
LAND USE, MICROCLIMATE, AND SURFACE RUNOFF LINKAGES: SPACE-TIME 
MODELING FROM ROKEL-SELI RIVER BASIN, SIERRA LEONE 

C. Wilson a*, B. Liang b, S. Wilson c, F. Akiwumi d

a Department of Geography & Anthropology, University of Wisconsin-Eau Claire, Eau Claire, WI, USA– wilsonc@uwec.edu 
b Department of Geography, University of Northern Iowa, Cedar Falls, IA, USA– bingqing.liang@uni.edu 

c Department of History & Political Science, Rogers State University, Claremore, OK, USA– swilson@rsu.edu 
d School of Geosciences, University of South Florida, Tampa, FL, USA– fakiwumi@usf.edu 

Commission IV, WG IV/4 

KEY WORDS: Land use change, microclimate, surface hydrology, open source geospatial, Sierra Leone 

ABSTRACT: 

This study mainly utilized the Soil and Water Assessment Tool (SWAT) together with SWAT-CUP, both free and open source software 
(FOSS), to construct a distributed hydrologic flow model for the Rokel-Seli River basin, Sierra Leone, in a bid to spatiotemporally evaluate 
the role of changes in land use/land cover (LULC) and microclimate on streamflow regimes. The model was informed by LULC data 
derived from three Landsat satellite images collected in 2002, 2010, and 2016. The LULC data was generated with the aid of several 
python libraries accessed through the FOSS Anaconda Navigator. LULC change analysis demonstrated that between 2002 and 2016, 
urban, agricultural, water, and mining lands expanded significantly but forest cover reduced the most (-5.7%). While average annual 
surface runoff dramatically increased from 2002 to 2010 (31.7%), the period after the reservoir construction (2010-2016) recorded lower 
increase in surface runoff (0.9%). Result of the study suggested that the construction of a major reservoir to support hydroelectricity in 
concert with significant loss of forest cover and shrub played a greater role in increasing surface runoff compared with the influence of 
microclimate. 

1. INTRODUCTION

Changes in land use and land cover (LULC) can alter biotic 
diversity, primary productivity, surface runoff, water quality, and a 
host of other attributes associated with terrestrial and aquatic 
ecosystems (Coats et al., 2008; Wilson and Weng, 2010). LULC 
change has a significant spatiotemporal relationship with water 
supply and quality (Somura et al., 2012; Penha et al., 2016). The 
relationship between LULC and water supply/surface runoff is 
further compounded by climate at both the micro and larger scales 
(Beighley et al., 2008; Wilson and Weng, 2011). Variations in 
precipitation, temperature, and other climate variables do not only 
alter water flow and its antecedent constituent transport, but also 
play a role in either increasing or diluting the concentration of 
pollutants (Yusop et al., 2005). Such interactions, often manifested 
in a non-linear pattern, can further be complicated by the level of 
intricacy of the land use-climate interface with far reaching 
implications for surface runoff, water quality, and human and 
ecosystem health (Griffin et al., 2003; Khan et al., 2013).  
      Changes in LULC are mainly caused by anthropogenic drivers 
that can be compartmentalized into proximate and underlying 
forces (Lambin et al., 2001). Proximate drivers, often regarded as 
direct drivers of LULC changes, operate at the local level and 
include but not limited to farmers, miners, real estate developers, 
and loggers (Lambin et al., 2003). Underlying drivers, however, 
function at a much broader and indirect level which encompass 
political, economic, and technological frameworks (Mather, 
2006b). Whether operating at the proximate or underlying level, 
these drivers alter the composition, proportions, and structural 
morphology of LULC which in the case of a watershed can modify 
the dynamics of surface water hydrology with ramifications for 
water quality and the general health of ecosystems (Hunsaker and 
Levine, 1995; Wilson, 2015).   
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     The relationship between LULC and surface water resources is 
better understood by integrating climate into the framework (El-
Khoury et al., 2015). Such linkages can be adequately understood 
by exploring the phenomenon at multiple scales in order to deduce 
imperceptible underlying nuances (Dunn et al., 2012). For instance, 
Wilson and Weng (2011) reported that future climate at the micro 
level has the potential to exert stronger influence on the 
concentration of total suspended sediment and phosphorus loading 
in a watershed compared to LULC change. On a related note, Dunn 
et al., (2012) suggested that the relationship between climate change, 
LULC, and water resources is better understood at a microscale than 
larger spatial scales. Modifications to the rate of surface runoff 
triggered by LULC and climate changes can affect the recharging of 
ground water, and transportation of nonpoint source pollutants with 
varying implications for water resources (Chang, 2004). As a result 
of the pivotal role played by LULC change on surface runoff and 
general water resources, which is often complicated by climate at 
both micro and macro scales, it becomes prudent to fully investigate 
this nexus. Such investigation is especially germane to the most 
vulnerable areas of the developing world such as Sub-Saharan 
Africa (SSA) where current and immediate past socioecological and 
economic conditions have not been favorable for water supply and 
quality, as well as the general livelihood of its population. Results 
of such an exercise has the potential to illuminate probable adaptive 
mechanisms that can be embarked upon in order to cushion the 
negative implications of changes in LULC and climate on water 
resources. Moreover, this modeling exercise can contribute to 
generating policy prescriptions that can be extended to similar 
basins in other regions of SSA. The overarching goal of this study is 
to assess the surface runoff implications of LULC and microclimatic 
changes over space and time in the Rokel-Seli River basin, Sierra 
Leone. Specific objectives include 1) to extract LULC information 
for the study area at three timesteps – 2002, 2010, and 2016, and 2) 
to construct a physically-based distributed hydrologic model to 
gauge surface runoff over the temporal extent of the study.  

