
REPEATABLE DEPLOYMENT OF AN OPEN STANDARDS, OPEN SOURCE AND OPEN
DATA STACK FOR BUILDING A FEDERATED MARINE DATA MANAGEMENT AND

DECISION SUPPORT SYSTEM FOR SOUTH AFRICA

G. McFerren*, R. Molapo and B. McAlister

CSIR Meraka Institute, Meiring Naude Road, Pretoria, South Africa – (gmcferren,rmolapo,bmcalister)@csir.co.za

FOSS4G 2018

KEY WORDS: Open standards and Interoperability, Data Management System, CKAN, CSW, Case Study, Distributed Systems
Architecture, Oceans and Coasts, DevOps

ABSTRACT:

The National Oceans and Coastal Information Management System (OCIMS) of South Africa is a large, integrated IT system for
enhancing oceans, coastal and maritime governance, and supporting sustainable economic utilisation of ocean and coastal resources.
This article is a case study, describing how a range of Free and Open Source Software are deployed to generate the Open Standards
based core of this federated system for providing decision support applications in addition to data and information management,
access and dissemination services. This article demonstrates the importance of modern software development and deployment
approaches in constructing the OCIMS core and easing the integration process with other systems in the federation. Finally, this
article discusses some lessons learned and reflects on the lineage of OCIMS architectural choices and how these approaches may
need to adapt to changing computing environments

1. INTRODUCTION

The National Oceans and Coastal Information Management
System (OCIMS) - https://www.ocims.gov.za - of South Africa
is an ongoing government funded effort to integrate
heterogeneous IT systems from various organisations into a
system-of-systems to support enhanced oceans, coastal and
maritime governance and sustainable utilisation goals. OCIMS
supports these goals through providing facilities for monitoring
of environmental variables and human socio-economic activity,
compliance and enforcement support, planning and assessment
and information dissemination. Concretely, OCIMS offers 1) IT
components for publishing of, discovery of, access to,
interaction with and management of data and content services,
2) decision support tools and applications, 3) information
dissemination channels and 4) information technology services.
Most of these offerings are inherently geospatially oriented.

This article describes the architectural patterns by which open
standards for data (and metadata) interchange and service
interfaces are used in building the OCIMS federated system.
This article demonstrates the importance of modern software
development and deployment methods - such as
containerisation and service-oriented architectures - that
allowed not only the core of OCIMS to be constructed and
deployed, but also several of the nodes in the federation.
Effectively, the ease of customisation and deployment of
containerised FOSS geospatial and data management
components, and the isolation provided by this approach to
software life-cycle management, allows nodes representing
different projects, organisations and sub-organisations to join
the OCIMS data and service federation with minimal effort in
such a way that their services, data and metadata are
interoperable (accessible, available, understandable and
harvestable).

This article characterises the primarily Free and Open Source
Software software stack that enables the core of the OCIMS
federated system and provides much of the functionality. The
core portion of the overall system is composed of the data
management system Comprehensive Knowledge Archive
Network or CKAN (CKAN, 2018), enabled with various spatial
search/browse extensions, an OGC Catalogue Service for the
Web implementation (pycsw, 2018), and a content management
system/ landing page. The OCIMS core preferably harvests
metadata from nodes in the federation, but this is not always
possible if nodes do not provide harvestable endpoints.

Lessons from initial deployment of the OCIMS are articulated,
for example, the difficulty of working with local profiles of
metadata standards due to lack of software tooling or the extra
steps needed to integrate nodes into the federated system where
the owners/maintainers of the node have not planned for
interoperability arrangements. Positive lessons are also
elucidated, such as the advantages that can be gained from
building data processing chains that are configured to emit data
products as similar as possible to each other (e.g. NetCDF CF
convention structures) and that automatically emit metadata to
catalogue services concerning their output products. The main
advantage here is the “recipe”-like way that OCIMS ready
nodes can be built and deployed.

