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ABSTRACT: 

 

For the past 10 years, the Philippines has seen and experienced the growing force of  different natural disasters and because of this 

the Philippine governement started an initiative to use LiDAR technology in the forefront of disaster management to mitigate the 

effects of these natural phenomenons. The study aims to help the initiative by determining the shape, number and distribution and 

location of buildings within a given vicinity. The study implements a Python script to automate the detection of the different 

buildings within a given area using a RANSAC Algorithm to process the Classified LiDAR Dataset. Pre-processing is done by 

clipping the LiDAR data into a sample area. The program starts by using the a Python module to read .LAS files then implements the 

RANSAC algorithm to detect roof planes from a given set of parameters. The detected planes are intersected and combined by the 

program to define the roof of a building. Points lying on the detected building are removed from the initial list and the program runs 

again. A sample area in Pulilan, Bulacan was used. A total of 8 out of 9 buildings in the test area were detected by the program and 

the difference in area between the generated shapefile and the digitized shapefile were compared.   

 

 

1. INTRODUCTION 

In recent years there has been an increasing demand for detailed 

3D building descriptions from Airborne Laser Scanning (ALS) 

also referred to as airborne LiDAR data. Adding the third 

dimension to planimetric ground plans allow analyzing building 

heights and their variation, roof shapes and orientation, and 

visibility studies, etc. (Jochem, et. al, 2009). The 3D description 

contains the two dimensional planar coordinates along with the 

addition of a third dimension that represents the elevation of the 

point.  

 

The emergence of LiDAR technology has paved the ways to 

different opportunities that has benefited the improvement of 

the lives of people. It is used in Urban planning, Environmental 

monitoring, Telecommunications and in Disaster mitigation. 

The information we get from this technology has impacted our 

means and considerations for decision making. The problem 

with this technology is the sheer amount of information, the size 

of the data. More importantly, the time it takes to process the 

data into useful information. 

 

LiDAR data is used to classify and separate different buildings 

from each other. The problem lies in the subjectivity of the 

classification of these buildings. One building may be 

composed of various smaller buildings that cannot be 

immediately distinguished. This may cause problems ahead as it 

does not take into account the actual distribution of buildings 

within the composite object. 

 

In this study, a program is created to detect roof planes from 

LiDAR point cloud data and determine if these planes are part 

of a single building. The algorithm of RANSAC is used as the 

basis of obtaining the planar features used to detect the 

buildings. This study is done to accompany the efforts of the 

government agencies in simulating the different disasters, 

primarily flooding, and determining where and how many 

buildings will be affected in a disaster prone area once the 

disaster hits.  

2. LITERATURE REVIEW 

Light Detection and Ranging (LiDAR) technology is applied in 

airborne laser scanners for an efficient gathering of spatial 

information. LiDAR data covers information of the ground 

terrain as wells as man-made structures and vegetation (Liu, 

2008). These systems use laser light pulses to measure distance. 

While the acquisition and use of LiDAR data is effective and 

significantly less time consuming than conventional data 

gathering methods, it is important to note that according to 

Maltezos and Ioannidis (2016), the quality of the plane 

detection results using LIDAR point clouds is significantly 

depended by noise, position accuracy, local under-sampling, 

very large amount of data (having impact on the computational 

time), low point density, etc. Classified LiDAR data are points 

already classified to belong to a certain category during the pre-

processing stage of the data generation. 

 

There have been numerous procedures and algorithms done to 

detect a roof plane from a set of 3D points. Some algorithms 

make use of different input datasets. Some use LiDAR data, 

Aerial Photographs; LiDAR derived Digital Surface and Terrain 

Models or a combination of the different sets of data. 

 

Awrangjeb et. al. (2013) presented a rule-based approach for 

automatic roof extraction. This approach classified the raw 

LiDAR point cloud into ground and non-ground points. A 

building mask was generated using the ground points and 

individual buildings and trees were obtained as clusters of black 

pixels from the mask. The co-planarity of each non-ground 

point was tested using the Delaunay neighborhood. After that, 

planar segments were extracted from the non-ground LiDAR 

points. To refine the results the authors introduced a rule-based 

approach. Finally, false planes were removed to get the final set 

of roof planes. Experimental results showed that the approach 

missed small buildings and roof planes. Sampath and Shan 

(2010) presented a solution framework for building roof 

extraction. It determined the planarity of each LiDAR point 

based on eigenvalue analysis. Non-planar points were discarded 
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for further processing. After that, it clustered the planar points 

by using fuzzy k-means approach. The framework achieved 

good evaluation results. However, the method exhibited high 

reconstruction error due to removal of LiDAR points near to the 

plane boundaries. Moreover, the fuzzy k-means clustering 

algorithm is computationally expensive. Tarsha-Kurdi et al. 

