
IMPROVING PATH QUERY PERFORMANCE IN PGROUTING USING A MAP
GENERALIZATION APPROACH

Rohith Reddy Sankepally, K.S Rajan

 Lab for Spatial Informatics, International Institute of Information Technology, Gachibowli, Hyderabad, India - (rohith.reddy, rajan)@iiit.ac.in

Commission V, WG V/8

KEY WORDS: Pgrouting, Road Networks, Skeletal Model, Skeleton, Shortest Path, Map Generalization, Zones, Path Computation

ABSTRACT:

pgRouting library provides functions to compute shortest path between any two points of a road network which is of great demand and
also a topic of interest in the field of GIS, graph theory and transportation. To compute path in a road network, pgRouting functions
process the entire road network which is a major bottleneck when it comes to routing in large road networks leading to the requirement
of large server resources. A reduction/compression in the input network that is to be processed for path computation would improve
the performance of pgRouting. In this study a map generalization based network model is proposed which extracts a significantly
smaller subset of the road network aka skeleton which further used to divide the network into zones, that shall be selectively used in
path computation. This results in processing a much smaller part of the network to compute path between any two points leading
to an overall improvement in query performance of pgRouting when computing path, especially on large road networks. As part of
assessment of this approach and its applicability to large road networks, the paper presents an in-depth analysis of the trade-offs between
deviation in computed path and the performance gain in terms of space and time on road networks of varying sizes and topology to
get a better understanding for both providing a sound proof of the utility of the proposed method and also to show its implementability
within the current model of pgRouting or any other routing platforms.

1. INTRODUCTION

pgRouting is an open source geospatial routing library extend-
ing PostGIS enabled PostgreSQL database. pgRouting library
provides a variety of routing algorithms like All Pairs Shortest
Path(APSP), Shortest Path, Driving Distance, Traveling Sales Per-
son and Turn Restricted Shortest Path(TRSP). These routing al-
gorithms are of great demand and a topic of interest in the field of
GIS, graph theory and transportation. pgRouting path algorithms
process the full network to compute path between any two points.
This leads to slow path computation especially in case of large
road networks. A reduction/compression in network data pro-
cessed for path computation should enhance the performance of
pgRouting path algorithms. A number of approaches have been
tried out in this context of network reduction, like network com-
pression, graph contraction, graph partitioning and map general-
ization which are discussed below.

(Akimov et al., 2004, Khoshgozaran et al., 2008, Shekhar et al.,
2002, Suh et al., 2007, Zhang, 2006) try to compress the vector
data or road networks. (Akimov et al., 2004) deals with compres-
sion of vector data by removing redundancy in the data. (Khosh-
gozaran et al., 2008) implements a compression technique that
improves performance of vector data queries. (Suh et al., 2007,
Shekhar et al., 2002) propose techniques of vector data compres-
sion which can be used to reduce storage and improve data trans-
portation in limited bandwidth. Most of these works talk about
compressing vector/road network data but do not deal with path
computation on the compressed network which may lead to im-
proved performance in path computation.

(Geisberger et al., 2008) try to contract the graph by addition
of shortcuts and store precomputed paths to achieve speedups in
path computation. (Möhring et al., 2005, Jung and Pramanik,

1996, Chondrogiannis and Gamper, 2016) try to partition the graph
into clusters and store precomputed paths to reduce the search
space and improve path computation. In each of the above men-
tioned works, the graph is modified due to the addition of short-
cuts. The precomputed paths need to be computed and stored
which leads to additional storage requirements. Moreover the
path extracted using the modified graph is not complete and needs
expansion due to presence of shortcuts in the path. This maybe
an overhead when computing longer paths in large road networks.
Some of these works also require the design of a special algorithm
to compute path based on the modified graph structure.

In literature, several generalization approaches for road networks
have been proposed. (Thomson and Richardson, 1995, Mack-
aness and Beard, 1993, Jiang and Claramunt, 2004, Jiang and
Harrie, 2004) propose graph theory based generalization meth-
ods. (Bjørke and Isaksen, 2005) deals with the applicability of
information theory to generalization. (Thomson and Richardson,
1999) proposes a topography based generalization approach. In
all the above studies focus has been mainly on generating a gen-
eralized network with reduced size while preserving its overall
topography. Not much work has been carried out on exploiting
this generalized structure of the network which may achieve gains
in path computation.

The goal of this study is to improve the overall query performance
of pgRouting by proposing a map generalization based network
model that leads to processing a significantly small subset of the
road network selectively, to compute path between any two points
without the use of precomputed paths. The proposed approach is
evaluated by carrying out an in-depth analysis of the trade-offs
between deviation in computed path and the performance gain in
terms of space and time on road networks of varying sizes and
topology. It should be noted that the none of the above men-
tioned approaches in the literature are implemented in pgRouting

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W8, 2018
FOSS4G 2018 – Academic Track, 29–31 August 2018, Dar es Salaam, Tanzania

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-W8-191-2018 | © Authors 2018. CC BY 4.0 License.