Finally, this article reflects on the lineage of the architectural
choices made in order to construct the OCIMS system, and how
systems like OCIMS will likely need to be adapted to the
realities of geospatial data and processing increasingly moving
into a cloud computing paradigm.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W8, 2018
FOSS4G 2018 – Academic Track, 29–31 August 2018, Dar es Salaam, Tanzania

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-W8-139-2018 | © Authors 2018. CC BY 4.0 License.

139

mailto:(gmcferren%2Crmolapo%2Cbmcalister)@csir.co.za
http://www.ocims.gov.za/
http://www.ocims.gov.za/
http://www.ocims.gov.za/

2. OCIMS SYSTEM DESCRIPTION

2.1 High level Description

OCIMS is designed as an integration between heterogeneous
systems from various organisations to form a virtual enterprise
of stakeholders, data and information producers and consumers
concerned with monitoring, modelling, reporting, informing and
decision-making in the Oceans and Coastal domains.
Organisations contributing to OCIMS display different levels of
IT capability and are invested in different technology stacks.
The systems joining to this virtual enterprise should enrich
rather than disrupt the wider system, while the continued
operation of these individual systems should not be disrupted by
changes in the National OCIMS. Thus, OCIMS is a loosely
coupled system-of-systems - a concept discussed in (Percivall,
et al., 2015) - where each component system is designed,
developed, tested, operated and owned independent of OCIMS,
as illustrated in Figure 1.

many spheres of society (government, academia,
industry and communities)

• Potentially supplying some shared infrastructure that
could host data and applications as a last resort

In essence, OCIMS harnesses international good practice for
Spatial Data Infrastructure implementation to build out a
national Oceans and Coasts IT system. This is an important
point; previous South African Oceans and Coastal IT systems
tended to be standalone, largely non-interoperable and difficult
to extend via reusable applications. The driving force behind
this change is a long term funding plan and political willingness
to support OCIMS.

2.2 System Layering

OCIMS can be understood through three layers of functionality
and components, named as the Interaction Layer, the Production
and Mediation Layer and the Acquisition Layer.

2.2.1 Interaction Layer

Concerned with how the system facilitates the interaction
between consumers/ end-users and OCIMS, with capabilities
for:

Figure 1. System-of-Systems Interactions

This design requires that inter-system communication ideally
happens at well understood interfaces, with well described
control signals/protocols exchanging a finite set of data types
and encodings between applications and service requests. This
kind of a design echoes and is inspired by large undertakings
like Infrastructure for Spatial Information in the European
Community - INSPIRE (INSPIRE, 2018), Global Earth
Observation System of Systems - GEOSS (GEOSS, 2018) and
the US open data initiatives such as Geospatial Platform
(GeoPlatform, 2018). The latter facility shares some of the
system goals of OCIMS and provides an apt description, that of
providing “shared and trusted geospatial data, services, and
applications for use by the public and by government agencies
and partners to meet their mission needs.” GeoPlatform and
OCIMS share aims of

• Providing access to authoritative data (wherever it
may be stored) in support of informed decision
making

• Presenting reusable applications and services for
multiple stakeholders and users in the governmental
and non-governmental spaces

• Acting as a launchpad from which national Oceans
and Coastal issues can be informed by data from

• Search and discovery - pursuit of relevant information
across collections of various types of documents, data,
metadata, messages and other sources; queries are
executed via word and phrase search, topic search,
structured search over defined fields or facets, spatial
search and temporal search.

• Access - transfer of data and information from system
to system or system to user; may be performed
through direct link to a resource, mediated via a
service or represented via a portrayal (e.g. a map or
graph).

• Visualisation - making data and information more
comprehensible via visible representations of it; aids
in understanding and exploring data, conveying of
concepts and summarising of complexities.

• Query - perform guided or ad-hoc requests for data or
information, often using a query language (e.g. SQL).

• Publish / Register / Describe - allow clients to
produce data, metadata, information products and
tools onto the system

• Decision-making - support users in reaching
conclusions, make decisions or pursuing a course of
action based on data, information, visualisations or
reports from the system.

• Dissemination - promulgation/ spreading of
information, data or reports to an audience; may be
broadcast or targeted.

