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ABSTRACT: 
 

The National Oceans and Coastal Information Management System (OCIMS) of South Africa is a large, integrated IT system for 
enhancing oceans, coastal and maritime governance, and supporting sustainable economic utilisation of ocean and coastal resources. 
This article is a case study, describing how a range of Free and Open Source Software are deployed to generate the Open Standards 
based core of this federated system for providing decision support applications in addition to data and information management, 
access and dissemination services. This article demonstrates the importance of modern software development and deployment 
approaches in constructing the OCIMS core and easing the integration process with other systems in the federation. Finally, this 
article discusses some lessons learned and reflects on the lineage of OCIMS architectural choices and how these approaches may 
need to adapt to changing computing environments 

 
1. INTRODUCTION 

 
The National Oceans and Coastal Information Management 
System (OCIMS) - https://www.ocims.gov.za - of South Africa 
is an ongoing government funded effort to integrate 
heterogeneous IT systems  from  various  organisations into  a 
system-of-systems to support enhanced oceans, coastal and 
maritime governance and sustainable utilisation goals. OCIMS 
supports these goals through providing facilities for monitoring 
of environmental variables and human socio-economic activity, 
compliance and enforcement support, planning and assessment 
and information dissemination. Concretely, OCIMS offers 1) IT 
components for publishing of, discovery of, access to, 
interaction with and management of data and content services, 
2) decision support tools and applications, 3) information 
dissemination channels and 4) information technology services. 
Most of these offerings are inherently geospatially oriented. 

 
This article describes the architectural patterns by which open 
standards for data (and metadata) interchange and service 
interfaces are used in building the OCIMS federated system. 
This article demonstrates the importance of modern software 
development and deployment methods - such as 
containerisation and service-oriented architectures - that 
allowed not only the core of OCIMS to be constructed and 
deployed, but also several of the nodes in the federation. 
Effectively, the ease of customisation and deployment of 
containerised FOSS geospatial and data management 
components, and the isolation  provided by this approach  to 
software life-cycle management, allows nodes representing 
different projects, organisations and sub-organisations to join 
the OCIMS data and service federation with minimal effort in 
such a way that their services, data and metadata are 
interoperable (accessible, available, understandable and 
harvestable). 

This article characterises the primarily Free and Open Source 
Software software stack that enables the core of the OCIMS 
federated system and provides much of the functionality. The 
core portion of the  overall  system is  composed of  the data 
management system Comprehensive Knowledge Archive 
Network or CKAN (CKAN, 2018), enabled with various spatial 
search/browse extensions, an OGC Catalogue Service for the 
Web implementation (pycsw, 2018), and a content management 
system/ landing page. The OCIMS core preferably harvests 
metadata from nodes in the federation, but this is not always 
possible if nodes do not provide harvestable endpoints. 

 
Lessons from initial deployment of the OCIMS are articulated, 
for example, the difficulty of working with local profiles of 
metadata standards due to lack of software tooling or the extra 
steps needed to integrate nodes into the federated system where 
the owners/maintainers of the node have not planned for 
interoperability arrangements. Positive lessons are also 
elucidated, such  as the  advantages  that can  be gained  from 
building data processing chains that are configured to emit data 
products as similar as possible to each other (e.g. NetCDF CF 
convention structures) and that automatically emit metadata to 
catalogue services concerning their output products. The main 
advantage here is the “recipe”-like way that OCIMS  ready 
nodes can be built and deployed. 

 
Finally, this article reflects on the lineage of the architectural 
choices made in order to construct the OCIMS system, and how 
systems like OCIMS will likely need to be adapted to the 
realities of geospatial data and processing increasingly moving 
into a cloud computing paradigm. 
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2. OCIMS SYSTEM DESCRIPTION 
 

2.1 High level Description 
 
 