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W8, 2018 
FOSS4G 2018 – Academic Track, 29–31 August 2018, Dar es Salaam, Tanzania

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-4-W8-225-2018 | © Authors 2018. CC BY 4.0 License.

 
225

mailto:wilsonc@uwec.edu
mailto:bingqing.liang@uni.edu
mailto:swilson@rsu.edu
mailto:fakiwumi@usf.edu


2. MATERIALS AND METHODS

2.1 Study area 

Located in northern Sierra Leone, West Africa, the 316 km long 
Rokel-Seli River drains an area of 7949.7 km2 (figure 1) and 
supports a major hydroelectric dam – the Bumbuna hydroelectric 
power plant. Elevation of the basin range between 950 m in the 
northeastern highlands and mountainous outcrop rocks of the 
interior plateau to about less than 7 m in the western coastal 
lowland. Climate of the watershed is tropical monsoon 
characterized by typical wet and dry seasons. Mean annual flow of 
the river at the Bumbuna gauging station (over the period 1970-76) 
was 112.9 m3 /s (Ministry of Water Resources Sierra Leone, 2015). 
River flow vary according to the wet and dry seasons respectively 
with about 330.5 m3 /s in September to 6.1 m3 /s in March (Ministry 
of Water Resources Sierra Leone, 2015). Mean rainfall vary 
between 1750 mm and 3000 mm during the wet and dry seasons, 
respectively (Hijmans, et al., 2012). Rainfall also differ across the 
watershed which has created distinguishable microclimates and 
vegetation patterns between the coastal lowlands and interior 
highlands (Akiwumi, 1997). Rainfall drops precipitously as one 
moves from the western coastal lowlands to the northeastern 
highlands while the vegetation transition from a green lush 
landscape to a semi-arid savanna type cover. Major socioeconomic 
activities in the region include farming, cattle rearing (mostly 
nomadic herding), artisanal gold and industrial iron ore mining, 
sand quarrying, biofuel production, and fishing (Mansaray and 
Barrie, 2016). The 2015 population of the watershed is estimated 
at 730,696 (Statistics Sierra Leone, 2016) which is distributed 
among five relatively large cities (figure 1) and a plethora of small 
towns and villages.  

Figure 1. Map of study area: Rokel-Seli River watershed, Sierra 
Leone, Africa 

2.2 Extraction of land use/land cover information 

The data used for deriving LULC information primarily consisted 
of three sets of Landsat satellite images and several ancillary GIS 
data. The satellite images were acquired in the dry season (between 
December 15 and January 23) of 2002, 2010, and 2016 by the 
Landsat-7, Landsat-5 Thematic Mapper, and Landsat-8 Operational 
Land Imager sensors, respectively (USGS, 2017). These images 
were chosen to correspond with river discharge data available for 
calibrating and validating the distributed hydrologic model that was 
developed in the current study. Using a third order polynomial 
equation and 150 ground control points, we rectified each year’s 
Landsat images for geometric distortion with a total root mean 
square error of less than 0.5 pixel. As the USGS delivered the 