(2008) applied an extended robust estimation technique on the 

regenerated LIDAR point cloud using a Hough-Transform and 

RANSAC algorithm. After converting the original point cloud 

into a DSM, the missing points were estimated as the mean of 

the neighboring points. Then a low-pass filter was applied and 

the raster point cloud was converted to the raw point cloud. As a 

result, the regenerated points suffer from decreased positional 

accuracy. 

 

The principle of RANSAC algorithm consists to search the best 

plane among a 3D point cloud. In the same time, it reduces the 

number of iterations, even if the number of points is very large. 

For this purpose, it selects randomly three points and it 

calculates the parameters of the corresponding plane. Then it 

detects all points of the original cloud belonging to the 

calculated plane, according to a given threshold. The input 

parameters for RANSAC are the 3D point cloud data, tolerance 

threshold of distance, foreseeable support, and the probability 

value. 3D point cloud data is a matrix containing columns of X, 

Y and Z values. Tolerance threshold of distance indicates the 

highest allowable error for a point to be considered as part of a 

plane. Foreseeable support indicates the number of points to 

define a plane. Probability indicates the strength of the iteration 

process, as it closes to 100%, it is more accurate. Afterwards, it 

repeats these procedures N times; in each one, it compares the 

obtained result with the last saved one. If the new result is 

better, then it replaces the saved result by the new one. (Yang 

and Forstner, 2016).  Determination of basic shapes could be 

applied on the planes determined by RANSAC. This is done by 

setting the shapes as proxy of the points it once belong and 

finding if the planes produces a shape such as cylinders, 

spheres, etc. This could be done by joining the planes that make 

up the shapes it defines. (Schnabel, Wahl, & Klein, 2007)  

 

Laspy is a python library for reading, modifying, and creating 

.LAS LIDAR files. LIDAR data is analogous to RADAR with 

LASERs, and is short for Light Detection and Ranging. This 

library provides a python API to read, write, and manipulate one 

popular format for storing LIDAR data, the .LAS file (Brown & 

Butler, 2014). It is a computationally efficient workflow 

developed in Python for processing and analyzing the massive 

LiDAR point cloud. To exploit the inherent parallelism in 

analysis of LiDAR point cloud data, a parallel scheme was 

implemented to allow processing of each “LAS” file in a 

different process on a multi-core machine. (Kumar, et al., 2016) 

 

This study makes use of the Laspy and LibLas to open, read, 

write, handle and manipulate LiDAR data within the Python 

environment. 

 

3. METHODOLOGY 

The methodology used is divided into three general workflow. 

(1).LAS Clipping, (2)Plane Detection and (3)Building 

Detection. An extension of the study is done by using ArcGIS 

to visualize and compare the results to pre-existing 

methodologies (manual digitization).  

 

 

 
Figure 1. General Workflow 

 

3.1. LAS Clipping  

 

Classified LiDAR data is used in the study. The data used are 

classified building points pre-processed using a proprietary 

software (Bentley Microstation). Cloud Compare software was 

used to visualize and clip the classified data into smaller sample 

areas.  

 

3.2. Plane Detection 

 

 
Figure 2. RANSAC Plane Detection Flowchart 

 

The study created an algorithm for plane detection in Python 

based on the research or Tarsha-Kurdi. It then extended the 

research to include the intersection and joining of the results of 

the plane detection to recreate the roof facet of a building, 

ultimately detecting the structure as an individual built-up 

feature. Figure 2 gives the flowchart for the RANSAC plane 

detection algorithm. The input file needed for the program is a 

.CSV or an ASCII file. A separate program is used to read, 

write and convert the .LAS file to a .CSV or an ASCII file using 

the laspy module of Python.  The program starts by importing 

all the points found within the input file along with the 

corresponding point numbers. The program selects three (3) 

random points from the imported set of points. From the 

selected points, the program creates a plane. Instead of using the 

Cartesian equation of a plane, the program uses the normal form 

of the equation of the plane (Tarsha-Kurdi, 2011). The equation 

is given by the form: 

  

      (1) 

 

Equation 1 presents the normal equation of a plane where θ, φ 

and ρ are the parameters of the normal passing through the 

origin. These parameters are constant. This form of the plane 

equation is used because the distances of the points from the 

plane obtained are normal to the plane. The distances obtained 

are the shortest to the plane because it is orthogonal to the 

plane. After creating the plane from the three randomly selected 

points, the program computes the distances of every other point 

from the plane. The distance of a point to the plane is given by: 

 

   (2) 
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Equation 2 gives the function that calculates the distances of a 

given point from the given plane where X, Y and Z are the three 

columns of the matrix point list; θ, φ and ρ are the plane 

parameters. After the distances of every point to the plane are 

computed, the program checks the number of points within a 

distance threshold t. If the amount of points within the threshold 

range is within the minimum number of points, s, needed to 

accept the model plane, the plane is saved. 