OCIMS is designed as an integration between heterogeneous 
systems from various organisations to form a virtual enterprise 
of stakeholders, data and information producers and consumers 
concerned with monitoring, modelling, reporting, informing and 
decision-making in the Oceans and Coastal domains. 
Organisations contributing to OCIMS display different levels of 
IT capability and are invested in different technology stacks. 
The systems joining to this virtual enterprise should  enrich 
rather than disrupt the wider system, while the continued 
operation of these individual systems should not be disrupted by 
changes in the National OCIMS. Thus, OCIMS is a loosely 
coupled system-of-systems - a concept discussed in (Percivall, 
et al., 2015) - where each component system is designed, 
developed, tested, operated and owned independent of OCIMS, 
as illustrated in Figure 1. 

many  spheres  of  society  (government,  academia, 
industry and communities) 

• Potentially supplying some shared infrastructure that 
could host data and applications as a last resort 

 
In essence, OCIMS harnesses international good practice for 
Spatial Data Infrastructure implementation to build out a 
national Oceans and Coasts IT system. This is an important 
point; previous South African Oceans and Coastal IT systems 
tended to be standalone, largely non-interoperable and difficult 
to extend via reusable applications. The driving force behind 
this change is a long term funding plan and political willingness 
to support OCIMS. 

 
 

2.2 System Layering 
 
 

OCIMS can be understood through three layers of functionality 
and components, named as the Interaction Layer, the Production 
and Mediation Layer and the Acquisition Layer. 

 
2.2.1 Interaction Layer 

 
Concerned with how the system facilitates the interaction 
between consumers/ end-users and OCIMS, with capabilities 
for: 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. System-of-Systems Interactions 
 

This design requires that inter-system communication ideally 
happens at well understood interfaces, with well described 
control signals/protocols exchanging a finite set of data types 
and encodings between applications and service requests. This 
kind of a design echoes and is inspired by large undertakings 
like Infrastructure for Spatial Information in the European 
Community - INSPIRE (INSPIRE, 2018), Global Earth 
Observation System of Systems - GEOSS (GEOSS, 2018) and 
the US open data initiatives such as Geospatial Platform 
(GeoPlatform, 2018). The latter facility shares some of the 
system goals of OCIMS and provides an apt description, that of 
providing “shared and trusted geospatial data, services, and 
applications for use by the public and by government agencies 
and partners to meet their mission needs.” GeoPlatform and 
OCIMS share aims of 

• Providing  access to  authoritative  data  (wherever it 
may  be  stored)  in  support  of  informed  decision 
making 

• Presenting  reusable  applications  and  services  for 
multiple stakeholders and users in the governmental 
and non-governmental spaces 

• Acting as a launchpad from which national Oceans 
and  Coastal  issues  can  be  informed  by  data  from 

• Search and discovery - pursuit of relevant information 
across collections of various types of documents, data, 
metadata, messages and other sources; queries are 
executed via word and phrase search, topic search, 
structured search over defined fields or facets, spatial 
search and temporal search. 

• Access - transfer of data and information from system 
to system or system to user; may be performed 
through direct link to a resource, mediated via a 
service or represented via a portrayal (e.g. a map or 
graph). 

• Visualisation  -  making  data  and  information  more 
comprehensible via visible representations of it; aids 
in understanding and exploring data, conveying of 
concepts and summarising of complexities. 

• Query - perform guided or ad-hoc requests for data or 
information, often using a query language (e.g. SQL). 

• Publish / Register / Describe - allow clients to 
produce data, metadata, information products and 
tools onto the system 

• Decision-making    -    support    users    in    reaching 
conclusions, make decisions or pursuing a course of 
action based on data, information, visualisations or 
reports from the system. 

• Dissemination     -     promulgation/     spreading     of 
information, data or reports to an audience; may be 
broadcast or targeted. 

 
In OCIMS, the software supplying much of this functionality is 
CKAN (CKAN, 2018) and its dependencies, such as pycsw 
(pycsw Development Team, 2018) and Solr (Apache Solr, 
2018). In effect, the OCIMS Core is largely a CKAN powered 
data portal for the Oceans and Coastal domain. Wordpress 
(Wordpress, 2018) provides content management functionality 
and overall styling. MapStore2 (Mapstore2, 2018) is deployed 
as the primary means for users to visualise and explore the large 
amounts of spatial data linked into OCIMS. 
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The initial set of Decision-Support Tools provided by OCIMS 
currently utilise a multitude of open-source software 
components, one key reason being that these components often 
make effective use of standardised programming interfaces and 
data encodings, a crucial requirement in distributed 
interoperable systems. 

