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ABSTRACT: 

Salt marsh ecology classification is difficult using traditional coarse resolution remote sensing techniques. Salt marshes exhibit a  
spatial  pattern  of  vegetation  zonation  that  are  visually  identifiable  using  imagery  that  has  an  improved  0.04  meter  per  pixel  
resolution. This project applies high resolution unmanned aerial system (UAS) imagery to aid in multi-temporal classification of our  
study area (Horseneck Beach) in Westport, Massachusetts, USA. We flew a DJI Phantom Pro 3 at low- and high-tide to capture  
effects the changing tide has on vegetation in an effort to predict effects of the rising sea level on saline plant species. We implement 
an open source software workflow using OpenDroneMap and the Semi-Automatic Classification Plugin for QGIS to create the  
necessary orthomosaics and to conduct vegetation classification required of this project. We compare land cover classifications using  
one-time-point RGB imagery to a multi-time-point (low tide, high tide) RGB image stack to investigate whether the multi-time point  
stack improves land cover classification accuracy. We find it does. More generally, this paper provides a model for others wishing to 
use low-cost UAS equipment carrying a simple low-cost RGB camera, and free and open source for geospatial (FOSS4G) tools, to  
develop multi-band image stacks to improve land cover classification accuracy. Further, we provide some reflections and technical  
notes on our experience. The approach we present here could be extended to include other image layers that UAS can provide when  
equipped with other sensors, such as multi-spectral (e.g., NIR, thermal), or by adding another band with photogrammetry-produced  
digital elevation data.  

1.  INTRODUCTION

The  health  of  Massachusetts  coastal  marshes  has  been 
negatively impacted by decades of human intervention. Salt 
marshes  provide  habitat  for  rare  and  endangered  species, 
prevent erosion and protect coastal areas, sequester carbon, 
and act as nurseries for fish and shellfish. However, projected 
sea level  rise  as  a  result  of  climate  change (Melillo  et  al. 
2014;  IPCC,  2014)  will  cause  marshland  to  become 
submerged or move inland,  resulting in  habitat  changes or 
loss for fish and wildlife (Mitchell  et  al.,  2014).  For these 
reasons,  we  need  improved  methods  for  assessing  these 
changes to inform management and public policy. 

Land cover  studies  often  utilize  traditional  remote  sensing 
data products such as Landsat imagery (Jin et al.,  2013) to 
map land cover, and the use of multi-temporal imagery has 
been shown to improve classification accuracy (Yuan et al., 
2005).  However,  the  spatial  resolution  of  these  traditional 
satellite-based  data  sources  (e.g.,  15x15  meters  for 
panchromatic Landsat ETM+), coupled with the inability to 

acquire  these  imagery  “on  demand”  limit  the  land  cover 
detail they can provide. Mitchell et al. (2014) recognize the 
utility of higher spatial and temporal resolution imagery for 
more fine-scaled classifications of these landscapes, but raise 
the concern of costs over benefits. However, their discussion 
alludes  to  the  use  of  more  traditional  remote  sensing 
technologies (e.g., helicopters); the use of UAS-based remote 
sensing  might  dramatically  reduce  this  cost  versus  benefit 
equation. 

Consequently,  the  potential  promise  of  UAS  for  higher 
resolution  detection  of  salt  marsh  change  has  brought 
together  scientists  at  the  University  of  Massachusetts, 
Amherst  and  the  Massachusetts  Office  of  Coastal  Zone 
Management to investigate its added utility. Specifically, we 
ask: 

Does a multi-temporal stack (low tide & high tide) of simple  
true color (RGB) imagery using a low-cost UAS improve the  
classification accuracy of an image orthomosaic compared  
to  a  classification  of  a  1-time  (low  tide  OR  high  tide)  
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orthomosaic  created  using  the  same  UAS  equipment?  

In  the  study  described  below,  we  collected  over  fifteen-
hundred true-color aerial photographs for two time points in 
one day (a low tide period and a high tide period) using a DJI 
Phantom Pro  3  quadcopter.  We  then  created  orthomosaics 
and  3D  models  with  the  open  source  software 
OpenDroneMap  and  WebODM.  WebODM operates  as  the 
browser  based  graphic  user  interface  (GUI)  for  the  UAS 
raster  image  processing  Python  and  OpenSFM  toolkit 
OpenDroneMap. 

