
ADDING 3D GIS VISUALIZATION AND NAVIGATION TO THE SPARQL QUERY LOOP

W. Beek a,b,c, E. Folmer a,d, L. Rietveld a,c, T. Baving a, V. van Altena a,b,e

a Kadaster, Apeldoorn, Netherlands - (tony.baving, vincent.altenavan).kadaster.nl

b VU University Amsterdam, Amsterdam, Netherlands - w.g.j.beek@vu.nl
c Triply, Amsterdam, Netherlands - laurens@triply.cc

d University of Twente, Enschede, Netherlands - e.j.a.folmer@utwente.nl
e University of Technology, Delft, Netherlands

Commission IV, WG IV/4

KEY WORDS: 3D visualization, geospatial data, Linked Data, SPARQL, REPL, data analytics

ABSTRACT:

3D environments allow advanced spatial navigation and visualization, but have traditionally provided limited support for performing
non-spatial data analysis operations like filtering, joining, and integrating data on-the-fly. Linked Open Data provides advanced support
for performing filters and joins over datasets that can be dynamically combined through SPARQL federation. Unfortunately, Linked
Data results often lack intuitive visualization capabilities, making it relatively difficult to interpret the data for a data analyst. In this
paper we present our integration of 3D visualization into the read-evaluate-print-loop of SPARQL query execution. We show how the
inclusion of 3D visualization has concrete benefits for the SPARQL query writing process, and how our integrated solution is used to
answer specific use cases that could not be answered before.

1. INTRODUCTION

3D environments allow advanced spatial navigation and
visualization, but have traditionally provided limited support for
performing non-spatial data analysis operations like filtering,
joining, and integrating data on-the-fly. Linked Open Data
provides advanced support for performing filters and joins over
datasets that can be dynamically combined through SPARQL
federation. Unfortunately, Linked Data results often lack intuitive
browsing/navigation capabilities and advanced visualizations.

Because of the complementary nature of the two approaches, the
combination of 3D GIS and Linked Open Data provides ample
potential for data analysis use cases. Unfortunately, not that much
prior work on truly combining 3D GIS and Linked Open Data
has been performed. There existing prior work on semantically
describing 3D objects in Linked Data (e.g., Pittarello et al., 2016),
and some viewers are able to display (part of) a Linked Dataset
within a 3D viewer (Bosca et al., 2005). However, what is
currently lacking is 3D content that
is formatted in a standards-compliant way, is accessed through
standardized means, and is visualized in a 3D environment.

The Dutch Cadastre and Triply have collaborated in order to
improve the integration of 3D GIS within a Linked Data setting,
specifically focusing on enhancing the data analyst experience
while writing complex SPARQL queries. This paper presents
how 3D GIS functionality was added to the SPARQL query loop,
and how its support is beneficial for querying the Cadastre
geospatial data assets.

2. THE SPARQL QUERY REPL

Performing complicated data analyses is akin to programming, in
the sense that a complex query is not constructed all at once.
Rather, query construction is a highly iterative process that
consists of repeatedly changing the query until it gives the
required result. In programming, this process is widely known as

the read-evaluate-print-loop (REPL) is a well-known concept. In
data analysis, we observe a similar process:

1. The client writes a query that is read by a SPARQL

endpoint. We assume that the data analyst has access to
a SPARQL editor with syntax highlighting and auto-
completion functionality. That way, trivial iterations
whose only purpose is to fix an obvious grammatical
mistake and/or correct the incorrect spelling of a
certain term are mostly ruled out.

2. Once a grammatically correct query is read by a
SPARQL endpoint, it is evaluated against the
underlying triple store. We assume that the endpoint is
fully standards-compliant, and that the triple store only
contains standards-compliant RDF data. That way,
trivial evaluation errors that are due to violations of
standards and/or quality issues in the data are mostly
ruled out.

3. If a grammatically correct query is evaluated by a
standard-compliant endpoint, a SPARQL result set is
returned to the client. Since the result set format is
standardized, the result set can be visualized (a
generalization of merely printing the results) by the
client. Furthermore, since Linked Data often makes
use of shared vocabularies, it is possible to (semi-
)automatically custom-tailor visualizations in terms
of the most widely used Linked Data vocabularies.
For example, result sets over a dataset that uses the
GeoSPARQL vocabulary can often be automatically
visualized on a map; result sets over a dataset that
uses the DataCube vocabulary can often be
automatically plotted in a diagram.

