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ABSTRACT: 

 

The aim of the research is to evaluate the performance of the point cloud registration methods using mobile laser scanning data.  The 

point cloud registration methods involved in this research are match bounding-box centres and iterative closest point (ICP).  The 

research began with the two epoch’s mobile laser scanning survey using a Phoenix AL-3-32 system.  At the same time, the stereo 

images of the study area were acquired using UAV Photogrammetric method.  Both two epoch point cloud datasets were gone 

through the pre and post-processing stages to produce the cleaned and geo-referenced point clouds data.  The data were then gone 

through the two registration methods and four Cloud-to-Cloud (C2C) distance methods.  The 3D surface deviation results obtained 

from mobile laser scanning data was compared with the 3D surface deviation results from UAV data that undergoes the same 

registration and C2C distance computation methods.  The study area involved in the research is an active landslide area that was 

located at Kulim Hi-Tech residential area in Kedah state, Malaysia.  The study area exposed to the movement of the land which 

caused cracked to the buildings and drainages.  The findings show that the ICP registration becomes the most suitable method to 

register point clouds dataset that was acquired using mobile laser scanning system.  Among the four C2C distance computation 

methods that was involved in the testing, the least square plane method was the best method to calculate the distance between two 

sets of point clouds datasets which in turn gave the best results in the process of detecting the movement of the land in the study 

area.    

 

1. INTRODUCTION 

Landslide is one of the most common disasters in Malaysia. 

Factors that lead to this incident are due to natural and human 

activities. Therefore, it is important to monitor landslides to be 

overcome quickly and systematically.  One of the latest 

geospatial mapping technology is three-dimensional laser 

scanning.  The technology provides fast, rapid and 3D data with 

survey grade accuracy.  Due to the rapid changes of the 

landslide surface, 3D laser scanning technology has become the 

most appropriate solution for data collection phase as the 

technology can perform the scanning task between epochs in 

short period of time.  Therefore, the research was carried out 

using mobile laser scanning technology, as geospatial data 

collection method to acquire 3D surface data of the selected 

landslide area.   

 

The aim of the research was to evaluate the performance of the 

point cloud registration methods to generate three-dimensional 

(3D) deviation analysis for landslide monitoring using mobile 

laser scanning data.  The research involves with two registration 

methods which are matching bounding-box centres and fine 

registration (iterative closest point).  These two methods were 

currently embedded in open-source point cloud processing 

software known as CloudCompare.  The research also involves 

with the evaluation of cloud-to-cloud distance methods which 

are nearest neighbour, and the three local modelling methods 

which are least square plane, 2.5D triangulation and quadric.   

 

2. LITEARATURE REVIEW 

2.1 Mobile laser scanning 

Light detection and Ranging (LiDAR) is a new technology for 

collecting three-dimensional surface data of an object.  

Nowadays, the LiDAR technology can be categories in three 

main categories which are airborne-based LiDAR, terrestrial-

based LiDAR and mobile-based LiDAR.  The mobile-based 

LiDAR or popularly known as Mobile Laser Scanning (MLS) 

becomes the latest LiDAR system where the three-dimensional 

point cloud of the object was collected from the moving laser 

scanner setup on the vehicle.  Mobile laser scanning (MLS) 

starts with the stop-and-go scanning mode to collect the point 

cloud data.  Nowadays, the innovation in the MLS system 

makes the system running of the on-the-fly mode.  Not only 

that, the current MLS system can be carried by human for data 

collection at the un-access area.  Figure 1 show the concept 

applied in MLS surveying.   

 

 

Figure 1. The concept of mobile laser scanning survey (Wang H 

et. al (2012)) 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W9, 2018 
International Conference on Geomatics and Geospatial Technology (GGT 2018), 3–5 September 2018, Kuala Lumpur, Malaysia

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-4-W9-11-2018 | © Authors 2018. CC BY 4.0 License.

 
11



 

2.2 Methods for point cloud registration  

There are few methods that have been developed for the point 

cloud registration.  The developed registration methods were 

embedded in either commercial or open source software.  One 

of the open source software that can be used for point cloud 

registration is CloudCompare software.  The most common 

registration methods offered by the cloudcompare software are 

match bounding-box centres and iterative closest point (ICP).  

The detail of each method is discussed below. 

