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ABSTRACT: 
The ongoing proliferation of remote sensing technologies in the consumer market has been rapidly reshaping the geospatial data 
acquisition world, and subsequently, the data processing as well as information dissemination processes. Smartphones have clearly 
established themselves as the primary crowdsourced data generators recently, and provide an incredible volume of remote sensed data 
with fairly good georeferencing. Besides the potential to map the environment of the smartphone users, they provide information to 
monitor the dynamic content of the object space. For example, real-time traffic monitoring is one of the most known and widely used 
real-time crowdsensed application, where the smartphones in vehicles jointly contribute to an unprecedentedly accurate traffic flow 
estimation. Now we are witnessing another milestone to happen, as driverless vehicle technologies will become another major source 
of crowdsensed data. Due to safety concerns, the requirements for sensing are higher, as the vehicles should sense other vehicles and 
the road infrastructure under any condition, not just daylight in favorable weather conditions, and at very fast speed. Furthermore, the 
sensing is based on using redundant and complementary sensor streams to achieve a robust object space reconstruction, needed to avoid 
collisions and maintain normal travel patterns. At this point, the remote sensed data in assisted and autonomous vehicles are discarded, 
or partially recorded for R&D purposes. However, in the long run, as vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) 
communication technologies mature, recording data will become a common place, and will provide an excellent source of geospatial 
information for road mapping, traffic monitoring, etc. This paper reviews the key characteristics of crowdsourced vehicle data based 
on experimental data, and then the processing aspects, including the Data Science and Deep Learning components. 

 

1. INTRODUCTION 
 

The past decade has seen phenomenal developments in sensor 
technologies, and by now our environment is continuously 
observed by an ever growing network of navigation, imaging, 
mapping and a variety of other sensors. In the developed world, 
the number of inexpensive sensors outnumbers the population by 
a large margin, and the trend is still sharply increasing. The 
general framework is provided by the IoT (Internet of Things), 
which provides for access and control sensor from virtually 
anywhere. Smartphones represent the highest sensor integration 
on any mobile platform, they have 8-10 built-in sensors that make 
these devices extremely powerful navigation and 
imaging/mapping tools. Furthermore, these devices provide an 
easy access to other sensor deployed in our daily life, such as 
wearable technologies and smart homes. 

 
Most of the sensor data is used locally and not archived currently, 
but as communication technologies are becoming more 
affordable along with cloud services, the trend is to archive the 
data, as it can provide valuable individual and global information 
for the user, companies and governments. For example, 
providing location information of smartphones in vehicle creates 
the best possible data for traffic flow estimation, and these 
applications are one of the most popular ones of smartphones. In 
fact, people tend to prefer them compared to dashboard built-in 
navigation systems due to the currency of the data. Note some 
new cars are only providing visual interface to the smartphone 
apps instead of offering a navigation system. Health-related 
personal data is typically not shared due to privacy concerns, 
though it has enormous potential for research and disease 
prevention. 

An important aspect of the acquired sensor data is that it typically 
comes with location information. While this is the primary 
information source for the smartphone based navigation apps, the 
use of the spatial context of the sensor data is still not fully 
exploited. For example, huge volumes of images are acquired 
with varying georeferencing accuracy, yet current applications 
don’t use it; say, for example, mapping, navigation or object 
space reconstruction. The trend, however, is that navigation and 
imaging sensors are increasingly used together. 

 
The Smart City concept is based on fully exploiting the 
technology potential to use and share information to make the life 
of people living in big and dense urban areas better by improving 
all the services provided by companies and governments (Su et 
al., 2011). One key element of a Smart City is the efficient 
mobility that considers all the citizens transportation needs, and 
not just people who are driving. For example, people with 
disabilities have specific needs to access public transportation 
from their homes and to get to a doctor’s office in a health 
complex. Recent advances in vehicle technologies have started to 
offer various levels of autonomy, providing a new dimension to 
the process of improving mobility in cities. 

 
Autonomous vehicle (AV) technologies, a.k.a driverless car, 
assisted driving (Advanced Driver-Assistance Systems, ADAS), 
are rapidly developing, as traditional car manufactures, IT giants, 
and large numbers of start-up companies have been devoting 
unprecedented R&D efforts to advance this field. The main 
disciplines for AV technologies are computer science, electrical 
and mechanical engineering, etc., (Geiger et al., 2012; Ibañez- 
Guzmán et al., 2012) and then social sciences to address ethical 
and legal concerns (Bonnefon et al., 2016; Ibañez-Guzmán et al., 
2012). 
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Most of the early AV technologies have primarily focused on 
sensing the environment to avoid obstacles, and thus provide for 
safe driving. But no or limited attention was paid to use the 
acquired and interpreted data to create or update and existing 
map. Note that a state-of-the-art AV has comparable sensing 
capacity a mobile mapping system. Furthermore, it has been also 
overlooked that using accurate and high resolution map data can 
improve the process how the vehicles sense and analyze their 
immediate environment. This paper looks into these aspect of AV 
technologies, in other words, the potential of crowdsensing to 
acquire geospatial data along transportation corridors and cities. 