 
2.2.2 Production and Mediation Layer 

 
Concerned with general or specific capabilities for processing 
data and information and may include facilities for discovery of, 
management/configuration of, invocation of, and result retrieval 
from: 

• Models. 
• Simulations. 
• Algorithms and Product Processing Chains. 
• (Meta)Data Accumulations. 
• Mediation services - e.g. data transforming or data 

cascade/proxying. 
• Harmonisation processes - e.g. combining data from 

different   sources   into   integrated   and   consistent 
information products. 

• Generation  services  -  e.g.  event  processing  and 
notification services, reports. 

 
Interaction layer components would typically interface with the 
components in this layer over a network. To allow this to occur, 
production and mediation components ideally need to agree to a 
technical contract with OCIMS that requires the provision of a 
navigable endpoint for accessing the components and output 
from this layer; this can take the form of a service endpoint, for 
example, an OGC W*S service (OGC, 2018), an ESRI ArcGIS 
Server Map/Feature service (ESRI, 2018) or an OPEnDAP 
service (OPeNDAP, 2018), or an Application Programming 
Interface exposing these components and outputs as resources. 
Such endpoints should preferably conform to open standard 
protocols or provide detailed data models (e.g. OGC Conceptual 
Models (OGC, 2018) ) and API documentation. It may be the 
case that components or outputs are not originally designed in 
this way, or that the component is not meant to share all its data 
or that an organisation does not have the capability to deploy 
services or API’s; in such situations it may be appropriate to 
proxy or wrap these components into the service or API 
endpoint style. 

 
OCIMS itself, and several of the providers to the system, 
extensively utilise open-source components in this layer. 
PostGIS (PostGIS, 2018) is usually the primary  spatial 
database, while Geoserver (Geoserver, 2018), ArcGIS Server 
(ESRI, 2018) and THREDDS Data Server (THREDDS, 2018) 
provision the web services components. Open source processing 
components feature strongly in processing chains and 
algorithms, including GDAL (GDAL, 2018), NetCDF (NetCDF, 
2018)  and  HDF  (HDF,  2018)  libraries,  NASA  SEADAS 
(SeaDAS, 2018) and ESA Sentinel Application Platform 
(SNAP, 2018). The Python (Python, 2018) programming 
language is primarily used to develop components and to 
orchestrate them. 

 
2.2.3 Acquisition Layer 

 
This layer is concerned  with the sourcing of data and 
information products from Databases, Files, Data Streams e.g 
from sensors or sensor networks, Direct Readout Services, Data 
Services, and Download Services. The term “sourcing” refers to 
acquiring access, connecting to the data of information product 

offering and orchestrating a once-off or continuous query, 
download or readout of the offering. Further steps of extracting 
the product, translating it (perhaps into a common data model), 
and loading it into another system (e.g. an enterprise database) 
may also be considered as concerns of this layer of the 
architecture. 

 
OCIMS acquires significant amounts of its data from NASA 
and ESA/ EUMETSAT remote sensing satellite programmes, 
but there are numerous other data sources, ranging from vessel 
position data streams to sensor networks, feature databases (e.g. 
boundary data) to social media. Each data source can represent 
integration challenges, and our experience has shown that FOSS 
tools are crucial in allowing the diversity of data sources to be 
accessed, translated and utilised effectively.. 

 
2.2.4 Layered Architecture benefits 

 
If various components or sub-systems of OCIMS can be 
described in this manner, a few key insights are available. 

 
Firstly, OCIMS functionality can be decomposed into smaller 
units of computation, which can be distributed. It is not 
necessary to build complete vertical or ‘stovepiped’ solutions, 
when functionality can be accessed over networks through well 
known interfaces serving well understood data. 