 

2.2.1 Matching Bounding-Box Centres Registration 

Method 

 

The Match Bounding-Box Centres (will be known as MBBC) 

registration method is the simplest point cloud registration 

method that translate all selected entities (point cloud datasets) 

so that their bounding-box centres will be mapped at the same 

place.  One of the selected entities (point cloud data) will be 

used as reference data and the second entity will be mapped to 

the centre of the reference data.  The 4x4 transformation matrix 

that corresponded to the applied translation will be computed.  

Figure 2 shows the registration process using match bounding-

box centres method, while Figure 3 shows the 4x4 

transformation matrix for the applied translation process.   

 

 

Figure 2. Point clouds registration using MBBC method – (a) 

before registration process, (b) after registration process 

(perspective view) 

 

 

Figure 3. The 4x4 transformation matrix for the applied 

translation process for MBBC registration method 

 

 

2.2.2 Iterative Closest Point (ICP) Registration Method 

 

Iterative Closest Point (will be known as ICP) is one of the 

most popular method for the registration of deformed and 

undeformed point clouds data.  According to Jafari (2016), the 

overall aim of the ICP algorithm is to estimate a rigid 

transformation between pi  P, a point from the reference 3D 

point cloud, and qi  Q, a point from the target point cloud.  

The ICP method implements nearest neighbours and Euclidean 

distance calculation and estimates the closest point between the 

pi and qi as correspondence points.  Figure 4 shows the 

correspondence estimation between undeformed reference point 

cloud data P and deformed point cloud data Q.   

 

 

Figure 4. Correspondence estimation between undeformed 

reference point cloud data P and deformed point cloud data Q 

(Jafari, 2016) 

 

In order to calculate the rotation R and translation t between pi 

and qi, the ICP method uses an error function to minimize the 

sum of the square distances.  Equation 1 shows the error 

function formula use in ICP method.   

 

                     (1) 

 

where pi  P = a point from 3D reference point cloud 

 qi  Q = a point from target point cloud 

 

Once the point clouds datasets are spatially registered and 

scaled, the deformation deviation analysis can be performed 

using cloud to cloud distance computation method.   

 

2.3 Cloud-to-Cloud Distance Computation Method  

One of the most common cloud distance computation method is 

Cloud-to-Cloud method (will be known as C2C method).  C2C 

method is the computation of distances between two clouds or 

between a point cloud and a mesh.  The purpose of C2C method 

in this study is to determine the distance difference between two 

epochs of mobile laser scanning data. The distance differences 

were referring to the movement of land slip occurred at the 

study area.  Figure 5 shows the basic concept of C2C 

computation method.   

 

 

Figure 5. The basic concept of C2C distance computation 

method 

 

The basic C2C distance computation method calculate nearest 

neighbor distance between the reference cloud and the 

compared cloud datasets.  The principle of nearest neighbor 

distance is used to compute the distances between the two 

points where for each point in the compared cloud, the nearest 

point in the reference cloud is searched and their Euclidean 

distance is computed.  In order to get better approximation of 

the true distance to the reference surface, the local surface 

model was introduce.  Figure 6 shows the concept used in local 

model C2C distance computation.   
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Figure 6. The concept of local surface model C2C distance 

computation method 

 

Local surface model methods work by locally model the surface 

of the reference cloud by fitting a mathematical primitive on the 

nearest point and several of its neighbours.  This process was 

carried out when the nearest point in the reference cloud is 

determined.  CloudCompare software offers three local surface 

model methods which are least square palne, 2D1/2 

triangulation and quadric.  The effectiveness of the local surface 

model is statstically more or less dependent on the cloud 

sampling and on how appropriate the local surface 

approximation is (Shen et. Al, 2017).   

 

According to Jafari (2016), the C2C distance computation 

algorithm implements the Hausdorff distance that calculate the 

distances between the correspondence points.  The Hausdorff 

distance from set A to set B is a maximum function defines as 

Equation 2 below: 

 

                 (2) 

 

where      a     = points of set A  

 b         = points of set B 

 d(a,b) = any metric between these points.   