Using  QGIS and  the  QGIS  Semi-Automatic  Classification 
Plugin  (Congedo,  2016)  and  differentially  corrected  salt 
marsh  field  data  collected  by  the  Massachusetts  Office  of 
Coastal Zone Management, we ran a supervised classification 
of salt marsh vegetation first using separate one-time point 
RGB stacks (low tide and high tide), then using a two-time 
point RGB stack (low tide and high tide). We compare these 
methods to evaluate (1) how well low-cost UAS can assist in 
salt marsh land cover inventory, and (2) whether the low tide 
and high tide RGB stack improves landscape classification. 
Our goal is to improve the ability of halophyte mapping to 
discriminate  between  vegetation  types  throughout  inner 
marsh and along natural and manmade channels using high 
resolution RGB imagery acquired by low cost UAS and open 
source image processing. 

2.   STUDY AREA

Our study area is the coastal marsh at Horseneck Beach in 
Westport, Massachusetts, USA (Figure 1). The flight area 
encompasses one-hundred and forty acres of saline marsh 
managed by the Massachusetts Office of Coastal Zone 
Management. 

Figure 1. Imagery 2018 Landsat / Copernicus, Data SIO, 
NOAA, U.S. Navy, NGA, GEBCO, U.S. Geological Survey, 

Map data 2018 Google 

The dominant vegetation in the  low marsh portion of our 
study  area  consists  of  Cordgrass  (Spartina  alterniflora).  
Cordgrass are a mid-sized plant and grow along the creeks 
and  ditches  in  the  areas  where  it  is  more  likely  to  flood, 
varying in height from 60 cm to 1.8 m (USDA, NRCS 2000). 
Spartina  alterniflora  can  prevent  erosion  along  shorelines, 

banks, and other areas where soil interfaces with water. The 
salience of cordgrass in the biotic community will increase as 
shore  erosion  becomes  more  prevalent.  Capturing  high 
resolution imagery of plants like cordgrass is an imminent 
necessity  for  spatial  analysts  looking  to  predict  potential 
changes to wetland type due to rising sea levels. 

3.   METHODS

A FOSS4G UAS image processing workflow was used for 
spatial analysis and to create the models and band composites 
for  this  project.  To create  a  geographically accurate  image 
mosaic  from hundreds  of  UAS-acquired aerial  images,  we 
utilized  the  ortho-mosaicing  software  WebODM.  The 
resulting output are two one time-point orthomosaics and 3D 
models with a 0.04 meter pixel resolution of the study area.  
Prior  to  the  flight,  differentially  corrected  ground  control 
points (GCP) were measured to increase the spatial accuracy 
of the resultant orthomosaic for classification and stacking of 
the two time-points. We classified the image mosaics based 
on  the  RGB spectral  signature  of  the  vegetation  with  the 
Semi-Automatic Classification Plugin (SCP) for QGIS. The 
methods described here provide a FOSS4G image acquisition 
and processing workflow specifically for UAS imagery. 

3.1  UAS System and Flight Preparation

We utilized a DJI Phantom 3 Professional quadcopter with a 
½.3 CMOS sensor and a f/2.8 lens. Flight planning was done 
using the cloud-based system DroneDeploy.com.

Figure 2. High Tide Drone Deploy Flight Plan

Figure 3. Low Tide Drone Deploy Flight Plan

A series of five flights were conducted on the 24th of August 
2017, such that flight times were distributed evenly over a six 
hour period that coincided with a waning tide. The first flight 
launched at 10:50 am and the flight time was approximately 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W8, 2018 
FOSS4G 2018 – Academic Track, 29–31 August 2018, Dar es Salaam, Tanzania

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-4-W8-155-2018 | © Authors 2018. CC BY 4.0 License.