 

The program iterates for N number of times to determine the 

best plane. The number of iterations is given by: 

 

      (3) 

 

Equation 3 describes the computation of the number of 

iterations needed where N is the total number of iterations, ε is 

the percentage of observations allowed to be erroneous, α is a 

minimum probability of finding at least one good set of 

observations in N trials. It lies usually between 0.90 and 0.99 

and s is the minimum number of points necessary to calculate 

the parameters of the model. For each iteration, the number of 

points within the range of threshold is determined and compared 

to the previously saved model. If the new model contains more 

points, the previous model is discarded and overwritten by the 

new model. Each set of points in the best model is filtered, 

saved and written in a separate text file and are deleted from the 

original set of points. The points lying on the best plane are 

removed from the initial list of points and saved in a separate 

text file. 

 

The original RANSAC algorithm determines the best model 

that describes a given set of points. The result of the algorithm 

is the parameters of the best model. In the case of the study, the 

product of the algorithm is the parameters of the best plane that 

fits the set of points. Points lying on the plane that are 

significantly distant from the other points may occur so long as 

the distance of the point to the plane is within the distance 

threshold. To address this case, the program filters the points 

before saving and deleting the final list of points from the 

original set of points. It is also added as another input for the 

implementation of the program. To filter the set of points, the 

program selects a point and buffers at a user specified distance; 

ideally, the maximum distance of each point in a roof plane 

from one another. Points that fall within the buffered zone of the 

first point buffers again at the same distance until all possible 

points are covered in the buffered zone. The program breaks 

and does not include all other points lying on the same plane but 

do not fall within the buffer zone from the final list of points. 

The final list is then removed from the original list and is saved 

to a separate text file. The program runs again to determine all 

the possible planes in the input set of points. 

 

Figure 3 presents the pseudocode for the RANSAC plane 

detection algorithm used in the study. 

 

The program iterates the RANSAC Plane Detection algorithm 

to find all the best planes within the given data points. Once all 

the planes have been determined, the program checks the 

highest point on the initial plane and checks if it is within a user 

specified distance from an introduced plane. If it does not 

connect at the first try, it repeats the process but the highest 

point would come from the introduced plane. If the points fall 

within the distance, the program will set the initial plane to be 

the joined point list of the two planes that was processed. The 

program does not limit the connection between planes to only 

two planes. It may connect multiple determined planes as long 

as the specified distance between the highest points of different 

planes are within the set value. 

 
Figure 3. Pseudocode for Plane Detection 

 

3.3 Building Detection 

 
Figure 4. Pseudocode for Building Detection 

 

The rationale behind the idea of connecting the highest points as 

a factor in determining a building lies within the intuition that 

roof planes connect at the highest points and not the lowest 

points. The method was chosen so that the program may still be 

used on closely structured buildings for it to determine a single 

building. In addition to the building detection algorithm, the 

program also checks the number of points belonging to a single 

building. If the number of points within the detected building is 

less than a user specified number of points, the program will not 

consider it as a single building. Figure 4 presents the 

pseudocode for the feature determination or building detection 

algorithm.  

 

3.4 Shapefile Generation 

The resulting set of detected building points are imported into 

ArcGIS. The points are saved as shapefiles and the Aggregate 

Points tool command is used to generate the 2D shapefile that 

covers all the detected building points. The generated 2D 

shapefile is compared to the manually digitized polygonal 

shapefile from the DSM and orthophoto to determine the 

similarity between the two shapefiles. Similarities between the 
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two polygons are done in terms of area size to compare the two 

generated shapefiles. 

 

3.5 Data 

For the study, the subject area chosen is in Pulilan, Bulacan. 

The subject area was chosen due to the relatively high density 

of LiDAR data in the area. The area had an average density of 6 

to 8 points per square meter. The LiDAR data was obtained 

from the UP Phil-LiDAR 1 program. The study area had 

multiple overlapping flights, which increased the density of the 

data for the subject area. 