191

mailto:rajan)@iiit.ac.in
mailto:rajan)@iiit.ac.in

ith level, and Econn(SGi

s

∈ →

res

= (V , E

for path computation. Therefore the proposed approach is com-
pared to the pgRouting Dijkstra algorithm to get a better under-

The above definitions can be generalized into multiple levels. We
use the notation SGi (V i, Ei) to denote the jth subgraph in the j j j

standing of the utility of the proposed method and also to show j) denotes the set of connecting edges of
its implementability within the current architecture of pgRouting SGi (V i, Ei). Ei as the set of all connecting edges in the ith
or any other routing platforms.

j j j
level.

conn

2. NOTATIONS

2.1 Graphs and Paths

A road network can be represented as a directed graph G =
(V, E), where V denotes a set of nodes that represent road in-

2.3 Skeleton Network

A Skeleton Network Gs = (Vs, Es) is a connected component of
G = (V, E). The Skeleton Network is a representative network of
the original network whose size is very less compared to the orig-
inal network. The above definition of Gs can be generalized into
multiple levels. We use the notation Gi to denote the Skeleton

tersections and E ⊆ V × V is the set of edges. Each edge
e = (va, vb), represents a road segment that connects nodes va

and vb. A weight function w: E → R assigns to each edge
e = (va, vb) a weight w(e), which captures the cost of moving
from va to vb, in terms of travel time or distance. A path p is
an ordered set of edges e1, e2,, eN where ei ∈ E is an edge
∀i where i = 1, 2,, N. A path between nodes vx and vy is
denoted by p(x→y). The containment of an edge e in a path p
defined by a function σ as follows

Network in the ith level.

2.4 Residual Network

A Residual Network Gres = (Vres, Eres) of a Skeleton Network
Gs in G = (V, E) such that

Vres = V − Vs

Eres = E − Es − Econn(Gs)
The above definition can be generalized into multiple levels. We

σ(p(x→y), e) =
(
1, if e p(x y) .

(1)
0, otherwise.

use the notation Gi

i
res

i
res) to denote the Residual Net-

work of Gi = (V i, Ei) in the ith level. s s s

The length l(p) of a path p equals the sum of the weights for all
contained edges, i.e.,

3. ARCHITECTURE OF PGROUTING

N

l(p) =
'\"

w(ei). (2)
i=1

p*(x→y) is a shortest path if there is no path p(x→y) such that
l(p) < l(p*).

2.2 Subgraphs and Connectivity

A directed graph is said to be connected if every node is reach-
able from every other node i.e a path p exists between each and
every pair of the nodes. A connected component is a subgraph in
which any two nodes are connected to each other by paths, and is
connected to no additional node in its corresponding supergraph.
Suppose a graph G = (V, E) is divided into a set of subgraphs
{SG1(V1, E1), SG2(V2, E2), ..., SGn(Vn, En)} then,

V1 ∪ V2 ∪ ∪ Vn = V, E1 ∪ E2 ∪ ∪ En ⊂ E
Vi ∩ Vj = φ, Ei ∩ Ej = φ
where 1 ≤ i, j ≤ n and i /= j

A set of connecting edges Econn for a graph G(V, E) is the set
of all edges (va, vb) such that va and vb belong to two subgraphs
SGa and SGb respectively where a /= b.

E1 ∪ E2 ∪ ∪ En ∪ Econn = E (3)

For each subgraph SGj (Vj , Ej), a set of connecting edges
Econn(SGj) is defined as

Econn(SGj) = {(va, vb)|va ∈ Vj ∧ vb ∈/ Vj)}
Econn(SGj) ⊂ Econn ∀j, 1 ≤ j ≤ n

pgRouting follows an SQL based architecture in which the graph/net-
work data is stored in the form of SQL tables in a PostgreSQL
database. The graph data for path computation is extracted quickly
and efficiently using SQL queries. Figure 1 shows the architec-
ture of pgRouting comprising of two major components namely
PostgreSQL Database and the pgRouting extension which are ex-
plained below.

3.1 PostgreSQL Database

The postgreSQL database contains the information of edges and
vertices of the graph/network G(V, E) in the form of SQL tables.
The schema for edge table is explained in Table 1.

Table 1. Table Schema of Edges

Column Data Type Description
id long int A unique identifier assigned to every edge.

source long int Identifier for the source node of the edge.
target long int Identifier for the target node of the edge.
cost real The length of the edge

the geom geometry A postGIS attribute which represents
the geometry of the edge.

3.2 pgRouting Extension

pgRouting is an extension to the PostgreSQL database which con-
tains all the path computation algorithms. Let us say the client
wants to find a path between source node vx and target node
vy . The client sends a request in the form of an SQL query to
the PostgreSQL server to compute a path between vx and vy by
specifying a path algorithm, let us say PA. The pgRouting exten-
sion extracts the appropriate graph data from the edge table in the
PostgreSQL database using SQL query. The extracted graph data
is now used to find the path between vx and vy by using PA. The
computed path is then returned back to the client.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W8, 2018
FOSS4G 2018 – Academic Track, 29–31 August 2018, Dar es Salaam, Tanzania

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-W8-191-2018 | © Authors 2018. CC BY 4.0 License.