 
156



eleven minutes. The flight altitude was 117 m and the flight 
path was chosen such that there was 70% sidelap and 70% 
frontlap  between images.  This  lower  level  of  overlap  was 
selected to minimize the time between when the first image 
of each flight was taken and the last image was taken of each 
flight,  thereby ensuring minimal change in water elevation 
over  that  time  period.  The  subsequent  three  flights  were 
conducted  with the same parameters.  The final  fifth  flight 
was conducted at a lower 76 m altitude and with 80% sidelap 
and 80% frontlap so as to achieve a higher resolution for a 
more  accurate  3-dimensional  terrain  reconstruction,  and 
launched at 4:39 pm (Figure 3). 

The time period between the first and last images captured 
was 71 minutes, and as such the UAS required four separate 
batteries  and  four  distinct  launches  times  over  that  time 
period. Given that the tide was at its lowest point during this 
period  we  expect  that  the  water  elevation  change  was 
minimal during this time. In the morning the weather was fair 
with  only  approximately  10%  cloud  cover,  with  cloud 
covering increasing gradually to  mostly cloudy by the last 
flight. 

3.2  Data Acquisition and Image Processing

3.2.1 Ground Control Points

Ground  control  points  (GCP)  were  taken  using  a  Trimble 
Geo7X provided by the GIS & Spatial Analysis Lab at Smith 
College.  A  total  of  eleven  ground  control  points  were 
measured in a circular  pattern around the perimeter of  the 
study  area.  Visual  GCP location  markers  (neon  cones  on 
stakes) were placed prior to the flight at the location of the 
GCP in order to be identified in the raw imagery in image 
post processing.

Figure 4. Differentially Corrected Ground Control Points

Each ground control point was measured with at least  100 
epochs, at a rate of 1 epoch per second. For the 11 GCPs a 
total  of 1334 epochs were measured and then corrected in 
GPS Pathfinder Office. Corrections were made relative to the 
DARTMOUTH  (MADA)  Massachusetts  Continuously 
Operating Reference Station (CORS). 86.73% of the points 
were measured with a spatial resolution of 0.3 m - 0.5 m. 

3.2.2 Field Sampling Data 

A networked  Leica  Viva  GS15  RTK GNSS  receiver  with 
Leica controller was used to record Northings, Eastings, and 
Elevations for the purposes of collecting preliminary data on 
plant  community composition at  three CZM sentinel  sites: 
Essex Bay (Essex), Barnstable Great Marsh (Barnstable), and 
Horseneck Beach State Reservation (Westport).  The GNSS 
receiver  was  connected  to  MassDOT’s  CORS  real-time 
network for real-time position corrections.

Data collection was opportunistic and primarily occurred in 
the areas adjacent to CZM sentinel site transects.  The data 
collector  targeted  plant  community  patches  onsite,  being 
mindful of the number of points collected for each type of 
plant community. Sampling did not follow a sampling plan 
and  all  plant  community  patches  were  identified  and 
characterized in the field.

A 1.5  m  radius  circle  plot  was  used  at  each  point  (xyz 
position collected at center of plot). Plots were located well 
within  a  plant  community  or  land  cover  type  patch  when 
possible  to  minimize  spatial  errors  in  the  georeferenced 
imagery to  be used for image classification.  A meter stick 
was rotated around the plot center point (i.e., the RTK GNSS 
rover pole) to rapidly estimate the circular plot boundary. A 
visual  estimate  of  percent  cover  for  up  to  four  plant 
species/morphotypes  in  each  plot  was  recorded  using  the 
GNSS controller. The meter stick was then used to measure 
and  record  average  height  estimates  for  the  two  most 
dominant plant species/morphotypes, if applicable.

Percent Cover Cover Class ID

Trace 0

1-25% 1

25-50% 2

40-75% 3

75-100% 4

Table 1. Percent cover classes for preliminary data on plant 
community composition and land cover types in support of 

habitat classification mapping at CZM sentinel sites.

Percent cover class and heights were recorded for each plot 
with the GNSS controller using a string of alpha and numeric 
characters. Strings were 16 characters in length and used the 
following syntax. Each plant species/morphotype was given a 
two-character code, and when present, was recorded as such 
followed by a cover class ID (e.g., Spartina patens with 35% 
cover  would  be  recorded  as  “sp2”).  The  four  dominant 
species/morphotypes  were  recorded  with  their  respective 
cover class IDs. 
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Character  placeholders  were  used  where  fewer  than  four 
species  were  present  (e.g.,  “xxx”,  with  the  first  two 
characters for species code and the third character for cover 
class ID).  The remaining four characters were reserved for 
heights  of  the  two  dominant  plant  species,  measured  in 
centimeters. Where average plant heights were greater than 
99 cm,  only the average height  for  that  plant  species  was 
recorded.

