible to maintain Surface geometry 
without distortion when Surface is triangulated. The sec- 
ond method is to triangulate each Surface. Since computer 
graphics studies perform triangulation to store and visualize 
3D geometry data, storing results as a triangle mesh does not 
cause much damage. Here, the coarse-grained triangulation 
means dividing Surface into minimum number of Triangles, 
rather than going back to the original fine-grained triangle 
mesh data. These triangles are distinguished from the orig- 
inal triangle mesh data by not only geometric data informa- 
tion, but also using belonging to architectural Surface (FS, 
WS, CS). Our triangulation function utilizes CGAL trian- 
gulation function (Hert and Seel, 2018), which uses only 
point location information. To keep the topology informa- 
tion, we divide the Surface into convex hulls and triangulate 
each convex hull. Finally, we construct solid data with tri- 
angles created by triangulating all surfaces. 

Divided polygonization (method DP) : When we triangulate Sur- 
face, some planar portions of the Surface are also divided 
into multiple Triangles, so the Triangles are not the min- 
imum number of polygons.   We propose a way to make 
the polygons be as large as possible.  Resulting polygons 
are made by applying Algorithm 1 to Triangles, which are 
made by method CT in each Surface. Because these poly- 
gons should be planar, we should tighten the planarity deci- 
sion. For more strict planarity decision, we set threshold to 
lower value than Section 5.4.1 in execution of Algorithm 1. 

 
5.6 Generating IndoorGML data 

 
We show how to generate IndoorGML data. In order to generate 
IndoorGML data, we have to create cells. The creation of a cell 
can be divided into two stages: 

 
Cell identification : In order to create a cell, we have to deter- 

mine which part of the total data each cell occupies (e.g. 
room). This study considers one architectural connected 
component of the graph constructed in Section 5.2 as one 
cell. Because one connected component become one Solid 
data, we also think of one Solid as one cell. 

Determination of cell geometry :  We also need to determine cell 
geometry. In Cell identification, we regard one Solid as one 
cell, so the cell geometry can be completed from the Solid 
geometry. 
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Finally, we produce one IndoorGML document from all cells de- 
fined in this way. 

 

6. MERGING SURFACES METHOD 
 

In this section, we describe the procedure of Section 5.4.1 in de- 
tail. This section shows how to merge two adjacent Surfaces, one 
of the core processes of this study. In addition, we present prob- 
lems that may arise during merging process and their solutions. 

 

 
Figure 12. Illustration of threshold and angles. 

1) Two normal vectors of Surfaces. 2) ∠A 3) ∠B 
 

We proceed with this step using the normal vectors of two Sur- 
faces. Let two Surfaces be Sa, Sb, and normal vectors of each 
Surface is Va, Vb. For explanation of this section, we utilize def- 
inition as follows: 

 
 
 

Vsum =Va + Vb (5) 
 
 
  

Va    if Sa.area > Sb.area 

its neighbor in the actual indoor space, ∠A can be large. So, for 
assumption of noise surface, we set θ1 to high value (e.g. 10.0 ◦, 
20.1 ◦). But, if θ1 is set to a large value, two different non-noise 
surfaces may be merged. So we exclude that case through con- 
dition 2 and apply only to a noise surface. The characteristic of 
noise surface is usually smaller than surrounding Surface. To use 
it, we calculate the angle ∠B between Vsum  and Vbig . We also 
let normal vector of Surface imply Surface area information (This 
is explained in detail in the next section). Thus, if one of the two 
Surfaces is overwhelmingly large and the other is small (if it is a 
Noise surface), the angle B is calculated to be a low value. We set 
θ2 to a low value, and merge only if ∠A is large but ∠B is small. 
If ∠A is small, both conditions are satisfied since ∠A ≥ ∠B. 

The second problem is Surface normal vector calculation. Most 
of the Surfaces used at this stage are not planar. To deal with the 
noise in indoor spatial data we merge Surfaces even if they are 
not coplanar. So it is infeasible to calculate singal normal vector 
of each Surface. Instead, we set Vsum to normal vector of the 
merged Surface. Since Triangle in raw triangle mesh is always 
planar, we can compute normal vector of each Triangle. Then, 
we select two consecutive Edges of one Triangle, convert them 
into vectors, cross-product them, and set the resulting vector as 
Triangle normal vector. The magnitude of the result vector means 
the area of Triangle. (In fact, magnitude of result vector / 2 = 
Triangle area) Since we merge Triangles into Surfaces and repeat 
merging, each Surface in last iteration has a normal vector. The 
magnitude of the normal vector is the sum of all triangles area that 
have been merged to form the Surfaces. Thus, this value implies 
the area of the Surface. 

 
The greedy merging method in solving two problems presented 
above makes different results depends on Surfaces selection or- 
der. We present a heuristic method to determine the proper merge 
order by gradient ascent of θ1. This method iterates the algo- 
rithm 1 with gradually increasing θ1 from a small to a large value. 
Merging order properly adjusted because pair of Surfaces with a 
smaller ∠A merged first. In addition, there is a possibility to er- 

Vbig = 
Vb otherwise 

(6) roneously merge Surfaces when θ1  is large.  In contrast, if the 
value is small, only a small number of Surfaces are merged. By 
sequentially setting values we address issue of determination θ1 

There are several problems to consider at this stage.  The first 
problem is to determine feasibility of merging Surfaces. We say 
that merging is possible if Surfaces pair satisfies the following 
conditions: 

too.  
 