4. Based on the visualization a client may determine that
some part of the query must be changed, which result
in a new iteration through the loop.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W8, 2018
FOSS4G 2018 – Academic Track, 29–31 August 2018, Dar es Salaam, Tanzania

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-W8-11-2018 | © Authors 2018. CC BY 4.0 License.

11

mailto:w.g.j.beek@vu.nl
mailto:laurens@triply.cc
mailto:e.j.a.folmer@utwente.nl

This read-evaluated-print-loop (REPL) principle is implemented
by YASGUI, an integrated SPARQL editor and result set
visualizer (Rietveld et al., 2017) that is developed by Triply
(h ttp s://triply.cc) and used as a component by many Open Source
projects and data publishers. In collaboration with the Dutch
Cadastre Data Platform (h ttp s://d ata.p do k.n l), YASGUI was
previously extended to support GeoSPARQL, the GIS extension
to SPARQL that is standardized by the OGC. With this extended
support it is possible to query for geospatial relationships, return
them in a standard-compliant result set formal, and automatically
display them on a 2D Leaflet map (Beek et al., 2017).

3. BENEFITS OF 3D SPARQL

While YASGUI was extended in 2017 to automatically visualize
2D geospatial information on a Leaflet map, no 3D geospatial
support was available. In fact, 3D results were treated in exactly
the same way as 2D results: the altitude was simply not
processed.

At the same time, we can identify several generic benefits of
adding 3D support to the REPL principle:

1. Since we live in a 3D world, 3D result set

visualizations are able to more closely mimic reality
than 2D visualizations of the same results. As such, 3D
visualizations are more engaging to the user than their
corresponding 2D visualizations.

2. When visualizing statistical data, it is often useful to
bind multiple display properties to different result set
variables. For example, when geographic regions are
displayed on a map, the crime statistics of those regions
can be displayed by colouring those regions in an
appropriate gradient. When we visualize the same
result set in a 3D environment, we can display one
more attribute of the respective regions. For example,
we can display the average income in terms of height.

3. 3D environments allow multiple perspectives on the
data. When a building is displayed on a 3D map, we
can only present a birds eye view of the situation (i.e.,
we can display the shape from above). In 3D
environments we can display multiple views: we can
look from behind the building, or we can look from the
ground up to a building. Each view may show some
additional information about the building.

In addition to these generic benefits, we have encountered several
use cases in which 3D support is not only convenient but also
necessary in order to allow query results to be interpreted
correctly. Indeed, the correct interpretation of intermediate query
results is required in order to be able to make the correct edits for
the next iteration of the query:

1. The Dutch Cadastre stores data about the buildings,

businesses, and apartments in The Netherlands. If only
a 2D visualization of query result sets is available,
building that contain multiple businesses and/or
apartments on different floors of the same building are
displayed on top of one another. As such, it is not
possible to see on which floor a business or apartment
is located.

2. The Dutch Cadastre publishes a dataset on zones in The
Netherlands where drones are not allowed to fly. These
zones are not only expressed in terms of longitude and
latitude, but also in terms of altitude. In order to
correctly depict the zone where drones are allowed to
fly, a 3D visualization is needed.

3. For emergency services like the fire brigade, it is
essential to know as much as possible before entering
a building during an emergency. How many
appartments, where are the entrances, on which level,
and so on.

4. IMPLEMENTATION

In order to integrate 3D support in the SPARQL REPL, we will
first take a look at the read component, which consists of the data
that is stored in the triple store and the query that is written in
order to be evaluated over that data. Even though the
GeoSPARQL standard does not mention 3D specifically, the
datatypes, relations, and functions it defines can also be applied
to 3D shapes.