 
Flowing from this, is the understanding that the development, 
deployment and management of components can be devolved to 
decoupled teams within the same or from  different 
organisations. This allows for some efficiencies to be derived 
from the independence of teams - each can choose the most 
appropriate technologies - such as FOSS Geospatial tools - and 
deployment practices in their domain, for example. 

 
These insights echo some of the rationale behind Service- 
Oriented Architecture and Microservices approaches to building 
complex systems. Concretely though, these insights encourage 
the use of innovative software deployment techniques as will 
be illustrated in section 3. 

 
2.3 System-of-Systems Integration 

 
2.3.1 Service Oriented Architecture 

 
Many of the components in OCIMS will be invoked - that is, a 
function or method exposed by a component will be called by 
another component across the Internet; a distributed computing 
approach known as Remote Procedure Call (RPC). This 
invocation of components can be done with  direct, 
parameterised calls to component functions typically using 
HTTP methods and eXtensible Markup Language (XML), a 
process known as XML-RPC - or, if using JSON, JSON-RPC. 
Alternatively, remote procedures can be invoked with structured 
messaging techniques such as Simple Object Access Protocol 
(SOAP) that encapsulate a protocol for describing the function 
that needs to be called and the structure of the data payload 
necessary to parameterise the function. This RPC pattern holds 
true for data access (particularly for components that provide 
multi-temporal, multi-dimensional data) but also for access to 
processing functionality and information dissemination 
functionality. The OGC Web Services Common standard 
defines how geospatial data and services can be invoked in 
these ways (Whiteside and Greenwood, 2010), via remote 
methods such as “GetCapabilities”, “DescribeCoverage” or 
“GetMap”, for example. 
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Service Oriented Architecture (SOA) is a style of distributed 
computing architecture that structures computational elements 
as a set of services that can be accessed and used from a service 
endpoint (usually an Internet address). Services are interacted 
with via service interfaces where information objects 
conforming to well described schemata are interchanged. SOA 
with a Remote Procedure Call (RPC) style has been, and 
remains, prevalent in working with spatio-temporal  data 
services (and more generally science data) over the Web. This 
style has been formalised in various information communities, 
resulting in the benefit of a wide ecosystem of off-the-shelf 
open source and proprietary software clients and servers that 
can be utilised to build highly functional, robust service and 
application offerings against well established and accepted 
international standards (such as Open Geospatial Consortium 
web service standards, using highly structured information 
models). 

 
2.3.2 Web Application Interface Architecture 

 
In contrast, many modern Web based applications and services 
are constructed according  to architectural styles that do not 
mimic procedural calls. These styles are often referred to as 
“RESTful” architectures. In the purest form, Web applications 
that are built using this RESTful style are concerned with 
navigating between and altering the state of resources (of a 
particular media type) at a Web address, using the standardised 
HTTP or Web protocol interface methods and message 
structures. This style is data-driven rather than control-driven 
since the application is formed from a sequence of state changes 
over resources, rather than calls to procedures or methods that 
opaquely control what happens to resources. In practice, many 
systems exhibit incomplete “RESTfulness” but are nevertheless 
distinct enough from SOA-RPC to be considered as Resource 
Oriented Architectures, characterised by having a Web 
Application Programming Interface (API). Web API 
implementations tend to allow for client applications to create- 
read-update-delete resources on the Web through a well defined 
set of possible interactions, often using customised text based 
(e.g. JSON) data structures and control instructions. Developers 
may be attracted to this style since it appears to be very clean 
and direct; 

 
2.3.3 Integration Approaches 

 
It is expected as a minimum that both systems exhibiting SOA- 
RPC and Web API styles will be joined to the OCIMS and their 
functions and resources utilised in a compositional way, i.e. an 
application may be constructed from parts of systems. As an 
example, Application A may source maps from a SOA-RPC 
service from System X and data feeds from a Web API at 
System Y. Application B may source maps from System X and 
data feeds from a Web API at System Z. This allows reuse of 
services and resources and is an architectural principle to be 
aimed for in integrating systems into the OCIMS. Reuse and 
composition are possible through the existence of detailed, 
precise and preferably standardised interface definitions, 
whether provided by documentation or by registration of the 
service endpoint and interface in a service repository, and 
agreement on shared media types. 