In OCIMS, the software supplying much of this functionality is
CKAN (CKAN, 2018) and its dependencies, such as pycsw
(pycsw Development Team, 2018) and Solr (Apache Solr,
2018). In effect, the OCIMS Core is largely a CKAN powered
data portal for the Oceans and Coastal domain. Wordpress
(Wordpress, 2018) provides content management functionality
and overall styling. MapStore2 (Mapstore2, 2018) is deployed
as the primary means for users to visualise and explore the large
amounts of spatial data linked into OCIMS.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W8, 2018
FOSS4G 2018 – Academic Track, 29–31 August 2018, Dar es Salaam, Tanzania

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-W8-139-2018 | © Authors 2018. CC BY 4.0 License.

140

The initial set of Decision-Support Tools provided by OCIMS
currently utilise a multitude of open-source software
components, one key reason being that these components often
make effective use of standardised programming interfaces and
data encodings, a crucial requirement in distributed
interoperable systems.

2.2.2 Production and Mediation Layer

Concerned with general or specific capabilities for processing
data and information and may include facilities for discovery of,
management/configuration of, invocation of, and result retrieval
from:

• Models.
• Simulations.
• Algorithms and Product Processing Chains.
• (Meta)Data Accumulations.
• Mediation services - e.g. data transforming or data

cascade/proxying.
• Harmonisation processes - e.g. combining data from

different sources into integrated and consistent
information products.

• Generation services - e.g. event processing and
notification services, reports.

Interaction layer components would typically interface with the
components in this layer over a network. To allow this to occur,
production and mediation components ideally need to agree to a
technical contract with OCIMS that requires the provision of a
navigable endpoint for accessing the components and output
from this layer; this can take the form of a service endpoint, for
example, an OGC W*S service (OGC, 2018), an ESRI ArcGIS
Server Map/Feature service (ESRI, 2018) or an OPEnDAP
service (OPeNDAP, 2018), or an Application Programming
Interface exposing these components and outputs as resources.
Such endpoints should preferably conform to open standard
protocols or provide detailed data models (e.g. OGC Conceptual
Models (OGC, 2018)) and API documentation. It may be the
case that components or outputs are not originally designed in
this way, or that the component is not meant to share all its data
or that an organisation does not have the capability to deploy
services or API’s; in such situations it may be appropriate to
proxy or wrap these components into the service or API
endpoint style.

OCIMS itself, and several of the providers to the system,
extensively utilise open-source components in this layer.
PostGIS (PostGIS, 2018) is usually the primary spatial
database, while Geoserver (Geoserver, 2018), ArcGIS Server
(ESRI, 2018) and THREDDS Data Server (THREDDS, 2018)
provision the web services components. Open source processing
components feature strongly in processing chains and
algorithms, including GDAL (GDAL, 2018), NetCDF (NetCDF,
2018) and HDF (HDF, 2018) libraries, NASA SEADAS
(SeaDAS, 2018) and ESA Sentinel Application Platform
(SNAP, 2018). The Python (Python, 2018) programming
language is primarily used to develop components and to
orchestrate them.

2.2.3 Acquisition Layer

This layer is concerned with the sourcing of data and
information products from Databases, Files, Data Streams e.g
from sensors or sensor networks, Direct Readout Services, Data
Services, and Download Services. The term “sourcing” refers to
acquiring access, connecting to the data of information product

offering and orchestrating a once-off or continuous query,
download or readout of the offering. Further steps of extracting
the product, translating it (perhaps into a common data model),
and loading it into another system (e.g. an enterprise database)
may also be considered as concerns of this layer of the
architecture.

OCIMS acquires significant amounts of its data from NASA
and ESA/ EUMETSAT remote sensing satellite programmes,
but there are numerous other data sources, ranging from vessel
position data streams to sensor networks, feature databases (e.g.
boundary data) to social media. Each data source can represent
integration challenges, and our experience has shown that FOSS
tools are crucial in allowing the diversity of data sources to be
accessed, translated and utilised effectively..

2.2.4 Layered Architecture benefits

If various components or sub-systems of OCIMS can be
described in this manner, a few key insights are available.