 

2.4 Previous research involved with 3D surface deviation 

analysis  

Three-Dimensional surface deviation analysis between clouds 

can be implemented by using various methods of registration 

and surface change detection either embedded in the open 

source or commercial software. The related study about these 

was mentioned in Barnhart and Crosby (2013) about the 

methods of Cloud to Mesh (C2M) and Multiscale Model to 

Model Cloud Comparison (M3C2) were used to analyse surface 

change detection.  Successfully proved that the M3C2 method 

provides better results in displacement measurement compared 

to C2M method where M3C2 manage to calculate the true 

horizontal displacements of Terrestrial Laser Scanning (TLS) 

data while C2M could not but manage to use the threshold of 

change detection.  The effectiveness of M3C2 method also 

supported from Moghaddame-Jafari (2017) where the algorithm 

of M3C2 gave the sub-millimetre accuracy (0.4 mm) in vertical 

deflection measurement but the importance of correct 

registration and alignment of clouds need to be considered due 

to the sensitivity of registration errors.   

 

Haugen (2016) study about the comparison analysis between 

qualitative and quantitative in the displacement measurements 

of 3D LiDAR landslide data. Two registration methods of 

quantitative analysis were carried out by using Iterative Closest 

Point (ICP) and 3D Particle Image Velocimetry (3DPIV) to 

detect the translational slow-moving landslide. 3DPIV 

registration method shown more accurate and precise result than 

ICP method due to the less effect from vegetation growth and 

processing time. The complex of vegetation growth becomes 

problematic to the ICP windowed but it can be minimized by 

increasing the interval of landslide interest data collection.  

 

Oniga et al., (2016) also stated the importance to do the 

registration part as accurate as possible before performing the 

surface deviation analysis between clouds. Tie point-based 

registration method embedded in CloudCompare software is 

used to analyse the TLS data then carried out the accuracy 

evaluation by compared with the five pairs of point chosen and 

measured manually. The registration parameters between those 

two clouds were then estimated by using 3D conformal 

transformation and least squares methods which proved the 

methods can be used for 3D surface deviation analysis.  From 

these several previous studies, different methods of registration 

and different surface change detection displacement were 

evaluated in different ways and showed various of results. Some 

of the methods might be suitable for certain study area and 

some might be less suitability.  

 

Manousakis et al (2016) carried out a research on the 

comparison of UAV-enabled photogrammetry-based 3D point 

clouds and interpolated DSM of sloping terrain for rockfall 

hazard analysis.  The comparison procedure was utilized using 

CloudCompare software.  The results show that the 3D surface 

deviation method is the most suitable method to detect the 

changes of the area due to the rockfall phenomenon.   

 

Hence, this research will focus more on analysing the 3D 

surface deviation of two epoch’s MLS data using two different 

registration methods and four C2C distance methods. 

 

3. METHODOLOGY 

The methodology of the research comprises of five phases.  The 

phases are area data collection, processing of point cloud raw 

data, point cloud registration, surface deviation analysis and 

analysis of findings.  Below are the complete explanations of 

each phase.    

 

3.1 Phase I: Mobile Laser Scanning Data Acquisition 

As mentioned earlier elsewhere in the paper, the acquisition of 

3D point cloud data of the landslide surface was carried out 

using mobile laser scanning (MLS) system.  The MLS system 

known as Phoenix AL3-32 was one of the latest LiDAR system 

that was developed to acquire point cloud data with survey 

grade accuracy.  The Phoenix AL3-32 system is able to be 

operated in two MLS data acquisition modes which are vehicle-

based mode and human-based mode.  In this research, both 

vehicle-based and human-based mode was used to complement 

each other to acquire complete surface of the study area.  Figure 

7 shows the MLS data acquisition modes that were 

implemented in the research. 
 

 

Figure 7. Mobile laser scanning (a) vehicle-based mode and (b) 

human-based mode 
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The acquired MLS data consists of three data.  The first data 

was acquired using vehicle-based mode.  Due to the multi-

sloped form of the landslide area, the vehicle-based mode was 

not being able to scan part of the area.  The other two data were 

acquired using human-based mode.  Figure 8 shows the three 

MLS data that was successfully acquired to fully cover the 

landslide area.   

 

 

Figure 8. Mobile laser scanning data of the study area - (a) point 

cloud data acquired using vehicle-based mode; (b) point cloud 

data acquired using human-based mode 

 

3.2 Phase II: Processing of point cloud raw data 

The second stage involves in the research is the processing of 

point cloud raw data that was acquired using mobile laser 

scanning technology (as mentioned in section 3.1).  The 

processing tasks involves with the cleaning, filtering and 

merging of three-dimensional point cloud data using GIS spatial 

analysis methods.   