images already corrected for atmospheric interference (Schmidt et 
al., 2013), the reflectance form of these images was applied to 
perform the following image classification. This study developed a 
total of seven LULC classes which include water, urban, forest, 
agriculture, shrub, mineral mines, and bare ground by modifying the 
USGS Anderson Level 1 LULC classification scheme (Anderson et 
al., 1976). In extracting these LULC information from the satellite 
images, two individual hybrid approaches were employed. The first 
involved the use of several python libraries including but not limited 
to Remote Sensing/GIS library (rsgislib), Scikit-image, and Scikit-
learn to segment the images into different objects with the K-Means 
clustering/segmentation algorithm (Clewley et al., 2014). The 
python scripting was implemented in the popular free and open 
source software (FOSS) Spyder Integrated Development 
Environment (IDE) in Anaconda Navigator (Anaconda Software 
Distribution, 2017). Resulting image objects were then trained with 
the random forest classifier to generate five LULC classes – water, 
urban, forest, agriculture, and shrub. Random forest classifier is a 
machine learning algorithm that employs multiple individual tree-
based classifiers to group pixels or objects into their respective 
LULC classes based on user defined training data (Gislason et al., 
2004). The second stage of image classification involved the use of 
ancillary data to extract two additional classes (mineral mines and 
bare ground) from the results of stage 1 classification. Bare ground 
ancillary data was developed by creating and thresholding a 
normalized difference vegetation index (NDVI) image while iron 
ore and gold mines were obtained by digitizing their footprints from 
high resolution Google Earth images (Google Earth, 2017). Stage 2 
of image classification was also facilitated with a python script and 
ran in the propriety software Erdas Imagine in order to leverage its 
powerful expert system classifier. At the completion of this image 
processing, all seven LULC classes were produced. With the aid of 
a detailed 2002 aerial photograph of the study area (UNAMSIL, 
2002) and High-resolution Google Earth images for 2010 and 2016, 
accuracy assessment was conducted on all three years’ images with 
the use of the FOSS Semi-Automatic classification plugin 2.18 in 
QGIS (QGIS Development Team, 2017). Accuracy assessment was 
conducted with 1,500 randomly created reference points. Overall 
accuracy for the three images ranged between 86 and 89 percent.  

2.3 Distributed hydrologic flow model construction 

As a result of the dearth in spatial distribution of streamflow data in 
the study area (only available for two gauging stations between 2010 
and 2015), a hydrologic water flow modeling framework was 
adopted to predict and provide data for the entire watershed. We 
employed the FOSS, Soil and Water Assessment Tool (SWAT) 
informed by a calibration and validation routine — Sequential 
Uncertainty Fitting Program (SUFI-2) embedded in SWAT-CUP, a 
FOSS routine developed for use with SWAT. SWAT is a fully 
distributed hydrologic model that aids in the evaluation of land 
management practices on water quantity and quality in watersheds 
across space and time (Arnold et al., 1998). The model has extensive 
data input requirements which include soil, elevation, LULC, and 
climate variables. We constructed SWAT models to match the three 
years of the LULC data produced. For each model/year, the 
watershed was automatically delineated into 119 sub-watersheds 
with the aid of a 30 m digital elevation model derived from the 
Shuttle Radar Topographic Mission (SRTM) interferometry 
information (USGS, 2017). Following watershed delineation, the 
SWAT model was run using a soil dataset obtained from the Food 
and Agricultural Organization of the United Nations, the weather 
data from Climate Forecast System Reanalysis, and the LULC maps 
produced by the authors (FAO, 2003; Saha et al., 2010). Next the 
model was respectively calibrated and validated with daily 
streamflow data for two sub-watersheds between 2010 and 2015. 
Prior to SWAT model calibration, a global sensitivity analysis was 
performed on 60 SWAT parameters to flag those that were highly 
sensitive in an effort to reduce the amount of computation and 
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uncertainty during model calibration (Foglia et al., 2009). 
Sensitivity analysis was implemented with the following global 
sensitivity function:  

Rs = ӘO/Oo
ӘF1...n/F1..n

 = [ӘO]F1
[ӘF1]Oo

  +  [ӘO]F2
[ӘF2]Oo

+ ………..  [ӘO]Fn
[ӘFn]Oo

 (1)  

where       Rs  = relative sensitivity of model parameters 
  ӘO = change in output resulting from a change in model 

        input  
  ӘF1...n  = change in model parameter resulting from 

 change in model input. 