Firstly, OCIMS functionality can be decomposed into smaller
units of computation, which can be distributed. It is not
necessary to build complete vertical or ‘stovepiped’ solutions,
when functionality can be accessed over networks through well
known interfaces serving well understood data.

Flowing from this, is the understanding that the development,
deployment and management of components can be devolved to
decoupled teams within the same or from different
organisations. This allows for some efficiencies to be derived
from the independence of teams - each can choose the most
appropriate technologies - such as FOSS Geospatial tools - and
deployment practices in their domain, for example.

These insights echo some of the rationale behind Service-
Oriented Architecture and Microservices approaches to building
complex systems. Concretely though, these insights encourage
the use of innovative software deployment techniques as will
be illustrated in section 3.

2.3 System-of-Systems Integration

2.3.1 Service Oriented Architecture

Many of the components in OCIMS will be invoked - that is, a
function or method exposed by a component will be called by
another component across the Internet; a distributed computing
approach known as Remote Procedure Call (RPC). This
invocation of components can be done with direct,
parameterised calls to component functions typically using
HTTP methods and eXtensible Markup Language (XML), a
process known as XML-RPC - or, if using JSON, JSON-RPC.
Alternatively, remote procedures can be invoked with structured
messaging techniques such as Simple Object Access Protocol
(SOAP) that encapsulate a protocol for describing the function
that needs to be called and the structure of the data payload
necessary to parameterise the function. This RPC pattern holds
true for data access (particularly for components that provide
multi-temporal, multi-dimensional data) but also for access to
processing functionality and information dissemination
functionality. The OGC Web Services Common standard
defines how geospatial data and services can be invoked in
these ways (Whiteside and Greenwood, 2010), via remote
methods such as “GetCapabilities”, “DescribeCoverage” or
“GetMap”, for example.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W8, 2018
FOSS4G 2018 – Academic Track, 29–31 August 2018, Dar es Salaam, Tanzania

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-W8-139-2018 | © Authors 2018. CC BY 4.0 License.

141

Service Oriented Architecture (SOA) is a style of distributed
computing architecture that structures computational elements
as a set of services that can be accessed and used from a service
endpoint (usually an Internet address). Services are interacted
with via service interfaces where information objects
conforming to well described schemata are interchanged. SOA
with a Remote Procedure Call (RPC) style has been, and
remains, prevalent in working with spatio-temporal data
services (and more generally science data) over the Web. This
style has been formalised in various information communities,
resulting in the benefit of a wide ecosystem of off-the-shelf
open source and proprietary software clients and servers that
can be utilised to build highly functional, robust service and
application offerings against well established and accepted
international standards (such as Open Geospatial Consortium
web service standards, using highly structured information
models).

2.3.2 Web Application Interface Architecture

In contrast, many modern Web based applications and services
are constructed according to architectural styles that do not
mimic procedural calls. These styles are often referred to as
“RESTful” architectures. In the purest form, Web applications
that are built using this RESTful style are concerned with
navigating between and altering the state of resources (of a
particular media type) at a Web address, using the standardised
HTTP or Web protocol interface methods and message
structures. This style is data-driven rather than control-driven
since the application is formed from a sequence of state changes
over resources, rather than calls to procedures or methods that
opaquely control what happens to resources. In practice, many
systems exhibit incomplete “RESTfulness” but are nevertheless
distinct enough from SOA-RPC to be considered as Resource
Oriented Architectures, characterised by having a Web
Application Programming Interface (API). Web API
implementations tend to allow for client applications to create-
read-update-delete resources on the Web through a well defined
set of possible interactions, often using customised text based
(e.g. JSON) data structures and control instructions. Developers
may be attracted to this style since it appears to be very clean
and direct;

2.3.3 Integration Approaches

It is expected as a minimum that both systems exhibiting SOA-
RPC and Web API styles will be joined to the OCIMS and their
functions and resources utilised in a compositional way, i.e. an
application may be constructed from parts of systems. As an
example, Application A may source maps from a SOA-RPC
service from System X and data feeds from a Web API at
System Y. Application B may source maps from System X and
data feeds from a Web API at System Z. This allows reuse of
services and resources and is an architectural principle to be
aimed for in integrating systems into the OCIMS. Reuse and
composition are possible through the existence of detailed,
precise and preferably standardised interface definitions,
whether provided by documentation or by registration of the
service endpoint and interface in a service repository, and
agreement on shared media types.