 

The cleaning process was then applied to the overall scanning 

data.  The purpose of the cleaning process is to delete the un-

used point cloud data that belong to the man-made objects such 

as houses, trees and others.  The data cleaning process was 

carried out manually.  Figure 9 shows the point cloud data that 

has been cleaned from the overall scanning data.   

 

 

Figure 9. Mobile laser scanning data after cleaning process 

 

The point cloud data (as shown in Figure 9) was then filtered 

using Adaptive TIN method.  The purpose of the filtering 

method is to separate the ground point cloud data from the non-

ground data.  The final output is the ground point cloud data of 

the study area.  The filtering process was carried out using 

TerraScan software.  The Adaptive TIN filtering method 

requires special parameters to perform the filtering process.  

Table 1 shows the parameters and the selected values that have 

been used in filtering the point cloud data. 

 

Parameter Value 

Max. building size 40.0m 

Terrain angle 50° 

Iteration angle 3.5° to plane 

Iteration distance 0.5m to plane 

Reduce iteration angle when 1.0m 

Table 1. Selected parameters for the filtering process using 

Adaptive TIN method 

 

The selection and determination of values for each parameter 

are referring to the actual situation of the study area.  The 

results of the filtering process are shown in Figure 10.   

 

 

Figure 10. Filtered mobile laser scanning data 

 

The final step in the processing of mobile laser scanning data is 

a merging process.  The purpose of the merging process is to 

accurately merge the three sets of point cloud data that has been 

acquired and filtered.  The merging process was carried out 

using a merging algorithm that was provided in the geo-

processing tools embedded in ArcGIS software.  Figure 11 

shows the mobile laser scanning data before merging process.  

While Figure 12 shows the final result of the merging process. 

 

 

Figure 11. Mobile laser scanning data before merging process 

 

Figure 12. Result for the merging process 

 

Table 2 summarized the chronology of the mobile laser 

scanning data processing tasks in the aspect of the density of 3D 

points.  The two epoch’s mobile laser scanning data was 

processed separately.   
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Chronology Epoch 1 Epoch 2 

All points (RAW data) 151314709 179634130 

After Crop 99286106 116976329 

After Filter 382029 390197 

After Merge 325185 357745 

Table 2. The chronology of the mobile laser scanning data 

processing tasks 

 

Table 2 shows that the density of the point cloud data started to 

largely reduced when the data was filtered.  The situation is 

happening caused by the removal of non-ground points from the 

original dataset.  As clearly shown in Table 2 that the merging 

process was also reduce the density of the filtered data caused 

by the removal of the redundant points in each dataset.  The 

final mobile laser scanning data is the 3D point clouds data that 

only belong to the terrain features of the study area.   

 

For the purpose of the surface deviation analysis process, the 

merged mobile laser scanning data (as shown in Figure 12) was 

gone through the second stage of data cleaning process.  In this 

process, the unnecessary point cloud data that not belong to the 

landslide surface was manually deleted.  Figure 13 shows both 

epoch 1 and epoch 2 mobile laser scanning data after the second 

stage of data cleaning process.   

 

 
 

Figure 13. Both epoch 1 and epoch 2 mobile laser scanning data 

after the second stage of data cleaning process  

 

Epoch Number of point 

clouds 

Precision (mm) 

1 299,017 

(X) 0.001900 

(Y) 0.003800 

(Z) 0.000500 

2 325,328 

(X) 0.001900 

(Y) 0.003800 

(Z) 0.000500 

Table 3. Metadata for epoch 1 and epoch 2 mobile laser 

scanning data after the second stage of data cleaning process 

 

3.3 Phase III: Point Cloud Registration  

Two methods were used to perform the point clouds registration 

process.  The two methods are: 

 Match Bounding-Box Centres (MBBC); and 

 Iterative Closest Point (ICP) 

 

In this research, the two epochs MLS datasets was first 

registered using MBBC registration method.  Figure 14 shows 

the MBBC registration process.  The details information of the 

MBBC registration method is discussed in section 2.2.1.   

 

 

Figure 14. Point clouds registration using MBBC method – (a) 

before the registration process, (b) after the registration process  

 

The second method used for the registration of the two epochs 

MLS datasets is the ICP registration method.  The details 

information on the ICP is discuss in section 2.2.2.  