Examples of record strings:
1. ss3sp1ds1bg14514
2. St3bg2xxxxxx120x

String 1 above translates to:
Short form Spartina alterniflora 50-75% cover
Spartina patens 1-25% cover
Distichlis spicata 1-25% cover
Bare ground 1-25% cover
Estimated average height of short form Spartina alterniflora 
within 1.5 m radius plot = 45 cm
Estimated  average  height  of  Spartina  patens  within  1.5  m 
radius plot = 14 cm

String 2 above translates to:
Tall form Spartina alterniflora 50-75% cover
Bare ground 25-50% cover
Estimated  average  height  of  tall  form Spartina  alterniflora 
within 1.5 m radius plot = 120 cm

Code Species or land cover type

ab Ammophila breviligulata

bg Bare ground

bh Baccharis halimifolia

cp Carex pensylvanica

ds Distichlis spicata

fr Festuca rubra

if Iva frutescens

jg Juncus gerardii

lc Limonium carolinianum

pa Phragmites australis

sd Salicornia depressa

sg Solidago sempervirens

sp Spartina patens

ss Short form Spartina 
alterniflora 

st Tall form Spartina 
alterniflora

sy Symphyotrichum sp. 

Table 2. List of plant species and land cover types recorded at 
the CZM Horseneck sentinel site in Westport.

3.2.3 Image Orthomosaic Construction with WebODM

OpenDroneMap  is  an  open  source  toolkit  for  processing 
aerial  imagery.  As  described  on  the  toolkit’s  GitHub, 
“OpenDroneMap turns simple images into three dimensional 
geographic data that can be used in combination with other 
geographic data sets” (OpenDroneMap Development Team, 
2018). OpenDroneMap creates products such as point clouds, 
digital  surface  models,  textured  digital  surface  models, 
orthorectified  imagery,  and  digital  elevation  models 
(OpenDroneMap Development Team, 2018). There are three 
main  components  to  the  OpenDroneMap  project:  (1) 
OpenDroneMap;  (2)  node-OpenDroneMap;  and  (3) 
WebODM. For the purposes of this project, WebODM was 
chosen as the appropriate component for its accessibility and 
added  features.  WebODM is  the  most  accessible  for  users 
that do not have experience with command line functions or 
with advanced photogrammetry software. 

WebODM is able to create georeferenced orthomosaics from 
EXIF  data  embedded  in  UAS  imagery.  To  correct  the 
positional error from the onboard GPS system of the UAS, 
GCPs are incorporated into the post-processing of the raw 
imagery. GCPs are processed by creating a text file that has 
several  parameters  including  the  Northing,  Easting, 
Elevation, Pixel X, and Pixel Y for a given raw image and a 
GCP. A GCP text file consists of a minimum of five GCP and 
three  raw  images  that  correspond  to  that  ground  control 
point.  The  Northing,  Easting,  and  Elevation  are  captured 
when the GCP is measured. Pixel X and Pixel Y refer to the 
grid value of the raw image that corresponds to the visual 
marker  for  that  point.  The  .JPEG  containing  the  visual 
marker  is  loaded  into  a  seperate  QGIS document  and  the 
“Identify” tool is used to locate and identify the center of the 
field marker.

The  task  of  figuring  out  which  GCP neon  cone  marker 
corresponded to which GCP location was an initial challenge 
due to  the large number of  images and lack of  contextual 
markers (e.g., visible non-changing landscape features) at the 
study site. In their pre-processed format, the images do not 
correspond  to  a  coordinate  system.  Thus  their  geographic 
orientation differs than when viewed as an orthomosaic, and 
adds an increased level of difficulty to the process. 