 

 
Figure 5. Isometric View of the LiDAR Data in the Test Area of 

Pulilan, Bulacan 

 

Figure 5 shows the classified LiDAR data of the subject area in 

front view. The points are classified building points pre-

processed using a proprietary software. A sample area is clipped 

from the LiDAR data to test the program.  

 

 
Figure 6. Top View of the LiDAR Data in the Test Area 

 

 
Figure 7. Ortho-photo of Test Area  

 

Location Pulilan, Bulacan 

Total Number of Buildings 9 Buildings 

Total Number of Points 9,092 Points 

Total Area 1,083.63 sq.m. 

LiDAR Density 8.41 Points per sq. m. 
 

Table 1. Test Area Details 

 

4. RESULTS AND ANALYSIS 

4.1 Results  

LAS Clipping is done before importing the data to the program. 

The parameters set for the code are 300 points for the minimum 

acceptance for a model, 0.1m maximum distance of the point to 

the plane, 0.5m maximum distance for the point filtering and 

0.9 for the minimum probability of finding a model. Table 2 

shows the summary of parameters used for the sample area. We 

used the value of 300 points for the minimum acceptance 

because as per observation and analysis of the sample area, it 

would be the probable minimum for a recognizable plane based 

on the density and a plane area. 0.1 and 0.5 meters were used 

for maximum distances of point to plane and point filtering, 

respectively, to prevent any excess or insufficiency in the points 

of the plane, which is the result from the observation of testing 

the values. We set the probability to the minimum acceptable 

which is 90% as to lower the number of iterations for a faster 

processing. The results obtained for the plane detection and 

building detection for the sample area are shown Figures 8 and 

9. 

 

Table 2. Summary of Parameters Used for the Test Area 

Parameter Value 

Min. # of points for 

acceptance 

300 Points 

Min. distance of point to 

plane 

0.1 meter 

Max. distance between points 

for filtering 

0.5 meters 

Min. Probability of Finding a 

Good Set of Observations (α) 

0.9 (90%) 

 

Figure 8 shows the planes detected for the sample area. Each 

color represents the points lying on the detected plane. For the 

sample area, a total of 33 planes were detected, and from those 

planes, a total of 8 buildings were identified. 7,896 points were 

included in the results; these points were determined by the 

program to belong to a plane. The code ran for a total of 5 

hours, 11 minutes, and 8 seconds (05:11:08).   

 

 
Figure 8. Detected Planes (Left) and Detected Buildings (Right) 

 

Detected Planes 33 Planes 

Detected Buildings 8 Buildings 

Total Number of Points used 7,869 Points 

Total Code Runtime 05:11:31 

Table 3. Summary of results on sample area 
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4.2 Analysis 

For the test area, a total of 33 planes were detected. Upon visual 

inspection of the sample area, 24 planes can be seen. The 

program resulted to detecting 33 out of 24 planes. This result is 

attributed to the small planes detected on the upper right 

building of the test area as seen on Figure 8 (left). Though the 

detected planes are more than what is expected, the program, 

thus creating a roof structure, joined these planes together. Eight 

(8) out of the expected nine (9) buildings were detected. The 

building on the lower rightmost of Figure 8 (right) was not 

detected by the program. Only 7,896 points of the 9,092 points 

were classified as belonging to a specific plane. The remaining 

points were not classified. The remaining points appear to be 

relatively distant from one another unabling to program to 

create a plane that would accommodate the remaining points at 

the given parameters.  

 

The program ran on a test bench with an Intel Core i5-2410M 

with 4GB of RAM. The total runtime of the plane detection 

code is 5:11:08. Figure 10 breaks down the runtime per plane on 

the sample area. 

 

 

Figure 9. Runtime per plane (in minutes) 

 

The larger planes on Figure 8 (left) were the first to be detected 

while the smaller planes were detected the last. According to 

Figure 9, the first plane took 1:30:02 to run while the rest took 

less than an hour. A pattern appears on the plane detection 

runtime. The runtime decreases per plane. The succeeding 

runtime per plane becomes faster due to the decreasing number 

of points per iteration of a new plane. As for the shapefiles 

generated and digitized, similarity was tested in terms of their 

relative area. Table 4 presents the difference in area between the 

two shapefiles. 

 

 

Similarity (Area) 

Building Derived 

Shapefile 

(sq.m.) 

Digitized 

Shapefile 

(sq.m.) 