192

Figure 1. pgRouting Architecture.

3.2.1 Query Structure Given below is the signature for pgRout-
ing Dijkstra Algorithm.

pgr_ dijkstra (TEXT edges_sql ,
BIGINT start_vid , BIGINT end_ vid)
RETURNS SET OF (seq , path_seq ,
node , edge , cost , agg_ cost)
or EMPTY SET

Let us try to understand the signature with a sample query given
below

SELECT * FROM pgr_ dijkstra (
SELECT id , source , target , cost
FROM edge_ table ,
4 , 2);

The mapping between the algorithm signature and sample query
is shown in Table 2

Table 2. Mapping between Signature and Query

Table 3. Output Format of pgRouting Dijkstra Query

Column Data Type Description
seq INT Sequential value starting from 1.

path seq INT Relative position in the path.
Has value 1 for the beginning of a path.

start vid BIGINT Identifier of the starting vertex.
end vid BIGINT Identifier of the ending vertex.

node BIGINT Identifier of the node in the path from
start vid to end vid.

edge BIGINT Identifier of the edge used to go from node to
the next node in path sequence. -1 indicates the last
node of the path.

cost FLOAT Cost to traverse from node using edge to the next
node in the path sequence.

agg cost FLOAT Aggregate cost from start vid to node.

SELECT * FROM pgr_ dijkstra (

SELECT id , source , target ,
cost FROM edge_ table ,
4 , 2

);
seq | path_ seq | node | edge | cost | agg_ cost

-- --+--------+----+----+----+--------

 (3 rows)

The edges sql represents the edges of the graph G on which the
path computation is performed. start vid represents the identifier
of the source vx. end vid represents the identifier of the target vy .

3.2.2 Path Computation The path computation procedure can
be divided into 3 simple steps as illustrated in Figure 1.

1. Read Graph Edges In this step the function extracts the
graph specified by the client in the query. The graph corre-
sponding to edges sql query is obtained from the edge table
present in the PostGreSQL database.

2. Build Graph This step uses the graph extracted from Step
1 to build a Boost C++ graph structure internally.

3. Compute Path In this step path between source and target
is computed by using the specified path algorithm on the
internal C++ graph structure obtained from Step 2.

The pgRouting function in the server takes vx and vy as input
and executes steps 1, 2 and 3 to compute path between them and
returns the path to the client. The output format of the pgRout-
ing path algorithm is given in Table 3. The output of a dijkstra
query to compute path from source node 4 to target node 2 in the
graph(shown in Figure 2(a) is given below.

To compute path between any two points in a network, pgRouting
path algorithms use the full network which leads to performance
issues when it comes to routing in large road networks. To im-
prove path computation either the individual steps explained in
3.2.2 or their combination needs to be enhanced. In this work we
focus on improving the efficiency of step (1) by a reduction or
compression in the extracted network data for path computation,
which naturally leads to an improvement in steps (2) & (3).

4. SKELETAL MODEL : A NETWORK
GENERALIZATION APPROACH

4.1 Preprocessing

Given a graph G = (V, E), all the disconnectivities and dangles
are removed and it is ensured that the graph is well connected.
Figure 2 (a) illustrates a graph G = (V, E). The disconnectivities
and dangles are represented by dotted lines. After preprocessing,
the dangles are removed and the resulting graph is shown in Fig-
ure 2 (b). All the edges of G = (V, E) shown in Figure 2(b) have
unit weight.

4.2 Edge Priority

1 | 1 | 4 | 3 | 1 | 0
2 | 2 | 3 | 2 | 1 | 1
3 | 3 | 2 | -1 | 0 | 2

Signature Query

edges sql SELECT id , source , target , cost
FROM edge_ table

start vid 4
end vid 2

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W8, 2018
FOSS4G 2018 – Academic Track, 29–31 August 2018, Dar es Salaam, Tanzania

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-W8-191-2018 | © Authors 2018. CC BY 4.0 License.

193

noi

noi

noi

noi

(a) Graph with disconnectivities. (b) Graph after preprocessing. (c) Edges with c(e) ≥ 28

Figure 2. Computation of Edge Priorities

4.2.1 Grid based Division The graph G(V, E) is divided into
g ×g grids as shown in Fig 2 (b). Every grid is assigned an identi-
fier i.e grid id. Each vertex is populated with a grid id indicating
the grid to which it belongs. Let V j be the set of nodes that be-
long to the jth grid such that

g2

V = V j
j=1

4.2.2 Choice of Nodes After the network G was divided into
grids, nodes that belong to each grid are known. From each grid

supposed to be generated, a threshold value cthreshold is chosen.
The cthreshold value eases the selection of edges based on their
priorities. Let us suppose we want to select the top 10 edges
of a network based on priorities. In order to do so we sort the
edges according to the priorities and choose the top 10 among
them. Let us say edge et is the 10th edge which is of least prior-
ity with priority value c(et). In such a case, the top 10 edges can
be represented by defining a threshold value cthreshold = c(et).
Now in order to easily extract the top 10 edges from the network,
we choose the edges with priority value greater than cthreshold.
Gs is initialized with an empty set and the edges e ∈ E with
c(e) ≥ cthreshold are added to Gs.