We  accomplish  matching  the  GCP to  the  raw  image  by 
overlaying the GCP with uncorrected orthomosaic  batches. 
The raw imagery was divided into batches consisting of fifty 
images  and  processed  into  spatially  uncorrected 
orthomosaics.  These  batches  were  overlaid  based  on  the 
positional  data  from the onboard GPS system and used to 
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identify the field markers placed prior to the flight and their  
corresponding  GCP.  For  example,  if  GCP 8  overlaid  with 
Batch 4, the subset of fifty images is visually scanned for the 
GCP and the Pixel XY position on the image is identified and 
recorded in the gcp text file.

By  separating  the  photos  into  batches  of  uncorrected 
orthomosaics we can scale down the time and effort it takes 
to prepare the GCP text file and decrease chance for human 
error in the correction process. This process must be repeated 
for each orthophoto. Although the coordinate values remain 
constant,  the  pixel  values  and  corresponding  image  will 
change throughout the time series.

Once  the  GCP text  file  was  created,  two corrected  image 
orthomosaics representing the low and high tide time points 
were  processed.  Below is  an  example  of  a  block  of  code 
written for one GCP in the text file:

WGS84 UTM 19N
328978.9 4597546.4 106 1176 0873 DJI_0725.JPG
328978.9 4597546.4 106 1180 1298 DJI_0726.JPG 
328978.9 4597546.4 106 1178 1733 DJI_0727.JPG

Four more GCP must be identified in the same method as 
described above for a minimum of 15 lines (5 GCP and 3 
images  per  point).  This  is  a  time  consuming  process  that 
required much thought about the most efficient way to match 
raw images to their corresponding GCP. We found that this is  
the most efficient way to complete the task for imagery that 
do not contain contextual markers. A total of 300 raw images 
were used for the high tide orthomosaic reconstruction and 
500 for the low tide reconstruction. The differing flight plans 
between the two time-points produced more images due to 
the increased overlap and lower altitude.

To process this imagery, we used an Intel i-5 processor, with 
2 TB hard drive, and 32 GB of RAM. The tidal imagery was 
processed  at  the  highest  settings  capable  of  the  computer 
without  crashing the program and running out of  memory. 
The  pre-set  setting  “High  Quality”  was  used  with  minor 
modifications.  The “mesh-solver-divide” and “mesh-octree-
depth” were increased to twelve. These options were chosen 
to  increase  the  sharpness  and  visibility  of  the  halophyte 
vegetation  zonation.  The  processing  of  each  tidal 
orthomosaic  took  three  hours  to  complete  with  these 
components  and  the  resultant  spatial  accuracy  of  the 
alignment is within 0.15 meters for the time-series

Figure 5. Low Tide Orthomosaic

Figure 6. High Tide Orthomosaic

The high tide and low tide orthomosaics differ on initial 
review due to different collection times during the day and 
different interactions between water level and vegetation due 
to lower sea level. These differences of depth and sun 
reflection are notable for future classification efforts, 
especially considering our stacked image analysis. 

3.2.4 Data Preparation 

We clipped a portion of both orthomosaics using QGIS from 
the 140 acre orthomosaic to limit the study area, by tracing a 
polygon around the perimeter of the low tide orthomosaic. 
The  orthomosaics  were  clipped  to  the  perimeter  of  the 
polygon to create matching image extents and flight paths. 
This was done to reduce error in the classification but also 
due  to  the  varying  flight  plans  when  the  imagery  was 
acquired. The high tide orthomosaic captures a larger area at 
a higher altitude compared to the low tide orthomosaic. 

The  field  data  were  split  evenly  between  training  and 
validation  points.  Thirty  training  points  and  twenty-nine 
validation points were used in the classification training. A 
circular buffer of 1.5 meters was created around the training 
and  validation  points  to  emulate  the  in-situ  field  data 
collection method. 
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Figure 7. Marsh Type Training and Validation Points

3.2.5. Geographic Stacking of Low and High Tide 
Mosaics

The multi-band high and low tide orthomosaics were split 
into 8 single bands using the “Split Raster” tool in SCP. The 
single bands (excluding the Alpha band) were stacked into a 
composite  six  single  band  raster  using  the  “Band  Set 
Definition”  and  “Stack  Band”  tools.  The  Alpha  band  was 
excluded from the low and high tide mosaic stack as it does 
not  contain  spectral  data.  The  resultant  stacked  raster 
composite will be used in the temporal classification.