 
2. CROWDSENSING 

 
Crowdsourcing, created in the Information Technology industry 
about 10 years ago, originally aimed at combining resources via 
the internet to solve large tasks. By now, crowdsourcing has been 
used in a much broader sense than data/computer science. In 
geospatial practice, crowdsensing is the more adequate 
terminology, as it is primarily about acquiring data (Heipke, 
2010; Toth and Jozkow, 2015). Figure 1 shows an early 
crowdsourced project, where the movement of the San Francisco 
taxis were tracked at the SFO airport area (Piorkowski, 2009). 
Note that at that time, smartphones were less advanced. 

 

 
Figure 1. Crowdsourced GPS data of taxis from 2009 

(CRAWDAD database) 
 

Today most of the smartphone apps attribute location to the 
logged data streams. For example, fitness apps may log heart rate 
and other important parameters during exercising, and the entire 
data stream is stored in the cloud, so the user can access his/her 
history, compute statistics, etc. In addition, using aggregated 
data, identity removed, valuable information can be extracted. 
Figure 2shows heatmaps based on running/jogging and bicycling 
activities in the Columbus, OH area, data provided the Strava 
fitness application. These maps have the traditional location 
information, for example the bike trails are quite visible, as 
cyclists prefer them for safety reasons. Running/jogging is less 
confined to trails, as it requires less distance and thus can be 
easily done in residential areas. Beside geospatial data, for 
example, there is socio-economic information in these maps. The 
density/intensity is much lower in the poorer southern part of the 
city. People in affluent neighborhoods tend to pay more attention 
to their health and exercise more, as opposed to economically 
depressed areas, where fitness is not a high priority for the 
residents. 

 

 
(a) ) Running/jogging 

 

 
(b) Bicycling 

Figure 2. Crowdsensed exercise activities 
in Columbus, OH, USA, 2017 

 
While GPS describes the platform motion at few meter accuracy 
in general, alone it provides no information of the environment. 
With the proliferation of imaging sensors, the potential exist that 
area where the crowdsensing platform travels can be imaged, and 
thus geospatial data can be acquired. Compared to GPS, there are 
main differences in the practical use of the sensors. GPS requires 
no cooperation from the user, once the application has started it 
logs the data in the background, and no attention is needed from 
the user. In contrast, imaging sensors should be kept in a position 
that allows for a reasonable coverage of the area. Furthermore, 
imaging data by orders larger than GPS, so storing and/or 
transferring through the network are still a challenge. These 
problems are less severe on vehicles where there are plenty of 
resources and sensor mounting is structured. Helmet mounted 
GoPro and windshield/dash cameras are examples when the 
platform    trajectory    area    is    continuously    imaged;    for 
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entertainment and video evidence, respectively. In these cases, 
the long-term archiving and sharing is not typical. 

 
With the increasing use of AV technologies in the future, there is 
a tremendous potential to record and aggregate the image sensor 
data, which then can be used for mapping of the transportation 
corridors and cities. The real question is how to pass the imagery 
to the cloud. Vehicle-to-Vehicle (V2V) technology is designed 
for local communication, and not adequate for handle image 
sensor data. Vehicle-to-Infrastructure (V2I) technology, 
however, is for communicating between the vehicles and 
transportation management and control system, and potentially 
can handle the task of accepting the image streams. Note that 
V2X facilitates both V2V and V2I communication through a 
central unit. 

 
3. STATE-OF-THE-ART IN AV 

 
For the purpose of using AV image data for mapping, the 
important elements are the number of imaging sensors, their type, 
and data characteristic, such as spatial resolution, frame rate, 
accuracy, etc. The environment is generally sensed by cameras, 
laser sensors, radar and ultrasonic sensors. Clearly, all these 
sensors represent important sensing characteristics, and ideally 
should be included on all platforms. However, affordability is a 
serious concern for stock vehicles, where the cost of the sensors 
must be limited to keep the vehicle price at an acceptable level. 
Currently, optical imaging dominates the marker, as these sensors 
are inexpensive, small and easy to mount on the vehicle, and 
processing technique are also well developed. Laser is more 
typical on research and high-value vehicles, such as shuttles. 