Figure 1. RDF Graph with 3D geometry

Figure 1 shown an example of a small RDF graph that encodes a
3D geometry. Firstly, contains a node representing a particular
building, together with a triple that asserts that this building is a
feature. Secondly, the graph contains a node that represent the
geometry of that building, and a relationship between the feature
and the geometry. Thirdly, a node represents a particular
serialization of the geometry. In this case, a serialization in Well
Known Text (WKT). Such a serialization starts with a keyword
that indicates the kind of shape involved, and is followed by
nested lists of coordinates. When writing a SPARQL query, the
data analyst is able to retrieve the data in various ways. She may
first retrieve the feature based on some other criteria (e.g., the
address of the building), and then also retrieve its geometry and
shape. Alternatively, the data analyst may first retrieve the shape
based on some geospatial criterion (e.g., proximity to a point of
interest), in order to subsequently retrieve the geometry and
feature.

With respect to the evaluate component, i.e., the triple store, it is
important to choose one that supports 3D. Unfortunately, at the
moment there are no good options for this in the marketplace.
While most triple stores allow 3D geometries to be stored, some
do not allow them to be retrieved through SPARQL. Specifically,
such triple stores will actively remove the Z coordinate from 3D
shapes. This is worse than not supporting 3D, since that would at
least leave the plain WKT string intact. When 3D information is
actively purged from SPARQL results, it is impossible for
YASGUI to display the data correctly. Other triple stores do
preserve Z coordinates, but do not support the GeoSPARQL
vocabulary. Some triple strores do support geospatial filters and

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W8, 2018
FOSS4G 2018 – Academic Track, 29–31 August 2018, Dar es Salaam, Tanzania

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-W8-11-2018 | © Authors 2018. CC BY 4.0 License.

12

https://triply.cc/
https://data.pdok.nl/

relations, but with non-standardized, custom-tailored notation.
The very few triple stores that do support GeoSPARQL notation
do not always apply effective indexing on geometries, resulting
in poor performance for some queries.

The last component that must be present in order to add 3D
support to the SPARQL REPL is the print or visualization
component. Firstly, when YASGUI receives a query result set
from the triple store, it must know how to interpret 3D shapes.
We focus here on the most common SPARQL SELECT query
form. A SELECT query returns results in terms of a fixed number
of columns that correspond to a sequence of projection variables.
Multiple query results amount to multiple sequences or rows of
bindings of RDF terms to these projection variables. Whenever
an RDF term in such a binding has the standardized datatype IRI
geo:wktLiteral, YASGUI is instructed that a 3D shape is
present. Secondly, YASGUI must be able to visualize the detected
3D shapes within a 3D environment. Previously, automatic
visualization of 2D shapes was implement by including a plug-
in that is based on the Open Source Leaflet library
(h ttp ://leafletjs.com). For the current extension, a plug-in is
added that is based on the Open Source Cesium library
(h ttp s://cesiumjs.o rg). Cesium is not directly able to interpret the
WKT formatted serializations that are present in SPARQL result
sets, but it is easy to transform WKT serializations into
GeoJSON, or another format that is supported by Cesium.

(?varHeight in Table 1). The height variable can be bound
within a SPARQL query, either based on a query variable which
derives its bindings from the data itself, or by simply binding the
height variable to a static value that will display all shapes at the
same height. Since the earth is not a perfect sphere, 3D shapes
that are displayed relative to the earth’s surface need additional
information about the height at which the earth’s surface is
located for each query result. For this purpose, the ?varZ
variable is recognized by the 3D plug-in. This means that if a
SPARQL query result includes a detailed 3D WKT literal, then
the associated 3D shape is immediately drawn correctly.
However, in case a 2D WKT literal is included instead, the
additional variables ?varHeight and ?varZ can be used.

Figure 2. YASGUI result

Besides the ability to display 3D shapes in Cesium, the YASGUI
plug-in includes additional support for colouring 3D shapes and
for displaying labels. These labels can be displayed within the 3D
environment itself (for simple textual labels) and/or in an HTML
overlay (for complex labels that can include mark-up and media).
In order to associate the right colour and/or label with the right
shape, the visualization plug-in recognizes specific patterns in
variable names (Table 1). Since variable names are arbitrary, this
additional functionality is compatible with the SPARQL
standard.