CloudCompare software provides a capability to perform the 

ICP registration process automatically.  User needs to set the 

value for the number of iterations and the point sampling unit 

before executing the ICP registration process.  Figure 15 shows 

the ICP registration menu offers by the CloudCompare 

software.   

 

 

Figure 15. ICP registration process menu in CloudCompare 

software 

 

The calculated results for the ICP registration method was than 

appeared in the dialogue box as shown in Figure 16 below.  The 

calculated results show the RMS value, the number of clouds 

points involved in the calculation, the transformation matrix, 

the scale and percentages of the overlap.   
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Figure 16. ICP registration result  

 

Both MBBC and ICP methods allowed the user to set the 

reference dan the compared datasets to be used in the 

registration process.  In CloudCompare software, both methods 

were setup to process the data automatically.  The time for the 

processing task depends on the size of the point clouds datasets.  

Hugh size of datasets will take longer time to process as 

compared to the small size of datasets.   

 

3.4 Phase IV: 3D Surface Deviation Analysis  

In this research, the 3D surface deviation analysis is carried out 

using the C2C distance computation method via CloudCompare 

software.  The first step involve is the determination and the 

selection of the reference and the compared datasets.  The 

reference dataset is the epoch 1 data and the compared dataset is 

the epoch 2 data (as shown earlier in Figure 15).  Figure 17 

shows the selection of datasets to be used in the C2C distance 

computation process.   

 

 

Figure 17. The selection of datasets to be used in the C2C 

distance computation process 

The CloudCompare software will firstly calculates the 

approximate results for the distance computation between the 

selected datasets.  The nearest neighbor C2C distance 

computation can be carried out using the default settings by 

choosing the Compute button.  The default settings will 

automatically calculate the suitable Octree level value that is 

suitable to be used in the calculation process.  The 3D surface 

deviation result is shown and stored in epoch 2 datasets where 

the user can easily visualize the result by activated the data in 

the layer panel.  Figure 18 shows the C2C distance computation 

menu provide by the CloudCompare software.   

 

 

Figure 18. C2C distance computation menu provide by the 

CloudCompare software 

 

As mentioned earlier elsewhere in the paper, the CloudCompare 

software offers C2C distance computation through local surface 

model methods.  User can choose and select the local surface 

model methods from the local modelling menu.  Figure 19 

shows the menu for selecting the local surface model methods 

in CloudCompare software.   

 

 

Figure 19. C2C distance computation – selection of local 

surface model 

The local surface model C2C distance computation was 

calculated automatically by using the compute button that 

appeared in the software.  Again, the 3D surface deviation result 

is shown and stored in epoch 2 datasets where the user can 

easily visualize the result by activated the data in the layer 

panel.   
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The final output from the 3D surface deviation analysis is the 

deviation analysis result.  The result can be used to detect the 

changes due to the movement that occurs in the compared 

dataset as a difference to the reference dataset.  For better 

understanding of the result, CloudCompare software provides a 

colour scale that shows the value of the C2C distance 

computation (as shown in Figure 20).   

 

 

Figure 20. 3D surface deviation analysis result – the C2C 

distance computation values in colour scale mode 

 

The C2C distance computation process using CloudCompare 

software was exposed to many errors.  One of the most common 

errors is the problem on the results due to the un-necessary 

point clouds data that are not belong to the computed surfaces.  

For MLS datasets, the used of the most suitable filtering method 

is highly needed in order to produce the point clouds datasets 

that only belong to the ground surface.   

 

3.5 Phase V: Analysis of Results 

In this research, the study area was also mapped using UAV-

Photogrammetric method.  The series of stereo images was 

acquired using Phantom 4 DJI drone system at the similar 

epochs.  The images were than processed using structure from 

motion (SfM) method to produce the point cloud data of the 

study area.  Figure 21 show the Phantom 4 DJI drone system 

used in the research.   

 

 

Figure 21. UAV-Photogrammetric Drone System – Phantom 4 

DJI System 

The ICP registration method were than used to register the two 

epochs point cloud data and the process was end up with the 

C2C distance computation to show the movement area on the 

landslide surface.  Figure 22 shows the UAV-photogrammetric 

point cloud data and the C2C distance computation output.   