3.2.6 Image Classification using Semi-Automatic 
Classification Plugin

We imported the buffered training data containing the CZM 
classification scheme to calculate the spectral signature for 
the 1.5 meter radius of the training points. Additional region 
of interest (ROI) training polygons were drawn to classify the 
water  and  solar  glare  into  a  single  class,  as  it  was  not 
included  in  the  field  data  collected  by  CZM.  Our  three 
classes,  Low  Marsh,  Transitional  Marsh,  and  Salt  Shrub, 
were  designated  1-3  and  used  as  our  MacroClass  ID 
(MC_ID) for the classification. The additional plant species 
data  was  included  as  the  Class  ID  (C_ID)  for  further 
specification of plant type for the given 1.5 meter radius of 
the field data sites. 

We classified the separate tide images as well as the stacked 
image using Spectral Angle Mapping in SCP. The Spectral 
Angle Mapping calculates the spectral angle between spectral 
signatures of image pixels and training spectral  signatures. 

The  spectral  angle  θ  is  defined  as  (Kruse  et  al.,  1993):

 (1)

Where:

x  =  spectral  signature  vector  of  an  image  pixel;
y  =  spectral  signature  vector  of  a  training  area;
n  =  number  of  image  bands.
Therefore  a  pixel  belongs  to  the  class  having  the  lowest 
angle,  that  is:

 (2) 

Where:

Ck  =  land  cover  class  k;
yk  =  spectral  signature  of  class  k;
yj  =  spectral  signature  of  class  j.

Figure 8. Stacked Band Composite Classification 

We repeated this same process using the subset of validation 
points and the same water ROI training polygons on the low, 
high, and stacked tide orthomosaics. We used the accuracy 
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assessment  tool  within  SCP  to  compare  these  two 
classifications  of  training  and  validation  points,  creating  a 
confusion matrix for each classified image. 

 

4.  RESULTS AND DISCUSSION 

We  successfully  used  UAS  imagery  and  spectral 
classification techniques to classify three marsh types,  and 
water,  along  the  Massachusetts  coast.  The  stacked  RGB 
composite  improved  the  classification  accuracy  in 
comparison to the single time-point classifications by 15% 
and 10%. 

Time-Point Overall Accuracy

Low Tide 65.732%

High Tide 70.523%

Stack 79.183%

Table 3. SCP Confusion Matrix Accuracy (Low Tide, High 
Tide, and Time-series Stack)

0 1 2 3 4 Total

0 18.69%

1 8.81% 62.85% 16.14% 12.20% 6.82%

2 19.40% 78.77% 0.51% 1.32% 44.71%

3 23.80% 34.11% 40.47% 1.62% 2.86%

4 1.39% 11.20% 0.01% 87.41% 26.92%

Total 18.69% 10.33% 43.49% 2.49% 25.00% 100%

Table 4. Stack Confusion Matrix. Numbers correspond to 
classification identification numbers. 

As  the confusion  matrix  for  the  stacked analysis  indicates 
(Table  4),  the  stacked  classification  did  the  best  on 
transitional  marsh  (78.77%  accuracy),  but  struggled  with 
classifying the low marsh (8.81% accuracy). This could be 
due to the larger number of transitional marsh training points 
in comparison to the number of low marsh training points. 

Comparing  low  tide,  high  tide,  and  the  stacked 
classifications,  the stacked classification is more successful 
in  classifying  the  salt  shrub  class.   For  example,  in  the 
western  portion  of  the  orthomosaic  the  salt  shrub  class  is 
more correctly identified when compared to the low and high 
tide classifications. 

This is a promising start for future UAS classification efforts 
and  demonstrates  the  potential  for  capturing  “on  demand” 
temporal  datasets  to  aid  landcover  change  detection  and 
predictive  modeling.  However,  there  is  still  need  for 
improvement and there are several flaws recognized in the 

methodology above.

Numerous  technical  challenges  arose  in  initializing  and 
actualizing  this  workflow.  The  installation  process  of 
WebODM on non-Unix machines is tedious and challenging 
for most users unfamiliar with command line functions. The 
WebODM  component  was  chosen  for  its  usability  and 
accessibility  but  was  an  obstacle  for  most.  The 
OpenDroneMap Development Team does have an installation 
wizard available for Windows users at a low cost  of $25 that  
helps  support  the  project.  Additionally,  the  hardware 
components required to process the imagery were chosen for 
their accessibility but could increase the cost of this open-
source  workflow.  However,  overcoming  this  obstacle  was 
crucial  to  the  project’s  goal  of  democratizing  UAS image 
acquisition and processing. 