j a set of random nodes V j were chosen. The number of nodes 4.3.2 Connectivity The resultant Gs formed in the previous
chosen from each grid is proportional to the number of nodes that
belong to the grid. The collection of chosen nodes from all the
grids constitute the special nodes of interest.

g2

Vnoi = V j

step, may not be connected. According to the definition of Skele-
ton Network as given in Section 2.3 it is a well connected sub-
graph. To satisfy the connectivity constraint the graph Gs formed
in the previous step should be made well connected to be quali-
fied as the Skeleton Network. In order to make Gs connected the
following steps are performed in order

j=1

where V j ⊂ V j ∀j, 1 ≤ j ≤ g2

1. Find the well connected components of Gs

Figure 2(b) shows that the graph G(V, E) is divided into 4 × 4
grids. The yellow colored nodes constitute the special nodes of
interest. The identifier of each grid is represented in blue color.

2. Add paths between the connected components until Gs be-

comes well connected.

The number of nodes chosen from each grid |V j | = |V j|p

where p = 0.5. The grids 1, 2, 4, 5, 6, 8, 13, 16 are empty and The above mentioned steps are performed and the resultant Gs

thus do not contribute towards the special nodes of interest.

4.2.3 Priority Definition Dijkstra’s shortest path algorithm

is as shown in Figure 3 (a). Algorithm 1 is used to generate a
Skeleton Network given a threshold value cthreshold. Algorithm
2 explains the procedure to make Gs well connected.

was used to compute the path between every special node of in-
terest to every other special node of interest. Each edge e is as-
signed a value c(e) which indicates the number of shortest paths
that contain e. This value c(e) determines the importance/priority
of an edge e.

Algorithm 1 Value Based Skeleton Network Construction Algo-
rithm

1: procedure CONSTRUCTSKELETON(G, cthreshold)
2: Gs ← φ
3: for e ∈ E do
4: if c(e) ≥ cthreshold then Gs.add edge(e)

c(e) =
'\"

'\"

σ(p∗(x→y), e).

5: MakeConnected(Gs)
vx ∈Vnoi vy ∈Vnoi

Using the above definition, the priorities of all the edges are com-
puted. The red colored edges in Figure 2(c) shows the edges with
c(e) ≥ 28.

4.3 Skeleton Construction

6: return Gs

4.4 Zone Generation

Definition 1. The residual network Gres(defined in Section 2.4)
is partitioned into a set of mutually disconnected subgraphs
{Z1(Vz1, Ez1), Z2(Vz2, Ez2), ..., Zn(Vzn, Ezn)} called zones

4.3.1 Edge Selection The Skeleton Network is generated based
on the edge priorities c(e) computed in the previous step. In or-
der to have control on the size of the Skeleton Network that is

such that
n

Gres = Zj (4)
j=1

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W8, 2018
FOSS4G 2018 – Academic Track, 29–31 August 2018, Dar es Salaam, Tanzania

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-W8-191-2018 | © Authors 2018. CC BY 4.0 License.

194

s

s

3:

i

i

V ∗

E∗

j

j

threshold

1

Algorithm 2 Connected Skeleton Algorithm

1: procedure MAKECONNECTED(Gs)
2: {SG1, ..., SGn} ← getConnectedComponents(Gs)
3: if n /= 1 then
4: Let va ∈ SGa, vb ∈ SGb where a /= b

Algorithm 3 Level Based Skeleton Construction Algorithm

1: procedure CONSTRUCTSKELETON(G, i)
2: Gi ← φ

for e ∈ E do
4: if level(e) ≤ i then Gi .add edge(e)

5: for e ∈ p(va → vb) do 5: MakeConnected(Gs)
6: if e /∈ Es then
7: Gs.add edge(e)
8: MakeConnected(Gs)
9: else

10: return Gs

Definition 2. For each zone Zj , a set of skeletal nodes S(Zj) is
defined as

S(Zj) = {v|(u, v) ∈ Econn ∧ u ∈ Vzj ∧ v ∈ Vs}∪
{u|(u, v) ∈ Econn ∧ v ∈ Vzj ∧ u ∈ Vs}

Definition 3. Given a zone Zj (Vzj , Ezj), its extended zone is
defined as a subgraph Z∗(V ∗ , E∗) such that

6: return Gs

5. PGROUTING PATH ALGORITHM BASED ON
SKELETAL MODEL

The skeleton of a road network can be used to optimize path
computation by limiting the amount of network that is used for
path computation which could solve the bottleneck problem of
pgRouting and improve the performance of path computation.
This section talks about the applicability of the Skeletal Model
to the existing pgRouting Architecture to improve path computa-
tion.