 

7. EXPERIMENTS 
 

 
Condition 1 :∠A ≤ θ1 

Condition 2 :∠B ≤ θ2 

 
where ∠A is angle between two Surfaces normal vector, 

∠B is angle between Vsum and Vbig , 
θ1 and θ2 are thresholds 

 
 

(7) 

7.1 Dataset 
 

In this work we used indoor spatial data with several rooms and 
objects. Data represents triangle mesh made from point cloud 
collected inside of apartment. The data is in TMD format, the 
number of data vertices is 21732, and the number of triangles is 
43368. The range of total space is (11.66, 10.12, 3.49) and the 
average size of triangles is 0.00832192. 

 
Figure 12 shows these conditions and angles. If two conditions 
are satisfied, two adjacent Surfaces are merged into one. In con- 
dition 1, another studies that merge coplanar adjacent facets set a 
low value (e.g. 0.1◦, 0.01◦) for a θ1. However, since our project is 
aimed at indoor space and most of data is collected in real space, 
the data maybe has some noise surfaces. 

 
Noise surface is a surface that has wrong geometry about the ac- 
tual indoor space. Therefore, even the noise surface is planar with 

 
 
 
 

Table 1. Data spec. 
 

During the process of Section 5.2 an adjacent graph of a trian- 
gle mesh with 18 connected components constructed. Triangles 
of 17 connected components among them belong to IS (Indoor 

Data Spec. Value 
Vertices number 21732 
Triangles number 43368 
Range of Space (11.66, 10.12, 3.49) 
Average triangle size 0.00832192 
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N i 

furniture surfaces). In order to eliminate them we perform the 
process of 5.3, leaving only one connected component of 18094 
triangles. We summarize the apartment data in Table 1. 

 
7.2 Performance Analysis 

 
In Table 2, we show the workload parameter. Values in bold are 
default. Figure 13 shows variation of the number of surfaces in 
the whole process of a case. In this case, θ2 is 1.0 and Surface 
Polygonization is done by DP method. 

 

 
 

Figure 13. Surfaces number according to process 
 

We specifically explored Step 1 and Step 3 of the 5.4 Solidifica- 
tion process. In step 1, one iteration is a one-time operation of 
Algorithm 1. Our measure in this experiment is defined as fol- 
lows: 

 

 
 

Figure 15. Two polygonization methods comparison 
 
 

7.3 IndoorGML Document Validation 
 

As a final step of our work we create an IndoorGML document. 
The following Figure 16 shows generated IndoorGML document 
visualization. We visualize IndoorGML data to confirm there 
were no problems for representing the indoor space. 

 
i th iteration reduction ratio r = Ni

 
0 

 
 
 

where Ni = the number of surfaces in ith iteration 

 
(8) 

 
 

Figure 16. Visualization of IndoorGML Document 
 

8. CONCLUSION & FUTURE WORK 
 
 
 

Parameters Settings 
θ1 (◦) 
θ2 (◦) 

1.0, 3.0, 5.0, . . . , 39.0 
1.0 

 
Table 2. Parameters & their settings 

 
Figure 14 changes in reduction ratio of Step 1. Figure 14 also 
shows changes in the average size of all surfaces. 

 

 
 

Figure 14. Changes of the number of surfaces and average 
Surface size in Soldification step 1 

 
Figure 15 compares results of two polygonization methods CT 
and DP. The method CT makes from each surface multiple tri- 
angles, whereas DP makes from each surface multiple polygons. 
In this experiment, we demonstrate that DP provides a stronger 
reduction than CT. 

In this paper, we proposed a novel method for the simplification 
of triangular mesh data collected from point cloud. While a num- 
ber of researches have been done for the triangular mesh simpli- 
fication, the main difference of our work is that we considered 
the properties of indoor space based on the data model defined 
in OGC IndoorGML. The main contributions of this work are as 
follows: 

 
 

• We built appropriate indoor spatial geometry data from fine- 
grained triangle mesh. 

• We simplified indoor spatial data by using properties of in- 
door space. 

• We suggested the method to generate indoor spatial standard 
data model from triangle mesh. 

 
 

We demonstrated the achieved level of compression in experi- 
ments. In addition, we visualize our intermediate and final out- 
put. Experimental results show that DP method is more suitable 
for the original purpose. 

 
In future work, we plan to design a method for complex indoor 
spaces (e.g. large exhibition halls, sports stadiums, etc.). We will 
also implement the function of constructing a door or a virtual 
door for data that is not distinguished from the outside or inside, 
or data that cannot be not divided into cells. 

 
We also open work to contribute to the open source spatial infor- 
mation ecosystem. We release the source code on Github, see : 
https://github.com/STEMLab/TMI-Converter.git. 
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