 
The Tesla Autopilot system camera configuration is shown in 
Figure 3; the arrangement is similar on all models. Note that there 
are three forward looking cameras with different field of views 
(FOV) to provide comparable resolution imagery over a long 
range in front of the vehicle. 

 

 
 

Figure 3. Tesla Autopilot system sensor FOVs; eight cameras, 
one radar, and 12 ultrasonic sensors (courtesy of Tesla) 

 
The main rival the Cadillac CT6, the Super Cruise, uses only 
cameras and radar. There are eight cameras installed on the CT6 
model, one inside is used for checking the driver’s alertness level, 
and the others are sensing the environment around the vehicle. A 
unique feature of this system is the high-definition road map that 
covers 130 miles of freeways in North America and allows the 
vehicle to achive Level 2 autonomy (SAE, 2018). The map, 
independently acquired by LiDAR is stated to be accurate about 
10 cm. 

 
Waymo, owned by Google, uses laser sensors, a Velodyne 
mobile scanner, and their systems can be deployed on many stock 

vehicles. Since the laser sensor provides 360 FOV around the 
vehicle and the acquired data is 3D, there are less sensors on the 
vehicle to sense the environment. Figure 4 shows the general 
sensor arrangement, excluding GPS. A course map with features, 
such as traffic lights, is needed for the use of this AV technology. 
Also, there is option for driving on preprogrammed route. 

 
 

 
Figure 4. Waymo sensor configuration (courtesy of Google) 

 
As the AV car industry continues moving forward from the 
current autonomy Levels 1 and 2, the amount and quality of the 
acquired image sensor data is expected to increase. Inexpensive 
laser sensors are intensely researched, and once became available 
will improve the potential for directly acquiring geospatial data 
that could be used to create high-definition maps, such as dense 
city models. The use of high-definition maps to improve the 
interpretation of the scene around the AV vehicle is clearly 
growing. 

 
4. HIGH-DEFINITION MAPPING 

 
The sensor systems developed for AV technology are not 
designed to acquire highly accurate spatial data. None of the 
cameras currently used meets the requirement of a metric sensor. 
However, the observations are highly redundant, as the same 
sensor will acquire data of an object or area multiple times, and 
then there are many sensors imaging the same object space. The 
research question is whether from the highly redundant and 
moderately accurate data it is feasible to obtain accurate spatial 
data. A slightly differently posed question is what the optimal 
sensor configuration is to support safe AV driving as well as 
provide for accurate mapping. Tests were carried out at the OSU 
main campus in Columbus, OH, in 2017, to collect data to 
analyze the performance of object space reconstruction based on 
using a variety of sensors installed on a test vehicle. 

 
4.1 Platform 

 
A GMC Suburban, customized measurement vehicle, called the 
GPSVan (Grejner-Brzezinska, 1996), is used as a platform for the 
data acquisition. The sensors installed on the platform included 
navigation and imaging/mapping sensors. A light frame structure 
installed on the top and front of the vehicle provided a rigid 
platform for the imaging sensors, including LiDARs and 
different types of cameras. The final sensor configuration 
consisted of two GPS/GNSS receivers, three IMUs, three high- 
resolution DSLR cameras for acquiring still images, 13 P&S 
(Point and Shoot) cameras for capturing videos, and seven 
LiDAR sensors (Velodyne family). The location of the sensors 
on the GPSVan is shown in Figure 55 and Figure 6. 
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Figure 5. GPSVan front sensor installation 

 
 

 
Figure 6. GPSVan top sensor installation 

4.2 Test area 
 

Two test sites were selected for the data acquisition, both located 
at the campus of The Ohio State University. The first route is at 
west campus and connects two research facilities, and has 
moderate vehicle and low pedestrian traffic. The second route is 
on main campus, heavily used by students and cyclists, and 
therefore, this dataset can be used for investigating complex 
scenarios; for example, testing various pedestrian, cyclist or other 
object detection algorithms, or visual navigation methods with 
rapidly changing dynamic content. Due to the present of many 
moving objects, it clear represent the most challenging scenario 
for mapping. In addition, this area is a partially GPS/GNSS- 
denied due to tall buildings located along the route. This dataset 
contains 15 loops, acquired in about 4 hours, and represents a 
volume of about 5 TB raw data. A sample of the various imaging 
data streams is shown in Figure 7. The upper row shows imagery, 
acquired by three cameras of difference quality, including a low- 
end GoPro, a medium category Sony, and high-end Nikon. The 
middle raw shows two side looking cameras, and point cloud, 
acquired by the main laser scanner. The point cloud of a section 
of the main campus loop, acquired by the main laser scanner is 
shown in Figure 8a. Figure 8b shows the same area when all the 
point clouds of the seven laser scanner are combined. 