After the formation of zones as discussed in Section 4.4, zone

j zj zj identifier is assigned to all edges and nodes of G res indicating
zj = Vzj ∪ S(Zj)
zj = Ezj ∪ Econn(Zj)

Definition 4. Two extended zones Z∗(V ∗ , E∗) and

the zone to which they belong. z(e) and z(v) indicate the zone
to which edge e and vertex v belong to respectively. We use the
notation zi(e) and zi(v) to denote the zone identifier of edge e
and node v respectively in the ith level.

b (Vzb, Ezb) are connected only when a za za

Definition 5. Let vx be the source node and vy be the target
Z∗ ∗ ∗ S(Za) ∩ S(Zb) /= φ, a /=

b
node between which the path is to be computed. Let Zxl and Zy

Given the skeleton Gs, the corresponding residual network Gres
obtained and all the zones of Gres are computed. It should be

l be the zones to which vx and vy belong respectively where
xt = z(vx), yt = z(vy) and x /= y. Let Gs = (Vs, Es) be
the Skeleton Network of G = (V, E). The path between vx and
vy is computed on the reduced graph Gx,y where

noted that each of the zones Zj are well connected to the skeleton Gx,y = Z∗ ∪ Gs ∪ Z∗ (5)
Gs through a set of connecting edges Econn(Zj). The above
definitions can be generalized into multiple levels. Zi denotes

xl yl

jth zone in the ith level. S(Zi) denotes the set of skeletal nodes The above definition of Gx,y can be generalized to multiple lev- i of Zi . Econn(Zi
 i els where Gx,y denotes the reduced graph in the ith level given

j j) denotes the set of connecting edges of Zj .
Z∗ i

j (i) denotes the extended zone of Zj .

Figure 3(b) shows the zones Z1, Z2 and Z3 formed as a result
of partitioning Gres. The dashed edges connecting the skeleton
and the zones represent the connecting edges Econn defined in
Section 2.2.

4.5 Edge Levels

In order to generate skeletons of different sizes, a quantile clas-
sification with k intervals, is applied over c(e) values sorted in
decreasing order to get a qualitative classification of edges based
on their priority in the overall network. Each interval i is associ-

source node vx and target node vy .

5.1 Path Computation Algorithm

The reduced graph concept explained in the previous section is
used for computing path between any two nodes in the network.
From Section 4.4 it is ensured that the every extended zone is
well connected to the skeleton Gs. From Section 2.3, skeleton
Gs is also well connected. Therefore it can be deduced that the
reduced graph Gx,y is also well connected and thus contains the
path between any two nodes vx and vy . Algorithm 4 illustrates
the algorithm that computes path between a source node vx and
target node vy using the reduced graph.

Algorithm 4 Path Computation Algorithm

 1: procedure SKELETALPATHALGORITHM(vx, vy)
i
threshold which denote the minimum priority value of 2: xt = z(vx)

interval i where 1 ≤ i ≤ k. Every interval is termed as a level
such that the ith interval denotes the ith level. Every edge e is
assigned a value level(e) which denotes its priority level. Al-
gorithm 3 is used to generate skeleton at a given level i where
1 ≤ i ≤ k.

level(e) = { min(i) | c(e) ≥ ci }
1 ≤ level(e) ≤ k

3: yt = z(vy)
xl ∪ Gs ∪ Zyl 4: Gx,y = Z∗ ∗

5: p = DijsktraAlgorithm(Gx,y , vx, vy)
6: return p

Figure 3(c) illustrates the reduced graph Gx,y i.e G1,7 used for
path computation algorithm to compute path from source node 1
to target node 7 with xt = z(1) = 1 and yt = z(7) = 2. The
red colored edges represent the skeletal edges Es and the graph
enclosed within the dotted lines represent the extended zones Z∗

ated with c

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W8, 2018
FOSS4G 2018 – Academic Track, 29–31 August 2018, Dar es Salaam, Tanzania

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-W8-191-2018 | © Authors 2018. CC BY 4.0 License.

195

2

3

1

2

i
s

s & v j

j .

s

x,y

i i

(a) Skeleton Network. (b) Zones (c) Reduced Graph

Figure 3. Path Computation Model

and Z∗ to which node 1 node 7 belong to respectively. From
Figure 3(c) it can be noticed that the reduced graph G1,7 does
not contain the extended zone Z∗ and therefore a reduction in the
graph size can be observed which cuts down the overall search
space for path algorithms.

5.2 pgRouting Skeleton Path Query

The proposed path algorithm reveals that only a subset of the

The extended component Z∗(1) is extracted using the query be-
low. The ABS function in SQL is mathematical function that
returns the absolute (positive) value of the specified numeric ex-
pression.