Systems that exhibit these patterns from the outset increase the
likelihood of acceptable integration levels into OCIMS. Other
systems of importance to the OCIMS may exhibit a more tightly
coupled computational interaction approach.

In these cases, applications are delivered vertically - it is
difficult, if not impossible to uncouple a client from a specific
server and inversely, servers need to communicate with bespoke
clients that specifically understand the server interface. In such
cases, little reuse is possible without significant software
development effort, since a uniform integration interface is not
presented. This is not inherently problematic - the tight coupling
may be a design feature to ensure security, opacity, performance
and simplicity, but systems of this nature will be difficult to
integrate into OCIMS.

At least two strategies exist to bring a particular vertical system
into the ambit of the OCIMS; namely proxying and linking.
Proxying will incur software development effort and is
concerned with wrapping an interface around the parts of the
system that could be reused, such that this interface could be
understood by other components in the OCIMS environment.
As an example, a server offering geospatial feature data may
need to be proxied as an OGC Web Feature Service (WFS).
Such a proxy would receive WFS requests from a client and
translate them into custom requests to the server and return the
server response to the client according to the WFS protocol. A
further example of proxying that has been utilised in OCIMS is
the use of Postgres Foreign Data Wrappers via Multicorn
(Multicorn, 2018) to draw obscure data formats into the ambit
of PostGIS, and thus to the reach of Geospatial Web Server
software like Geoserver. Proxying (wrapping, brokering or
cascading are other terms used to describe this effort) may be
desirable to achieve integrations for certain systems, but is
achieved at a cost. Linking, on the other hand, simply refers to
the process of leaving OCIMS and interacting with another
system separately. This represents a low level of integration and
is acceptable only when there is no likelihood or need of reuse,
or the system provider has no willingness to provide integration
hooks, perhaps for security, political or other reasons.

3. OCIMS SOFTWARE DEVELOPMENT AND

DEPLOYMENT PROCEDURES

In order to illustrate the layered architecture and deployment
procedures briefly described in section 2.2., we discuss one
major part of the OCIMS system, the OCIMS Core. The Core
offers a centralised one-stop web portal where OCIMS
resources and services are catalogued, sometimes cached,
sometimes stored, but where a user can find, explore,
launch/view, download or link to distributed resources and
services relatively transparently. This process is orchestrated
through a rich client user interface, which is responsible for
composing and engaging with resources and services. A logical
view of the OCIMS Core is provided in Figure 2.

Figure 2. OCIMS Core logical view

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W8, 2018
FOSS4G 2018 – Academic Track, 29–31 August 2018, Dar es Salaam, Tanzania

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-W8-139-2018 | © Authors 2018. CC BY 4.0 License.

142

The Core system is made up of five major components, a Data
Management System, a Content Management System, a
database, web servers and a search platform. Each of these
components is abstracted from the other and runs inside its own
virtual environment. Due to the large number of datasets
anticipated, Comprehensive Knowledge Archive Network
(CKAN) proved to be the best option in that it is widely used
and powers big data hubs and data portals. It allows for easy
data publication, discovery, sharing and accessibility (Amorim
et al., 2017.), (Kucera, et al., 2012) and (Winn, et al., 2013).
One major requirement which was met by CKAN was its
adherence to accepted metadata standards and standardised web
services. This allowed the core system to interface and
exchange data with other service providers through harvesting.
CKAN provides various ways in which datasets and metadata
can be harvested from different data providers depending on the
type of endpoint exposed, including:

• CKAN to CKAN harvesting via the API,
• DCAT harvesting via RDF or JSON,
• CSW through pycsw, data.json etc.

CKAN also provides Solr for indexing any harvested metadata
and an API for searching through its catalogue. If the datasets
and/or metadata are spatially tagged, CKAN also provides for
map based searching on its interface.