 
The accuracy of the point clouds have been checked using 
building and road features (patches), and the accuracy at the 
references was 5 cm. The photogrammetrically derived point 
clouds produced varying and lower accuracy, which is the subject 
of continuing investigation; an example point cloud of the same 
area is shown in Figure 9. 

 
 

 
Figure 7. Data streams from GoPro (video, top left), Nikon (high resolution still images, top center), Sony (high resolution still 

images, top right), Canon (P&S, video, middle left), Velodyne HDL-32E (LiDAR, middle center), Samsung (mobile phone, built-in 
camera, middle right), GPS/GNSS (bottom left), PointGrey (video, bottom center), and Casio (P&S, video, bottom right) 
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(a) 

 

 
(b) 

Figure 8. HDL-32E point cloud (a), and all LiDAR sensors’ 
data combined (b); points with 5 m above the road surface are 

removed, height is color-coded 
 

 
Figure 9. Photogrammetrically created point cloud 

 
5. POSITIONING WITH IMAGES: PERFORMANCE 

 
Based on time and location, a basic database was built to provide 
an easy access to the large volume of data streams acquired in 
main campus data collection. Besides the accurate imaging 
sensor georeferencing, features are extracted and stored in the 
database. As an initial test of using the database for vehicle 
positioning using images acquired by a camera, a two-step 
method was evaluated; note that there are many methods 
available to accomplish this task. The concept implemented here 
is shown in Figure 10; note that both the database creation and its 
use for positioning are included. 

 
 

Figure 10. Two-step positioning based on 
georeferenced image database 

In the first step, the vehicle is localized by searching for a close 
match of an image acquired from the vehicle. The matching is 
feature-based, using the SIFT feature descriptors. The search is 
generally accelerated by knowing the approximate location of the 
vehicle, so no need for an exhaustive global search in general. 
Different cameras were evaluated, and Figure 11 shows 
performance results, note that the lower score represents good 
performance; in other words, the match is unique. The accuracy 
of this localization is about 4 m, which is sufficient to start the 
refinement process. 

 

 
Figure 11. Matching results with various cameras 

 
The second step is based on using 3D data from the database, and 
classical single photo resection is performed using the matched 
features. Figure 11 shows a point cloud used to refine the camera 
position and estimate attitude; green represents initial position, 
and purple is refined position. The accuracy of this processing 
depends on the point cloud accuracy, the spatial distribution of 
the points, and then on the camera quality, expressed in interior 
orientation characteristics. On average, better than 0.5 m 3D 
accuracy can be achieved in general; in benign areas with well- 
calibrated cameras, the accuracy could be below 0.2 m, which is 
close to the 0.1 m 2D accuracy suggested for AV positioning. 

 
The procedure described here can be considered as a basic 
feasibility test. Using Big Data methods, a structured frame can 
be developed for the autonomous reconstruction of the 3D object 
space,  including  point  cloud  representation,  feature  points, 
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objects extracted, and even topology of the objects. Using this 
database, the image based position estimation can be also handled 
by Data Analytics methods, such as using Deep Learning, for 
example, CNN (Convolutional Neural Network), to identify 
objects and interpret scenarios besides retrieving position data 
(Rawat, 2017; Guo, 2017). 

 
 

 
Figure 11. Camera position refinement based on single photo 

resection 
 
 

6. SUMMARY AND CONCLUSION 
 

AV technologies continue to rapidly advance, and the sensing 
capabilities of vehicles are expected to further improve. 
Inexpensive mobile sensors are still in the development phase, 
but once introduced, they will be used along cameras, which 
dominate the currently available AV market. The highly 
redundant image data, acquired by AV technologies have a big 
potential to create high-definition maps at good accuracy from 
crowdsensed data. The limitation of the current technology is that 
the huge amount of data cannot be easily transferred to the cloud. 
But, as connectivity improves, such as V2X becomes widely 
available, the conditions will quickly change. 

 
Creating map data, which include point clouds, images, features, 
object, semantic information, etc., cannot be accomplished with 
the existing practice of map production. Frist of all the sheer 
amount of data represents an insurmountable obstacle. Then, the 
combination of high redundancy and low/modest sensor quality 
presents a formidable challenge. Clearly, Big Data technologies 
are needed to automatically reconstruct the object space around 
the transportation corridors. The main advantage of crowdsensed 
map data that it forms a live database, and it automatically adjust 
as the environment is changing. The crowdsensed map database 
will equally support AV and the geospatial needs of Smart Cities. 
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