Selection of fitted model parameters for calibration was based on 
the results of sensitivity analysis, extensive literature search, and 
the authors’ knowledge of the watershed’s physical characteristics. 
SUFI-2 fits simulated data by SWAT to measured data from stream 
gauging stations and in the process accounts for model uncertainties 
(Rouholahnejad et al., 2012). To evaluate whether SWAT has been 
calibrated for flow, SUFI-2 uses two key criteria. The first criterion 
labeled the P-factor measures the efficacy of the model in capturing 
uncertainty. The P-factor is defined as the percentage of measured 
data bracketed by the 95% prediction uncertainty (95PPU). The 
second measure is the R-factor that assesses the quality of model 
calibration by calculating the thickness of the 95PPU envelope. The 
R-factor is calculated with the following equation:

    R =  
1
𝑚𝑚
∑ �𝑉𝑉𝑠𝑠,97.5%−𝑉𝑉𝑠𝑠,2.5%�𝑖𝑖𝑚𝑚
𝑖𝑖=1

𝜎𝜎𝑜𝑜𝑜𝑜𝑠𝑠 
 (2) 

where      Vs,97.5% and Vs,2.5% = the upper and lower bounds of the 
      95PPU for a simulated variable Vs 

  σobs = the standard deviation of the observed data  
    m = the number of parameters fitted 

An R-factor of zero illustrates a perfect fit between simulated and 
measured data while higher values signifies the contrary. A total of 
seven SWAT parameters were calibrated. Figure 2 illustrates a 
simplified SWAT model constructed for the watershed in 2010 and 
2016 showing the upper and lower extent of the Bumbuna reservoir. 

 
Figure 2: Simplified SWAT model for the Rokel-Seli River 

watershed 

3. RESULTS AND DISCUSSION 

3.1 Land use/land cover trajectory, 2002-2016 

Evaluation of the LULC changes between 2002 and 2016 revealed 
notable increase in urban area (76.3%) with a higher growth during 
the 2002-2010 period. This expansion of urban land after 2002 can 
be attributed to the end of the Sierra Leone’s civil war (1991-2002) 
as the population transitioned back to a normal way of living. Forest 
cover, in contrast, demonstrated a loss of 5.7% with a higher 

deforestation rate during the 2002-2010 epoch, while agricultural 
land area expanded by 50.6% with a larger gain during the 2010-
2016 assessment period. The change in forest cover can be mostly 
ascribed to the need for new agricultural lands and new urban areas 
as well. The loss in forest cover and expansion in urban areas after 
2010 are in consonance with other scholarships that have been 
conducted in this domain and attributed such modifications to the 
restoration of normalcy following the civil war (Wilson and Wilson, 
2013; Wilson, 2014; Gbanie et al., 2018). Growth in agricultural 
land after 2010 was further amplified by the acquisition of a huge 
swath of land in the southeastern portion of the watershed (figure 
3b) for commercial sugarcane plantation in support of a major 
biofuel industrial operation (Maconachie and Fortin, 2013). Next, 
land used for mining exponentially increased between 2010 and 
2016 (>1000%) while the 2002-2010 period recorded minuscule 
increase (<2%). The rapid growth of mining land after 2010 can be 
attributed to the establishment of two large scale commercial iron 
ore mining sites in the southern and central portions of the watershed 
far exceeding the spatial extent of small scale artisanal gold mining 
which was the mining activity before 2010. Water exhibited a 
significant growth after the installation of the Bumbuna  

Figure 3: Land use/land cover maps for 2002 (a) and 2016 (b) 

hydroelectric dam and the creation of mined out pools following 
commercial iron ore production. Mansaray and Barrie (2016) 
reported a 45.5% gain in water level within the Bumbuna reservoir 
between 2009 (when the dam was constructed) and 2015. Our LULC 
assessment demonstrated a 42.2% growth in the spatial extent of 
water between 2002 and 2010 partly resonating with the 
aforementioned study.    

3.2 Land use/land cover, climate and surface runoff nexus 

In general, the model calibration result is relatively good with 76% 
of observed data bracketed by the 95PPU for the stream gauge 
monitoring station used (figure 4) while the R-factor was less than 
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1.5. The amount of parameter and conceptual model uncertainty 
captured by the 95PPU is consistent with other studies that have 
been conducted in the SSA region (Schuol and Abbaspour, 2006; 
Schuol et al., 2008). 

Figure 4: SWAT model calibration for flow 4/14/2010-
12/31/2015, Bumbuna reservoir 