At the moment, very few Linked Datasets contain 3D shapes that
are represented by WKT literals and GeoSPARQL properties. As
such, the impact of the SPARQL extension would have been quite
small. However, there is a lot of 2D Linked Data encoded in
datasets today. The plug-in therefore adds specific support for
visualizing 2D shapes with an added height property

5. EXAMPLES OF USE

In this section we present some concrete example of using 3D
visualization support within the YASGUI REPL. Figure 2 shows
the result of retrieving the energy labels of a street in the city of
Zwolle. Since the result set contains 3D geometries, these are
automatically drawn in the 3D viewer. Energy consumption is
expressed in labels that are associated with recognizable colour
codes. In our SPARQL query, we are not only binding the
geometries of the buildings, but also their energy labels mapped
to their respective colour codes. Now it is immediately
identifiable which building has a certain energy label. When a
building is selected, its textual label (the binding of ?varName in
the SPARQL projection) is shown inside the 3D environment,
hovering over the building. In addition, the building’s HTML
labels is shown in the panel to the right hand side. The HTML
snippet in this panel contains additional information about the

Element Variable template

Shape ?var

Colour ?varColor

Complex label ?varLabel

Extrusion ?varHeight

Offset ?varZ

Simple label ?varName

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W8, 2018
FOSS4G 2018 – Academic Track, 29–31 August 2018, Dar es Salaam, Tanzania

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-W8-11-2018 | © Authors 2018. CC BY 4.0 License.

13

http://leafletjs.com/
https://cesiumjs.org/

Figure 3. Result with number of businesses as 3D height

selected building, such as its Cadastral identifier, it’s current
status (occupied or not) and use (residence or business). It also
contains more information about the energy labels, including
when the measurement was performed.

Figure 3 shows the result of retrieving the number of businesses
for each neighbourhood in the city of Zwolle. In the SPARQL
query, we bind the 2D shape of each neighbourhood to the
projection variable ?var, and bind the (normalized) number of
businesses to the projection variables ?varColor
and ?varHeight. The height of the shapes now expresses the
number of businesses. This is an example of a query where the
Linked Data only contains 2D shapes, but the query visualization
is still able to display 3D.

6. CONCLUSION

This paper has described how the SPARQL REPL loop can be
extended to include 3D visualization in the ‘read’ or visualization
component. It has outlines generic benefits of D visualization for
the data analyst, as well as several concrete use cases that can be
supported. By introducing a specific variable template, we are
able to associate colours and labels to 3D shapes, improving the
visualizations even further. We are also able to associate heights
and offsets to 2D shapes, thereby extending the applicability of
the 3D plug-in to 2D Linked Data as well.

7. REFERENCES

Beek, W., & Folmer, E. (2017). An Integrated Approach for
Linked Data Browsing. International Archives of the
Photogrammetry, Remote Sensing and Spatial Information
Sciences, Vol. 42, pp. 35-38.

Beek, W., Folmer, E., Rietveld, L., & Walker, J. (2017).
GeoYASGUI: The GeoSPARQL Query Editor and Result Set
Visualizer. International Archives of the Photogrammetry,
Remote Sensing and Spatial Information Sciences, Vol. 42, pp.
39-42.

Bosca, A., Bonino, D., Pellegrino, P. 2005. OntoSphere: More
Than a 3D Ontology Visualization Tool. Proceedings of the 2nd

Italian Semantic Web Workshop: Applications and Perspectives
(SWAP).

Pittarello, F., De Faveri, A. 2006. Semantic Description of 3D
Environments: A Proposal Based on Web Standards. Proceedings
of the 11th International Conference on 3D Web Technology, pp.
85-95.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W8, 2018
FOSS4G 2018 – Academic Track, 29–31 August 2018, Dar es Salaam, Tanzania

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-W8-11-2018 | © Authors 2018. CC BY 4.0 License.

14

	Commission IV, WG IV/4
	ABSTRACT:
	1. INTRODUCTION
	2. THE SPARQL QUERY REPL
	3. BENEFITS OF 3D SPARQL
	4. IMPLEMENTATION
	5. EXAMPLES OF USE
	6. CONCLUSION
	7. REFERENCES