SELECT id , source , target , cost
FROM edge_ table WHERE ABS (zone_ 1) = 1;

Similarily, the extended component Z∗(1) is extracted using the

graph is sufficient to compute path between any two points. This
algorithm when implemented in pgRouting reduces the overhead
of extracting and processing the total road network for path com-
putation thus solving the bottleneck problem of pgRouting. More-
over it can be implemented in pgRouting easily by reusing the ex-
isting pgRouting path algorithm without any changes to the exist-
ing architecture. k new columns are added to the edge table and
vertex table in the PostgreSQL database to store the zone identi-
fier of each edge e and vertex v respectively in the ith level. The
columns are named as zone i which represents the value zi(e)
for each edge and zi(v) for each vertex where 1 ≤ i ≤ k. The
equations below give a clear understanding of the assignment of
zone identifier values to each edge e and node v in the ith level.

query below

SELECT id , source , target , cost
FROM edge_ table WHERE ABS (zone_ 1) = 2;

Combining the above three individual queries the query to extract
the reduced graph G1,7 is given by the following query

SELECT id , source , target , cost
FROM edge_ table WHERE zone_ 1 = 0
OR ABS (zone_ 1) = 1 OR ABS (zone_ 1) = 2;

Therefore the path query can be written as

SELECT * FROM pgr_ dijkstra (
0, va
 ∈ Vs & v b ∈ V i. SELECT id , source , target , cost

FROM edge_ table WHERE zone_ 1 = 0 j, va ∈ V i & vb ∈ V i .
zi(va, vb) = j j (6) OR ABS (zone_ 1) = 1 OR ABS (zone_ 1) = 2 ,

−j, va ∈ Vj & vb ∈ Vs . 1 , 7 −j, va ∈ V i
(
0, va ∈ V i.

b ∈ V i.);
seq | path_ seq | node | edge | cost | agg_ cost
-- -+--------+----+----+----+--------

zi(va) = s

j, va ∈ V i
(7)

In order to easily extract the residual graph Gx,y in the SQL based
architecture the connecting edges e ∈ Econn connecting Gs and
Zj are given a value −j.

Given this configuration of column names and zone identifier as-
signment we try to understand how different components of the

Algorithm 5 pgRouting Skeletal Path Query

 1: procedure PGR DIJKSTRA(G, vx, vy , i) reduced graph Gi namely Gi , Z∗ (i) & Z∗ (i) at the ith level i
x,y s xl yl 2: xt = z (vx)

where xt = zi(vx) and yt = zi(vy), are extracted easily using
SQL queries. Figure 3(c) shows the reduced graph used for un-
derstanding such queries at level i = 1 where x = 1 and y = 7
and their corresponding zone identifiers xt = zi(1) = 1 and
yt = zi(7) = 2.

The skeleton G1 is extracted using the query below

SELECT id , source , target , cost
FROM edge_ table WHERE zone_ 1 = 0;

3: yt = zi(vy)
4: Gi ∗ i ∗

x,y = Zxl (i) ∪ Gs ∪ Zyl (i)
5: p = DijsktraAlgorithm(Gi , x, y)
6: return p

Algorithm 5 illustrates the level based path computation algo-
rithm implemented in pgRouting. The performance of network
extraction from the PostgreSQL can further be improved by creat-
ing indices on the added zone columns zone i where 1 ≤ i ≤ k.

1 | 1 | 1 | 1 | 1 | 0
2 | 2 | 2 | 4 | 1 | 1
3 | 3 | 5 | 7 | 1 | 2
4 | 4 | 8 | 6 | 1 | 3
5 | 5 | 7 | -1 | 0 | 4

(5 rows)

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W8, 2018
FOSS4G 2018 – Academic Track, 29–31 August 2018, Dar es Salaam, Tanzania

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-W8-191-2018 | © Authors 2018. CC BY 4.0 License.

196

xl ,
yl

Table 4. Dataset Details whole network for Chandigarh and Hyderabad respectively. We
also observe that the maximum and average size of the extended

Dataset V E dmax Preprocessing(min) zones drops with level i. This is because as the level increases
more edges are added to the skeleton Gs, thus dividing the zones
in a particular level i into smaller zones, thus leading to a drop in Chandigarh 14675 38066 24 kms 2.3

Hyderabad 206174 527559 90 kms 54.4 the maximum and average size of zones in the next level i + 1.
NYC 398440 991186 165kms 178.8 The maximum and average size of a zone and size of skeleton are

Belgium 878720 1914674 483kms 475.8 key factors in deciding the performance gain in path computation
 since the size of the reduced graph Gx,y used for path computa-
The proposed model also provides a structured way of network tion comprises of the skeleton Gs and the extended zones(Z∗

storage in the database leading to efficient retrieval of a subset of ∗) where xt = z(vx), yt
 = z(vy). It should be noted that the

network data for path computation.

6. EXPERIMENTS

The road network data of Chandigarh, Hyderabad, NYC and Bel-
gium (see Table 4) made available by Open Street Maps is used
for experiments. The road networks required for the analysis
were extracted by using osm2pgrouting tool. The experiments
were carried out on a 64-bit linux machine with an Intel Xeon
Z400 equipped with 16 GB main memory and 8 MB L3 cache.