In the initial phase of development, CKAN’s front-end was
customised and branded to meet the necessary look and feel.
However, CKAN proved to be limited in meeting certain front-
end functional requirements without embarking on significant
code development. This prompted the need for a self contained,
“user friendly” or intuitive Content Management System,
qualities embodied in Wordpress along with its rich
functionality and support. Both the IMS (CKAN) and the CMS
(Wordpress) use different databases for information storage
which are PostgreSQL and MySQL respectively.

The OCIMS core technology stack mentioned above is made up
of independent subsystems that reside in their own virtual
environment, and only interface with other subsystems through
API’s and HTTP protocols. These independent virtual
environments are made possible via Docker (Docker, 2018), the
increasingly popular containerisation software. Docker
containers allow for automated deployment and management of
applications or services in such a way as to isolate the
application/ service from underlying software dependencies.
This supports rollout and rollback of these applications or
services on a granular level. This method of deployment allows
for the decoupling of subsystems, isolation, simplicity and faster
configuration.

Figure 3. OCIMS Core Docker Containers

Since each Docker container or subsystem is independent, as
shown in Figure 3., it can be modified, upgraded or replaced
without affecting other components of the stack. It provides a
standard method of deployment and portability that allows
applications or services to be run transparently on different
operating systems or cloud computing environments.
Additionally, containers ensure that consistency across various
release cycles and deployment stages can be attained. This
means that short deployment cycles, high levels of reliability
and effortless system duplication are possible.

In a similar vein, some of the Production and Mediation Layer
software (described in Section 2) relies on Docker
containerisation approaches to deliver robust, re-deployable
processing chains that can be easily replaced as new
requirements or algorithms emerge.

4. LESSONS AND INNOVATIONS

The groundwork done in building the initial OCIMS
implementation as a set of granular and configurable
containerised components has led to a significant positive side
effect; a “recipe” now materialises for building interoperable
data management system nodes that can readily federate with
OCIMS or other systems, such as national spatial data
infrastructures. This allows for different organisations to build
specific parts of OCIMS at different tempos. Given that some
organisations may not have the technical capabilities or capacity
to construct nodes, it is also possible for the main implementors
of OCIMS to offer assistance in deploying the necessary
lighweight data management infrastructure shell into an
organisation with minimal effort.

It is important to recognise that many of the organisations that
may take part in OCIMS have existing data infrastructures. In
South African circles, these are commonly based on
implementations of various parts of the ESRI suite of software.
It is our experience that some of these implementations are left
relatively unconfigured or in a default state, with minimal
attention paid to interoperability arrangements. Such
implementations are somewhat problematic to integrate with
CKAN and CSW directly. One solution is to proxy parts of
these systems through the FOSS ESRI Geoportal software
components (ESRI_b, 2018), configured and deployed as
individual Docker containers specific to an organisation.

It is our observation that standardised discovery and usage
metadata is often not supplied with OCIMS related datasets and
data services. With some programming effort, it is plausible to
populate metadata into datasets (such as NetCDF CF
Convention elements) and services such as CSW from within
scientific data processing chains. To the extent that this is
possible for any given dataset, this approach will be pursued in
OCIMS, for it lubricates the process of building interoperable
solutions with the least hassle.

Much of the architecture of OCIMS is based on international
standing good practice such as described by the GEOSS
Architecture Implementation Pilots (Percivall, et al., 2015). We
believe that much of this method of building interoperable
systems remains relevant for the next few years. However, it is
not necessarily the case that organisations that contribute to
OCIMS will be willing to embark on or continue the processes

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W8, 2018
FOSS4G 2018 – Academic Track, 29–31 August 2018, Dar es Salaam, Tanzania

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-W8-139-2018 | © Authors 2018. CC BY 4.0 License.

143

of building and maintaining their own systems in-house. The
commodification of cloud computing and in particular the types
of cloud service offerings available to organisations may change
the ways scientific and geospatial data and information are
stored, discovered, accessed and integrated into systems. We
believe that for subsequent iterations of the OCIMS architecture
it will be important to consider emerging approaches (COGEO,
2018), (Tandy, et al., 2017) to building distributed, interoperable
geospatial systems in the cloud.