Note: Some months lack streamflow data 

The model was validated in a different sub-watershed over the same 
period and the results are comparable to that of calibration. It was 
infeasible to choose a different time period for model validation as 
a result of the lack of streamflow data between 2002 and 2010.  
        Figure 5 illustrates the changes in average annual sub-
watershed flow estimated by the calibrated hydrologic flow model 
for the periods 2002-2010 and 2010-2016. The watershed 
demonstrated very interesting and different flow regimes between 
the two periods (figure 5). Flow rates changed abruptly during the 
first assessment period (2002-2010) with an average annual 
increase of 31.7% compared to the most recent epoch (0.9%). The 
immense increase in flow between 2002 and 2010 can be attributed 
to three important factors. First, the construction of a 50 megawatts 
Bumbuna hydroelectric dam in 2009 contributed to an increase in 
flow especially during peak flow periods of the rainy season. This 
result is consistent with that reported by Mansaray and Barrie 
(2016) where a 45.5% rise in water level was reported in the 
Bumbuna reservoir which would have partly triggered the flow 
increase. In a related study, Magilligan and Nislow (2005) observed 
increase in streamflow following dam construction especially 
during the summer months in selected reservoirs in the United 
States. Second, the above-mentioned LULC change analysis has 
revealed significant losses of forest cover and shrub within 
downstream sub-watersheds. This would have resulted in a reduced 
infiltration thus triggering higher stream flow in the affected sub-
watersheds (Hundecha and Bardossy, 2004). Figure 5a shows that 
the sub-watersheds within the Bumbuna reservoir and downstream 
manifested greater increase in flow compared to those situated 
upstream. Third, climate data shows that the annual average 
precipitation within the watershed increased notably between 2002 
and 2010 (14.7%) with slight microclimatic nuances between the 
southwest and northeastern portions where precipitation decreased 
with increasing distance from the southwest (Saha et al., 2010). We 
also examined the average annual changes in temperature over the 
same period to probe into its potential impact on changes in surface 
runoff but found its role to be infinitesimal (<1%).   
       The smaller change in average annual flow between 2010 and 
2016 (figure 5b) compared to the previous assessment period can 
be mostly attributed to the non-drastic modification in river 
hydrology and water areal extent coupled with the reduction of 
precipitation over this period (-2.7%). A key observation is that the 
upper sub-watersheds registered relatively higher increase in flow 
than those located downstream from the dam. A close look at the 
2016 LULC map shows high rates of deforestation in some of the 
upstream sub-watersheds. Anecdotal reports suggest an increase in 
lumbering as a local livelihood source especially after 2014 in the 

upstream catchment. Loss in forest cover upstream would have 
accounted for higher surface runoff compared to the lower rate of 
forest cover loss in downstream sub-watersheds. Additionally, the 
lower rate of increase downstream can be ascribed to the dramatic 
expansion of farmland and its resultant effect of increasing 
infiltration thus reducing surface runoff. Recall that a biofuel 
establishment after 2010 warranted the conversion of previous shrub 
and bare ground to farmland. Temperature again demonstrated an 
infinitesimal change (<1%) over the 2010-2016 period similar to the 
previous assessment timeframe. 

Figure 5: Change in average annual sub-watershed flow, 2002-
2010 (a) and 2010-2016 (b) 

      Overall, increase in flowrate between 2002 and 2010 is greater 
than the effect of precipitation and temperature which signifies that 
changes in LULC has more influence on surface runoff in the Rokel-
Seli basin than changes in key climatic variables of temperature and 
precipitation. In triangulating between LULC, microclimate, and 
flowrates for the individual years (2002, 2010, and 2016) of 
hydrologic model implementation, sub-watersheds that experienced 
minor changes in LULC demonstrated very little change in flowrates 
compared to those that witnessed drastic alterations, while 
microclimate played a lesser role. This finding is in consonance with 
other studies that have shown that LULC changes exert stronger 
influence on surface water resources compared to climate change 
(Wilson and Weng, 2011; Dunn et al., 2012). 

4. CONCLUSION

This study examined the intricate relationships between LULC, 
microclimate, and surface runoff within a topographically and 
edaphically variable basin in Sierra Leone. Between 2002 and 2016, 
the Rokel-Seli River watershed witnessed significant growth in 
urban areas, agricultural, water, and mining lands while forest cover 
mostly reduced in its spatial extent. These key changes to LULC can 
result in significant modifications to watershed hydrology. 
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Reduction of forest cover especially within the main channel 
resulted in increased flow especially in downstream sub-watersheds 
that had higher anthropogenic activities. Despite the increase in 
rainfall between 2002 and 2010, the study shows that LULC 
changes, especially the creation of a major hydroelectric dam and 
loss in forest cover, exerted greater influence on surface runoff 
compared to climate. The study calls for the establishment of more 
streamflow gauging and water quality monitoring stations within 
the Rokel-Seli River basin to enable a more robust hydrologic 
modeling of not only surface runoff, but more importantly water 
quality. It also pinpoints that the plethora of FOSS utilized to 
process satellite images and construct the distributed SWAT 
hydrologic model should be applicable to other watersheds in Sub-
Saharan Africa.  
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