Second,  issues  on  importing  and  processing  the  collected 
UAS data frustrated initial analytics. Principal of these issues 
is correctly aligning and overlaying each time-point in order 
to conduct an accurate classification. To overcome this, we 
created  a  workflow that  is  able  to  identify  the  raw  UAS 
imagery  with  the  appropriate  GCP.  Since  this  project  was 
started, updates have been made to the WebODM platform to 
streamline this process. A new GCP extension was included 
in a recent update that uses visually identifiable objects in 
satellite imagery to georeference UAS imagery. This update 
is a promising start to making this process less tedious, but 
does not aid in areas that do not have visually identifiable 
landscape characteristics that are consistent in both UAS and 
satellite imagery.

Third, classification issues occurred, misclassifying the water 
as marsh vegetation occurs across classification time-points. 
These processing issues likely resulted from vegetation in the 
water  and  further  exposed  vegetation  as  the  tide  waned, 
which  impacted analysis  by distorting the classification  of 
our main targets (Low and Transitional  Marsh).  Additional 
spectral information from added sensors (NIR) onboard UAS 
could alleviate this problem in the future.

Finally,  calibration  of  the  UAS  imagery  is  an  essential 
component of the photogrammetry process in order to reduce 
lens distortion (OpenDroneMap Development Team, 2018). 
However, this was not included in this workflow. The images 
were  calibrated using the provided Python script  available 
from  the  OpenDroneMap  documentation.  However,  this 
script caused further distortion between the two orthomosaic 
time-points.  To preserve alignment,  the uncorrected photos 
for lens distortion were used for image reconstruction as they 
provided orthomosaics with a more precise spatial resolution 
and stacked alignment. 

5. CONCLUSION

In this paper we investigate the utility of low cost UAS with 
a  true-color  camera  that  stores  land  cover  reflectance 
information in 0-255 RGB digital numbers rather than in at-
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surface reflection -- and an open source data processing stack 
--  to  see  how well  salt  marsh  land  cover  classification  is 
accomplished.  We  take  advantage  of  the  idea  that  the 
additional  layers  of  the  landscape  could  be  acquired 
efficiently  and  provide  additional  “ecological  information” 
about the landscape by flying first at low tide, and then again 
at high tide in or around the same day. 

The two time point stack suggests significant improvement in 
classification  suggesting  that  future  improvements  can  be 
made to the data acquisition and image processing methods. 
The utility of high resolution RGB imagery is demonstrated 
in  this  paper.  However,  the  availability  of  added  sensors 
aboard UAS is becoming  more ubiquitous and accessible. 

This project demonstrates the utility of stacking multiple time 
points  of  low-cost  RGB UAS acquired  imagery  in  that  it 
provides  more  information  in  dynamic  landscape 
environments than single time points alone. The same idea 
could be applied to capture land cover that exhibits seasonal 
changes  (such  as  spring  -  summer  -  fall  image  mosaics). 
Further, the approach we present here could be extended to 
include  other  image  layers  that  UAS  can  provide  when 
equipped  with  other  sensors,  such  as  multi-spectral  (e.g., 
NIR,  thermal),  or  by  adding  another  band  with 
photogrammetry-produced digital elevation data. 

This  project  exemplifies  that  an  open-source  workflow  is 
implementable  for  UAS image  acquisition  and  processing. 
Almost all of the tools used in this project are open-source, 
excluding the flight planning software and GNSS receivers 
used  for  field  data  collection  and  ground  control  point 
measurements.  However,  the  OpenDroneMap  project  is 
continuing  to  be  developed.  There  are  several  updates 
planned for the future, with flight planning software listed as 
an  imminent  goal  (OpenDroneMap  Development  Team, 
2018).  We expect  this  project  to  provide  a  foundation  for 
open-source UAS image acquisition and processing for future 
improvement  as  sensor  technology  and  classification 
techniques develop.
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