5. ACKNOWLEDGEMENTS

The authors wish to highlight that this article summarises a
great deal of work undertaken (primarily by the authors
themselves) in providing the OCIMS project with detailed
architecture description documentation.

6. REFERENCES

Amorim, R., Aguiar Castro, J., Rocha, J. and Ribeiro, C. 2017.
A comparison of research data management platforms:
architecture, flexible metadata and interoperability. Universal
Access in the Information Society, Volume 16, Issue 4, pp 851-
862 . 10.1007/s10209-016-0475-y.

Apache Solr, 2018. Apache Software Foundation.
http://lucene.apache.org/solr/ (17 April 2018)

CKAN, 2018. Comprehensive Knowledge Archive Network,
CKAN Association https://ckan.org/ (17 April 2018)

COGEO, 2018. Cloud Optimized GeoTIFF project.
https://www.cogeo.org (17 April 2018)

Docker, 2018. Docker Software Containerization Platform,
Docker.Inc https://www.docker.com/ (17 April 2018)

ESRI, 2018. ArcGIS Enterprise Server: Release 10.6. Redlands,
CA: Environmental Systems Research Institute.
https://enterprise.arcgis.com/en/server/ (17 April 2018)

ESRI_b, 2018. ESRI Geoportal Server. Redlands, CA:
Environmental Systems Research Institute.
https://www.esri.com/en-us/arcgis/products/geoportal-
server/overview (17 April 2018).

GDAL/OGR contributors, 2018. The GDAL/OGR Geospatial
Data Abstraction Software Library http://gdal.org (17 April
2018)

GeoPlatform, 2017. Geospatial Platform
http://www.geoplatform.gov/ (17 April 2018)

Geoserver, 2018. Geoserver - open source server for sharing
geospatial data: version 2.12, Open Source Geospatial
Foundation (OSGEO) http://geoserver.org. (17 April 2018)

GEOSS, 2018. Global Earth Observing System of Systems,
Group on Earth Observations
http://www.earthobservations.org/geoss.shtml (17 April 2018)

HDF, 2018. The HDF Group. Hierarchical Data Format, version
5, 1997-2018. http://www.hdfgroup.org/HDF5/ (17 April 2018)

INSPIRE knowledge base, 2018. Infrastructure for spatial
information in Europe http://inspire.ec.europa.eu/ (17 April
2018)

Kucera, J., Chlapek, D. and Mynarz, J. 2012. Czech CKAN
repository as case study in public sector data cataloging,
Systemova Integrace, Volume 19, Issue 2, pp 95-107

MapStore2, 2018. Mapstore2, GeoSolutions
https://mapstore2.geo-solutions.it/mapstore/ (17 April 2018)

Multicorn, 2018. Multicorn - Postgres Foreign Data Wrapper
Development for Python. https://multicorn.org/. (17 April 2018)

MySQL, 2018. MySQL, Oracle Corporation
https://www.mysql.com/ (17 April 2018)

NetCDF, 2018. Unidata (2018), Network Common Data Form
(netCDF) version 4.4.0.2 [software]. Boulder, CO:
UCAR/Unidata. (http://doi.org/10.5065/D6H70CW6) (17 April
2018)

OCIMS, 2018. Oceans and Coasts Information Management
System https://www.ocims.gov.za (17 April 2018)

OGC, 2018. OGC Standards and Supporting Documents, Open
Geospatial Consortium,
http://www.opengeospatial.org/standards (17 April 2018)

OPeNDAP, 2018. OPeNDAP - Advanced Software for Remote
Data Retrieval, OPeNDAP Inc. 165 Dean Knauss Dr.,
Narragansett, RI 02882. https://www.opendap.org/ (April 17,
2018)

Percivall, G. de Lathouwer, B., Nebert, D. and Alameh, N. (eds),
2015. GEOSS AIP Architecture. Group on Earth Observations,
7 bis, avenue de la Paix, Case postale 2300, CH-
1211 Geneva, Switzerland
https://www.earthobservations.org/documents/cfp/201501_geos
s_cfp_aip8.pdf