 

Figure 22. Analysis using UAV-Photogrammetric data – (a) the 

UAV-photogrammetric point clouds data and (b) the C2C 

distance computation output 

 

The 3D surface deviation analysis result that was produced from 

the UAV-Photogrammetric data (as shown in Figure 22 (b) 

were than compared with the 3D surface deviation analysis 

results that was produced from the MLS datasets.   

 

The analysis also involves with the analysis of C2C distance 

computation methods in order to find the most suitable point 

clouds registration method for MLS datasets.  The analysis 

involves with four C2C distance computation methods which 

are nearest neighbor, least square plane, 2D1/2 triangulation 

and quadric.  The data was processed five times and the average 

of the standard deviation of the C2C distance computation 

method was calculated.  The complete analysis of results was 

shows in section 4.3.    

 

4. RESULTS, ANALYSIS AND DISCUSSION 

The results of the research can be divided into two parts which 

are (a) point cloud registration results and (b) 3D surface 

deviation analysis results.  As mentioned elsewhere in the 

paper, the research only involves with common point cloud 

registration methods which are match bounding-box centres and 

iterative closest point.  Also mentioned that the cloud to cloud 

distance computation method is the only method used for 

analysing the surface deviation between the two epochs of point 

cloud datasets.  The details of the results are discussed below.   

 

4.1 Point cloud registration results 

Parameters for Match Bounding-Box Centers 

Registration Method 

Number of point clouds for Epoch 1 299,017 points 

Number of point clouds for Epoch 2 325,328 points 

Octree level (auto) 8 

Calculated Parameters for Match Bounding-Box 

Centers Registration Method 

Box dimension 

for Epoch 1 
X: 60.3984 Y: 92.8984 Z: 13.7 

Box dimension 

for Epoch 2 
X: 59.8984 Y: 92.9531 Z: 12.54 

Box center 

coordinates 
X: 73941.2 Y: 96521.1 Z: 31.72 

Table 4. Summary of the parameters involve in MBBC 

registration method 
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The final results for the MBBC registration method is the 4x4 

transformation matrix as shown in Figure 23.  While Figure 24 

shows the registered point cloud data.   

 

 
Figure 23. The 4x4 transformation matrix as a result from the 

match bounding-box centers registration method 

 

 

Figure 24. The result for match bounding-box centers 

registration method – the registered point cloud data 

 

Table 5 below shows the summary of the parameters involve in 

ICP registration method.   

 

Parameters for ICP Registration Method 

Parameters Value 

Number of iteration 30 

Random sampling unit 300,000 

Rotation XYZ 

Translation XYZ 

Calculated Parameters for ICP Registration Method 

Scale 1.00319 

RMS (computed on 231,410 points) 0.10891 

Table 5. Summary of the parameters involve in ICP registration 

method 

 

While, Figure 25 and Figure 26 shows the computed applied 

transformation matrix and the registered point clouds data for 

ICP registration method, respectively.  

 

 

Figure 25. Computed applied transformation matrix for ICP 

registration method 

 

 

 

Figure 26. The result for ICP registration method – the 

registered point cloud data 

 

The results gathered from the MBBC and ICP registration 

methods were than used in the 3D surface deviation analysis.   

 

4.2 3D surface deviation analysis results 

For each C2C distance computation method, CloudCompare 

software will compute four values for the distance which are the 

maximum distance, average distance, mean distance and the 

standard deviation.  Table 6 below shows the example of the 

computed values for nearest neighbor C2C distance 

computation for MBBC registration method.   

 

Computed Values for nearest neighbor C2C Distance for 

MBBC Registration Method 

Compute Distances 

(m) 

Mean Distance: 

0.286223 

    Standard Deviation: 

0.175165 

Max distance (m) 1.63581908 

 Average distance (m) 0.188983 

Table 6. Computed values for nearest neighbor C2C distance 

computation for MBBC registration method 

 

While, Table 7 below shows mean distance and standard 

deviation values for C2C distance computations (including the 

local surface models) for MBBC registration method.   