 
Systems that exhibit these patterns from the outset increase the 
likelihood of acceptable integration levels into OCIMS. Other 
systems of importance to the OCIMS may exhibit a more tightly 
coupled computational interaction approach. 

In these cases, applications are delivered vertically - it is 
difficult, if not impossible to uncouple a client from a specific 
server and inversely, servers need to communicate with bespoke 
clients that specifically understand the server interface. In such 
cases, little reuse is possible without significant software 
development effort, since a uniform integration interface is not 
presented. This is not inherently problematic - the tight coupling 
may be a design feature to ensure security, opacity, performance 
and simplicity, but systems of this nature will be difficult to 
integrate into OCIMS. 

 
At least two strategies exist to bring a particular vertical system 
into the ambit of the OCIMS; namely proxying and linking. 
Proxying will incur software development effort and is 
concerned with wrapping an interface around the parts of the 
system that could be reused, such that this interface could be 
understood by other components in the OCIMS environment. 
As an example, a server offering geospatial feature data may 
need to be proxied as an OGC Web Feature Service (WFS). 
Such a proxy would receive WFS requests from a client and 
translate them into custom requests to the server and return the 
server response to the client according to the WFS protocol. A 
further example of proxying that has been utilised in OCIMS is 
the use of Postgres Foreign Data Wrappers via Multicorn 
(Multicorn, 2018) to draw obscure data formats into the ambit 
of PostGIS, and thus to the reach of Geospatial Web Server 
software like Geoserver. Proxying (wrapping, brokering or 
cascading are other terms used to describe this effort) may be 
desirable to achieve integrations for certain systems, but is 
achieved at a cost. Linking, on the other hand, simply refers to 
the process  of  leaving  OCIMS  and  interacting with  another 
system separately. This represents a low level of integration and 
is acceptable only when there is no likelihood or need of reuse, 
or the system provider has no willingness to provide integration 
hooks, perhaps for security, political or other reasons. 

 
3. OCIMS SOFTWARE DEVELOPMENT AND 

DEPLOYMENT PROCEDURES 
 

In order to illustrate the layered architecture and deployment 
procedures briefly described in section 2.2., we discuss one 
major part of the OCIMS system, the OCIMS Core. The Core 
offers a centralised one-stop web portal where  OCIMS 
resources and services are catalogued, sometimes cached, 
sometimes stored, but where a user can find, explore, 
launch/view, download or link to distributed resources and 
services relatively transparently. This process is orchestrated 
through a rich client user interface, which is responsible for 
composing and engaging with resources and services. A logical 
view of the OCIMS Core is provided in Figure 2. 

 

 
Figure 2. OCIMS Core logical view 
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The Core system is made up of five major components, a Data 
Management System, a Content Management System, a 
database, web servers and a search platform. Each of these 
components is abstracted from the other and runs inside its own 
virtual environment. Due to the large number of datasets 
anticipated, Comprehensive Knowledge Archive Network 
(CKAN) proved to be the best option in that it is widely used 
and powers big data hubs and data portals. It allows for easy 
data publication, discovery, sharing and accessibility (Amorim 
et al., 2017.), (Kucera, et al., 2012) and (Winn, et al., 2013). 
One major requirement which was met by CKAN was its 
adherence to accepted metadata standards and standardised web 
services. This allowed the core system to interface and 
exchange data with other service providers through harvesting. 
CKAN provides various ways in which datasets and metadata 
can be harvested from different data providers depending on the 
type of endpoint exposed, including: 

• CKAN to CKAN harvesting via the API, 
• DCAT harvesting via RDF or JSON, 
• CSW through pycsw, data.json etc. 

 
CKAN also provides Solr for indexing any harvested metadata 
and an API for searching through its catalogue. If the datasets 
and/or metadata are spatially tagged, CKAN also provides for 
map based searching on its interface. 