PostGIS, 2018. PostGIS - Support for geographic objects to the
PostgreSQL object-relational database: version 2.4.2.,
Refractions Research http://postgis.refractions.net. (17 April
2018)

PostgreSQL, 2018. PostgreSQL Global Development Group
https://www.postgresql.org (17 April 2018)

pycsw Development Team, 2018. pycsw http://pycsw.org/ (17
April 2018)

Python, 2018. Python Software Foundation. Python Language
Reference, version 2.7. http://www.python.org (17 April 2018)

SeaDAS, 2018. NASA Ocean Biology Processing Group,
SeaDAS v7.5 https://seadas.gsfc.nasa.gov/ (17 April 2018)

SNAP, 2018. SNAP - ESA Sentinel Application Platform v6.0.0,
http://step.esa.int (17 April 2018)

Tandy, J., van den Brink, L. and Barnaghi, P. (eds), 2017.
Spatial Data on the Web Best Practices, W3C Working Group
Note. https://www.w3.org/TR/sdw-bp/ (17 April 2018)

THREDDS, 2018. Unidata, (2015): THREDDS Data Server
(TDS) [software].Boulder, CO: UCAR/Unidata.
(http://doi.org/10.5065/D6N014KG) (17 April 2018)

Whiteside, A., Greenwood, J. (eds.) 2010. OGC Web Services
Common Standard, OGC 06-121r9, Version 2.0, Open
Geospatial Consortium, Inc.
http://portal.opengeospatial.org/files/?artifact_id=38867

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W8, 2018
FOSS4G 2018 – Academic Track, 29–31 August 2018, Dar es Salaam, Tanzania

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-W8-139-2018 | © Authors 2018. CC BY 4.0 License.

144

http://lucene.apache.org/solr/
http://www.cogeo.org/
http://www.cogeo.org/
http://www.docker.com/
http://www.docker.com/
http://www.esri.com/en-us/arcgis/products/geoportal-
http://www.esri.com/en-us/arcgis/products/geoportal-
http://www.esri.com/en-us/arcgis/products/geoportal-
http://gdal.org/
http://www.geoplatform.gov/
http://geoserver.org/
http://www.earthobservations.org/geoss.shtml
http://www.hdfgroup.org/HDF5/
http://inspire.ec.europa.eu/
http://www.mysql.com/
http://www.mysql.com/
http://doi.org/10.5065/D6H70CW6
http://www.ocims.gov.za/
http://www.ocims.gov.za/
http://www.ocims.gov.za/
http://www.opengeospatial.org/standards
http://www.opendap.org/
http://www.opendap.org/
http://www.earthobservations.org/documents/cfp/201501_geos
http://www.earthobservations.org/documents/cfp/201501_geos
http://www.earthobservations.org/documents/cfp/201501_geos
http://postgis.refractions.net/
http://www.postgresql.org/
http://www.postgresql.org/
http://pycsw.org/
http://www.python.org/
http://step.esa.int/
http://www.w3.org/TR/sdw-bp/
http://www.w3.org/TR/sdw-bp/
http://doi.org/10.5065/D6N014KG)
http://doi.org/10.5065/D6N014KG)
http://portal.opengeospatial.org/files/?artifact_id=38867

Winn, J., et al., 2013. Open data and the academy: An
evaluation of CKAN for research data management. Univ.
Lincoln, Lincoln, U.K.

Wordpress, 2018. Wordpress.org, https://wordpress.org/ (17
April 2018)

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W8, 2018
FOSS4G 2018 – Academic Track, 29–31 August 2018, Dar es Salaam, Tanzania

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-W8-139-2018 | © Authors 2018. CC BY 4.0 License.

145

	FOSS4G 2018
	ABSTRACT:
	1. INTRODUCTION
	2. OCIMS SYSTEM DESCRIPTION
	2.2 System Layering
	2.3 System-of-Systems Integration
	3. OCIMS SOFTWARE DEVELOPMENT AND DEPLOYMENT PROCEDURES
	4. LESSONS AND INNOVATIONS
	5. ACKNOWLEDGEMENTS
	6. REFERENCES