 

Local model methods 

C2C methods Mean distance Standard deviation 

Least square 

plane 

0.233652 0.180186 

2D1/2 

triangulation 

0.280690 0.178398 

Quadric 0.251922 0.183940 

Nearest neighbor 0.286223 0.175165 

Table 7. Mean distance and standard deviation values for C2C 

distance computations for MBBC registration method 

 

The bar graph in Figure 27 below shows the comparison of 

mean distance and standard deviation values for the C2C 

distance computation for MBBC registration method. 
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Figure 27. Comparison of mean distance and standard deviation 

values for the C2C distance computation for MBBC registration 

method  

 

Figure 27 (above) shows the differences in mean distance and 

standard deviation values for all C2C distance computation 

methods.  The nearest neighbor method shows the smallest 

standard deviation value as compared to other methods.  This 

result gives an indicator that the best C2C distance computation 

method for MBBC registration output for MLS datasets is the 

nearest neighbor.   

 

Table 8 below shows the example of the computed nearest 

neighbor C2C distance computation for ICP registration 

method.  While, Table 9 below shows mean distance and 

standard deviation values for C2C distance computations 

(including the local surface models) for ICP registration 

method.    

 

Computed Values for nearest neighbor C2C Distance for 

ICP Registration Method 

Compute 

Distances (m) 

Mean Distance: 

0.171775 

Standard Deviation: 

0.176260 

Max distance (m) 1.645252 

Average distance 

(m) 
0.0875221 

Table 8. Computed Values for nearest neighbor C2C distance 

computation for ICP registration method 

 

Local model methods 

C2C methods Mean distance Standard 

deviation 

Least square plane 0.129874 0.165488 

2D1/2 triangulation 0.159628 0.177548 

Quadric 0.143082 0.176709 

Nearest Neighbor 0.171775 0.176260 

Table 9. Mean distance and standard deviation values for C2C 

distance computations for ICP registration method 

 

The bar graph in Figure 28 below shows the comparison of 

mean distance and standard deviation values for the C2C 

distance computation for ICP registration method. 

 

 

Figure 28. Comparison of mean distance and standard deviation 

values for the C2C distance computation for ICP registration 

method  

 

Figure 28 (above) shows the differences in mean distance and 

standard deviation values for all C2C distance computation 

methods.  The least square plane method shows the smallest 

standard deviation value as compared to other methods.  This 

result gives an indicator that the best C2C distance computation 

method for ICP registration output for MLS datasets is the least 

square plane.   

 

Figure 29 below shows the example of nearest neighbor C2C 

distance computation results for both MBBC and ICP 

registration methods for the study area.   

 

 

Figure 29. The nearest neighbor C2C distance computation 

results – (a) C2C result from the MBBC registration output, (b) 

C2C result from the ICP registration output 

 

The above figures show that there is a movement occurs at the 

study area.  The highest movement happened at the area with 

the red colour.  It can be clearly seen that both MBBC and ICP 

methods shows almost similar results especially at the area with 

the highest movement value.  The questions arise here are (a) 

which point clouds registration method is the most suitable 

method for MLS datasets? and (b) which C2C distance 

computation method is the best method that can give the best 

results for detecting movement at the landslide area via MLS 

datasets?.   

 

4.3 Overall analysis of the results 

The overall analysis of the results obtained from the research 

was carried out in two ways, which are (a) the comparison 

analysis between the C2C results from the MBBC and ICP 

methods using mobile laser scanning data with the C2C result 

that was generated from the UAV-Photogrammetric data, and 

(b) the comparison analysis between the four C2C computation 
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methods that was finally give the finding on which registration 

methods that was suitable to be used in analysing the landslide 

movement from mobile laser scanning data.   

 

4.3.1 The comparison analysis using UAV-

Photogrammetric Data  

 

In this research, the C2C result that was generated from the 

UAV-Photogrammetric data was selected as benchmark data to 

evaluate the C2C results from both MBBC and ICP methods.  

Figure 30 shows the comparison analysis between the C2C 

distance computation results that was generated from the UAV-

photogrammetric data and C2C distance computation results 

that was generated from mobile laser scanning data.   

 

Figure 30. The comparison analysis between the outputs of 

cloud to cloud distance computations – (a) C2C results from 

UAV-Photogrammetric data, (b) C2C result from mobile laser 

scanning data for match bounding-box centres method and (c) 

C2C result from mobile laser scanning data for ICP method 

According to Figure 30, both C2C results (as generated from 

the MBBC and ICP registration methods) was found similar 

with the C2C result that was generated from UAV-

Photogrammetric data.  The finding also concludes that both 

MBBC and ICP methods can be used to detect the movement of 

the landslide surface.   