The experimental evaluation is divided into two sections. In the
first section we evaluate the preprocessing time, skeleton sizes
and extended zone sizes for k = 10. In the second section we
evaluate the proposed pgRouting path computation algorithm that
uses the Skeletal Model. For path evaluation we average the path
computation time and path error over a set of 1000 randomly gen-
erated queries with varying path lengths. The path error we refer
to is the difference in the length of the path computed using Algo-
rithm 5 and the length of the same path computed using pgRout-
ing Dijkstra Algorithm that uses the entire network. We divide
the set of queries into 5 sets of equal size. The node pairs are
generated in such a way that the distance between a node pair in

skeleton at level 10 includes the entire road network which can be
observed from Figure 4(a) and 5(a). This leads to an empty resid-
ual network and thus no zones are formed at level 10. Therefore
the sizes of extended zones at level 10 are not shown in Figure
4(b) and 5(b).

6.1 Query Processing

Figure 4(c) and 5(c), illustrates the variation of average path com-
putation time taken with the length of the path. On Y-axis is the
path computation time in milliseconds. X-axis is numbered with
the query set number q where 1 ≤ q ≤ 5. For the sake of conve-
nience the plots are shown for skeletons of level i where i = 1, 2,
3, 4, 6. The curve with the dashed line represents the computation
time on the original graph G(V, E). As the path length increases
the computation time increases as more nodes and edges have to
be processed in order to find the path. We can also observe that
at level 2, the gain in path computation time achieved is at least
4-5 times not using more than 25 % of the total network for path
computation.

Figure 4(d) and 5(d), illustrate the variation average path error
with the length of the path. On Y-axis is the percentage error
in path. X-axis is numbered with the query set number q where . For the sake of convenience the plots are shown for

the qth set lies between
(q − 1) × dmax and

q × dmax where 1 ≤ q ≤ 5
5 5 skeletons of level i where i = 1, 2, 3, 4, 6. It can be seen that as

dmax is the distance between the farthest node pair in the network
and 1 ≤ q ≤ 5. Therefore distance between any pair of nodes
in (q+1)th set is less than distance between any pair of nodes in
qth set. Table 4 contains the value of dmax for each of the road
networks. Table 4 also shows the combined processing times for
calculating edge levels, skeleton generation and zone generation
for all the 10 levels.

Chandigarh is a uniform gridded network whereas Hyderabad is
a non uniform dense network. In order to highlight the applicabil-
ity to different types of networks, the proposed method is applied
to Chandigarh and Hyderabad road networks and the observa-
tions are explained. In order to highlight the applicability to large
networks, the proposed method is applied to NYC and Belgium
road networks and the observations are tabulated in Table 5.

Figure 4(a) and 5(a), shows the size of skeleton network at each
level i generated as a percentage of the original network G(V, E).
Here by size we refer to the number of edges in the graph. We can
observe that the size of the skeleton increases as level i increases.
This is because as the level increases more and more edges are
added to the skeleton as discussed in Section 4.5.

Figure 4(b) and 5(b), shows the average and maximum size of
the extended zones generated at each level i as a percentage of
the original graph G(V, E). Here by size we refer to the number
of edges in the extended zone. We can observe that the maxi-
mum size of zone at a level i = 2 is nearly 2.5% and 0.4% of the

the path length increases the path error gradually decreases. This
indicates that the proposed model is more suitable for comput-
ing longer paths. We can also observe that, at level 2, for larger
distances(q ≥ 2), path error is less than 2% while not using more
than 25% of the total network.

The optimal skeleton sizes and their respective computation gains
and path errors are averaged and tabulated in Table 5 for all the 4
datasets given in Table 4.

Table 5. Performance Gain of Optimal Network Skeleton

Dataset Network(%) Path Error(%) Gain(X)

Chandigarh 25 ≤ 3 4.8
Hyderabad 26 ≤ 2 4.5

NYC 24 ≤ 5.5 5
 Belgium 23 ≤ 6 6.5

7. CONCLUSION

In this paper we present a Skeletal Model using map generaliza-
tion technique to reduce the size of input network used for path
computation. The proposed model is implemented in pgRouting
to provide both improved path computation and structured way
of storing and retrieving the network data used for path compu-
tation. A new path algorithm is proposed to compute path using
the Skeleton Model by reusing the existing pgRouting Dijkstra

Z

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W8, 2018
FOSS4G 2018 – Academic Track, 29–31 August 2018, Dar es Salaam, Tanzania

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-W8-191-2018 | © Authors 2018. CC BY 4.0 License.

197

(a) Skeleton Sizes (b) Extended Zone Sizes (c) Computational Gain (d) Path Error

Figure 4. Chandigarh.