 
In the initial phase of development, CKAN’s front-end was 
customised and branded to meet the necessary look and feel. 
However, CKAN proved to be limited in meeting certain front- 
end functional requirements without embarking on significant 
code development. This prompted the need for a self contained, 
“user friendly” or intuitive Content Management System, 
qualities embodied in Wordpress along with its rich 
functionality and support. Both the IMS (CKAN) and the CMS 
(Wordpress) use different databases for information storage 
which are PostgreSQL and MySQL respectively. 

 
The OCIMS core technology stack mentioned above is made up 
of independent subsystems that reside in their own virtual 
environment, and only interface with other subsystems through 
API’s and HTTP protocols. These independent virtual 
environments are made possible via Docker (Docker, 2018), the 
increasingly popular containerisation software. Docker 
containers allow for automated deployment and management of 
applications or services in such a way as to isolate the 
application/ service from underlying software dependencies. 
This supports rollout and rollback of these applications or 
services on a granular level. This method of deployment allows 
for the decoupling of subsystems, isolation, simplicity and faster 
configuration. 

Figure 3. OCIMS Core Docker Containers 
 
 

Since each Docker container or subsystem is independent, as 
shown in Figure 3., it can be modified, upgraded or replaced 
without affecting other components of the stack. It provides a 
standard method of deployment and portability that allows 
applications or services to  be run transparently on different 
operating systems or cloud computing environments. 
Additionally, containers ensure that consistency across various 
release cycles and deployment stages can be attained. This 
means that short deployment cycles, high levels of reliability 
and effortless system duplication are possible. 

 
In a similar vein, some of the Production and Mediation Layer 
software (described in Section 2) relies on Docker 
containerisation approaches to deliver robust, re-deployable 
processing chains that can be easily replaced as new 
requirements or algorithms emerge. 

 
 

4. LESSONS AND INNOVATIONS 
 

The groundwork done in building the initial OCIMS 
implementation as a set of granular and configurable 
containerised components has led to a significant positive side 
effect; a “recipe” now materialises for building interoperable 
data management system nodes that can readily federate with 
OCIMS or other systems, such as national spatial data 
infrastructures. This allows for different organisations to build 
specific parts of OCIMS at different tempos. Given that some 
organisations may not have the technical capabilities or capacity 
to construct nodes, it is also possible for the main implementors 
of OCIMS to offer assistance in deploying the necessary 
lighweight data management infrastructure shell into an 
organisation with minimal effort. 

 
It is important to recognise that many of the organisations that 
may take part in OCIMS have existing data infrastructures. In 
South African circles, these are commonly based on 
implementations of various parts of the ESRI suite of software. 
It is our experience that some of these implementations are left 
relatively unconfigured or in a default state, with minimal 
attention paid to interoperability arrangements. Such 
implementations are somewhat problematic to integrate with 
CKAN and CSW directly. One solution is to proxy parts of 
these systems through the FOSS ESRI Geoportal software 
components (ESRI_b, 2018), configured and deployed as 
individual Docker containers specific to an organisation. 

 
It is our observation that standardised discovery and usage 
metadata is often not supplied with OCIMS related datasets and 
data services. With some programming effort, it is plausible to 
populate metadata into datasets (such as NetCDF CF 
Convention elements) and services such as CSW from within 
scientific data processing chains. To the extent that this is 
possible for any given dataset, this approach will be pursued in 
OCIMS, for it lubricates the process of building interoperable 
solutions with the least hassle. 

 
Much of the architecture of OCIMS is based on international 
standing good practice such as described by the GEOSS 
Architecture Implementation Pilots (Percivall, et al., 2015). We 
believe that much of this method of building interoperable 
systems remains relevant for the next few years. However, it is 
not necessarily the case that organisations that contribute to 
OCIMS will be willing to embark on or continue the processes 
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of building and maintaining their own systems in-house. The 
commodification of cloud computing and in particular the types 
of cloud service offerings available to organisations may change 
the ways scientific and geospatial data and information are 
stored, discovered, accessed and integrated into systems. We 
believe that for subsequent iterations of the OCIMS architecture 
it will be important to consider emerging approaches (COGEO, 
2018), (Tandy, et al., 2017) to building distributed, interoperable 
geospatial systems in the cloud. 
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