 

4.3.2 The analysis of C2C distance computation methods  

The second analysis involves with the analysis of all the C2C 

distance computation methods (least square plane, 2D1/2 

triangulation, quadric and nearest neighbor) which refers to the 

average standard deviation values that was generated from the 

MBBC and ICP registration outputs (as shown in Table 10).  

While Figure 31 shows the statistical plot for the comparison 

analysis of the C2C accuracy between MBBC and ICP 

registration methods.   

 

C2C computation 

methods 

Average 

standard 

deviation values 

(MBBC 

Method) 

Average 

standard 

deviation values 

(ICP Method) 

Least square plane 0.180186 0.165488 

2D1/2 triangulation 0.178398 0.177548 

Quadric 0.183940 0.176709 

Nearest neighbor 0.175165 0.170206 

Table 10. The average C2C distance computation standard 

deviation values between MBBC and ICP methods 

 

Figure 31. The comparison of C2C distance accuracy between 

MBBC and ICP registration methods 

 

Figure 31 shows that the ICP registration method prove to be 

the best method to be used to detect and to monitor the 

movement of the landslide area using mobile laser scanning 

data.  The least square plane C2C distance computation method 

shows the lowest standard deviation value and also prove to be 

the most suitable method to be implemented for the detection of 

the changes between the two epoch’s mobile laser scanning 

datasets.   

 

5. CONCLUSION 

As mentioned at the beginning of the paper, the aim of the 

research is to find the best point clouds registration and cloud-

to-cloud distance computation methods for the change detection 

analysis of landslide movement from the data acquired using 

mobile laser scanning system.  It can be concluded that the 

Iterative Closest Point (ICP) registration method and Least 

Square Plane C2C distance method were the best method 

among others in terms of obtained better accuracy for the 3D 

landslide surface change detection of Mobile Laser Scanning 

data between two epochs. In the future, the results from this 

research can be used as a guideline especially in landslide 

movement change detection analysis and also for various kind 

of applications that handled with 3D surface data. 

 

 

ACKNOWLEDGEMENTS 

This research is part of the Universiti Teknologi Malaysia 

Research Grant under the vot number 19H69.   

 

 

REFERENCES 

Barnhart, T. B., and Crosby, B. T., 2013. Comparing two 

methods of surface change detection on an evolving thermokarst 

using high-temporal-frequency terrestrial laser scanning, 

Selawik River, Alaska. Remote Sensing, 5(6), 2813-2837. 

 

Haugen, B. D., 2016. Qualitative and quantitative comparative 

analyses of 3D lidar landslide displacement field measurements: 

Colorado School of Mines. 

 

Jafari B.M., 2016. Deflection Measurement Through 3D Point 

Cloud Analysis. Thesis. Master of Science Civil and 

Infrastructure Engineering. George Mason University. 2016.   

 

Manousakis J, Zekkos D, Saroglouc H and Clark M., 2016. 

Comparison of UAV-Enabled Photogrammetry-Based 3D Point 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W9, 2018 
International Conference on Geomatics and Geospatial Technology (GGT 2018), 3–5 September 2018, Kuala Lumpur, Malaysia

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-4-W9-11-2018 | © Authors 2018. CC BY 4.0 License.

 
20



 

Clouds and Interpolated DSMs of Sloping Terrain for Rockfall 

Hazard Analysis. The International Archives of the 

Photogrammetry, Remote Sensing and Spatial Information 

Sciences, Volume XLII-2/W2, 2016 11th 3D Geoinfo 

DConference, 20–21 October 2016, Athens, Greece  

 

Moghaddame-Jafari, B., 2017. Deflection Measurement through 

3D Point Cloud Analysis. 

 

Oniga, E., Savu, A., and Negrila, A., 2016. The Evaluation of 

Cloudcompare Software in The Process of Tls Point Clouds 

Registration (Vol. 21). 

  

Shen Y, Lindenbergh R and Wang J., 2017. Change Analysis in 

Structural Laser Scanning Point Clouds: The Baseline Method. 

Sensors 2017, 17, 26; doi:10.3390/s17010026  

 

 

 

 

Revised August 2018 

 

 

 

 

 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W9, 2018 
International Conference on Geomatics and Geospatial Technology (GGT 2018), 3–5 September 2018, Kuala Lumpur, Malaysia

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-4-W9-11-2018 | © Authors 2018. CC BY 4.0 License.

 
21