(a) Skeleton Sizes (b) Extended Zone Sizes (c) Computational Gain (d) Path Error

Figure 5. Hyderabad

algorithm. The implemented pgRouting path algorithm is tested
on the real world road networks of varying size and topology.
Results show that an average speedup of nearly 5X in path com-
putation time was achieved while the processed network data was
not more than 30% of the original road network. While these are
significant gains, it has to be noted that these came at a cost of
having an average path deviation error of less than 7%. The query
time is faster since the reduced graph size is less which cuts down
the overall search space for pgRouting path finding algorithms.

Finally, we hope that this work will aid in implementing navi-
gational services on a low resource system too, thus leading to a
paradigm shift from a traditional client-server model to the devel-
opment of a client based path computation model. With the ad-
vancement in computing power and storage capacity of hand held
devices, the focus should move towards utilizing these devices
for path computation while reducing the dependency on network
coverage or server response.

REFERENCES

Akimov, A., Kolesnikov, A. and Franti, P., 2004. Reference line
approach for vector data compression. In: Image Processing,
2004. ICIP’04. 2004 International Conference on, Vol. 3, IEEE,
pp. 1891–1894.

Bjørke, J. T. and Isaksen, E., 2005. Map generalization of road
networks: Case study from norwegian small scale maps. In: Pro-
ceedings XXII International cartographic Conference.

Chondrogiannis, T. and Gamper, J., 2016. Pardisp: A partition-
based framework for distance and shortest path queries on road
networks. In: Mobile Data Management (MDM), 2016 17th
IEEE International Conference on, Vol. 1, IEEE, pp. 242–251.

Geisberger, R., Sanders, P., Schultes, D. and Delling, D., 2008.
Contraction hierarchies: Faster and simpler hierarchical routing
in road networks. In: International Workshop on Experimental
and Efficient Algorithms, Springer, pp. 319–333.

Jiang, B. and Claramunt, C., 2004. A structural approach to the
model generalization of an urban street network. GeoInformatica
8(2), pp. 157–171.

Jiang, B. and Harrie, L., 2004. Selection of streets from a network
using self-organizing maps. Transactions in GIS 8(3), pp. 335–
350.

Jung, S. and Pramanik, S., 1996. Hiti graph model of topographi-
cal road maps in navigation systems. In: Data Engineering, 1996.
Proceedings of the Twelfth International Conference on, IEEE,
pp. 76–84.

Khoshgozaran, A., Khodaei, A., Sharifzadeh, M. and Shahabi,
C., 2008. A hybrid aggregation and compression technique for
road network databases. Knowledge and Information Systems
17(3), pp. 265–286.

Mackaness, W. A. and Beard, K. M., 1993. Use of graph the-
ory to support map generalization. Cartography and Geographic
Information Systems 20(4), pp. 210–221.

Möhring, R. H., Schilling, H., Schütz, B., Wagner, D. and Will-
halm, T., 2005. Partitioning graphs to speed up dijkstras algo-
rithm. In: International Workshop on Experimental and Efficient
Algorithms, Springer, pp. 189–202.

Shekhar, S., Huang, Y., Djugash, J. and Zhou, C., 2002. Vector
map compression: a clustering approach. In: Proceedings of the
10th ACM international symposium on Advances in geographic
information systems, ACM, pp. 74–80.

Suh, J., Jung, S., Pfeifle, M., Vo, K. T., Oswald, M. and Reinelt,
G., 2007. Compression of digital road networks. In: Interna-
tional Symposium on Spatial and Temporal Databases, Springer,
pp. 423–440.

Thomson, R. C. and Richardson, D. E., 1995. A graph theory
approach to road network generalisation. In: Proceeding of the
17th international cartographic conference, pp. 1871–1880.

Thomson, R. C. and Richardson, D. E., 1999. The good contin-
uationprinciple of perceptual organization applied to the general-
ization of road networks.

Zhang, Z., 2006. Vector road network compression: a predic-
tion approach. In: Proceedings of the American Society for
Photogrammetry and Remote Sensing Conference, ASPRS, Reno,
Nevada, USA.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W8, 2018
FOSS4G 2018 – Academic Track, 29–31 August 2018, Dar es Salaam, Tanzania

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-W8-191-2018 | © Authors 2018. CC BY 4.0 License.

198

	Commission V, WG V/8
	ABSTRACT:
	1. INTRODUCTION
	2. NOTATIONS
	2.3 Skeleton Network
	2.4 Residual Network
	3. ARCHITECTURE OF PGROUTING
	2.2 Subgraphs and Connectivity
	3.1 PostgreSQL Database
	3.2 pgRouting Extension
	4. SKELETAL MODEL : A NETWORK GENERALIZATION APPROACH
	4.2 Edge Priority
	4.3 Skeleton Construction
	4.4 Zone Generation
	5. PGROUTING PATH ALGORITHM BASED ON
	4.5 Edge Levels
	5.1 Path Computation Algorithm
	5.2 pgRouting Skeleton Path Query
	6. EXPERIMENTS
	6.1 Query Processing
	7. CONCLUSION
	REFERENCES