Deviation 

(%) 

Building 1 113.36 148.88 23.86 

Building 2 115.07 140.98 18.38 

Building 3 120.63 134.67 10.43 

Building 4 130.42 160.9 18.94 

Building 5 112.03 145.75 23.14 

Building 6 127.65 157.86 19.14 

Building 7 134.98 146.59 7.92 

Building 8 30.96 45.04 31.26 

Table 4. Area deviation between shapefiles 

 

 

Figure 10. Generated and Digitized Shapefiles from the test area 

 

Table 4 provides the areas of the derived and digitized 

shapefiles along with its corresponding deviations. The largest 

deviation can be seen on building 8 with its area being 31.26% 

different from the digitized shapefile. Building 8 pertains to the 

lower rightmost building in Figure 8. The difference is 

attributed to the lack of points detected for that specific 

building. It is import to note, however, that the digitization of 

building features is done in the LiDAR-derived Digital Surface 

Model and not the Ortho-photo. The Ortho-photo only serves as 

a check for the proper location of the feature on the DSM. The 

digitized shapefiles in Figure 10 are not necessarily the true 

shape of the feature on the DSM. For the study, the DSM was 

not obtained as a primary data for checking; only the Ortho-

photo was obtained and used to check and compare the results 

of the building detection. 

 

 

 

Sample 

Area 

Min. 

points for 

acceptance 

Plane 

Detection 

Runtime 

Building 

Detection 

Runtime 

Total 

Runtime 

300 Points 5:11:08 0:00:23 05:11:31 

1,000 

Points 

0:25:31 0:12:30 00:37:01 

Table 5. Comparison of Runtime at different Min. points 

 

 

Figure 11. Detected Buildings at different minimum accepted 

points; 300 points (left) and 1000 points (right) 

 

Using the same test bench at different minimum points for 

acceptance parameter, the total runtime of the code significantly 

decreased. The other parameters involved in the code remained 

the same except for the minimum number of points for 

acceptance. At 1,000 points the total runtime of the code was 

only 00:37:01; only 11% of the original runtime. The significant 

decrease in runtime is attributed to the significant decrease in 
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iterations. Recall that the number of iterations needed for the 

plane detection is a logarithmic function of the minimum 

number of points for acceptance. At 1,000 point the number of 

iterations significantly decreased thus affecting the total runtime 

of the code. Figures 11 shows the results of the code at different 

minimum points for acceptance; the same eight buildings were 

detected and the lower rightmost plane seems to have detected 

more points for the 1,000 minimum points. Other detected 

buildings also seem to have more points for the 1,000 minimum 

points. By visual inspection, the 1,000 minimum points provide 

a more general result than the 300 minimum points for the 

sample area. 

 

4.3 Limitations 

The result of the plane and building detection is not exactly a 

plane with defined plane parameters and bounded by lines. It is 

not geometrically a plane; instead, the result is a list of points 

that belong to a specific plane. The geometric primitives are still 

points, not planes. These points take a considerable amount of 

time to process instead of a simple plane. The result of the Test 

Bench suggests that the program is heavily dependent on the 

computing power of the hardware and the parameters set to 

define the plane. The code is not optimized to run significantly 

faster on lower platforms. The program is not made to run in 

parallel with other cores and threads of the CPU. The program 

has a hard time detecting roof structures with relatively complex 

plane distribution. Some unconventional types of roof are not 

detected because the program checks the highest point for each 

plane. Roof with attics are not immediately detected by the 

program due to the small sizes of the planes that make up the 

attic on a roof structure. Lastly, the data utilized in the study has 

a significantly high density compared to other LiDAR datasets. 

The parameters are set to accommodate the resolution and 

density of the data. Other LiDAR dataset with lower density 

might need to have different corresponding parameters 

depending on the quality of the data. 

 

5. CONCLUSIONS AND RECOMMENDATIONS 

The study is able to develop a methodology that extends the 

RANSAC algorithm used by Tarsha-Kurdi et. al. to cater to the 

objective of the study. It was able to develop a RANSAC 

methodology in Python for plane detection. Depending on the 

parameters set, the results of the RANSAC algorithm would 

vary depending on the level of details needed along with the 

time required to finish the computation. Alongside the 

RANSAC algorithm, the study develops another methodology 

for Building Detection that joins the result of the plane detection 

to create a roof structure. To implement the methodology 

developed, the study is able to create a program in Python that 

would ultimately detect buildings from the classified LiDAR 

data. The derived shapefiles from the detected buildings proved 

to be significantly similar to the shapefiles digitized from the 

Ortho-photo and having a maximum deviation of 31% in terms 

of polygonal area. 

 

The study tried to incorporate the CGAL (Computational 

Geometry Algorithms Library) project, a pre-built set of 

algorithms library from C platform bound unto Python to 

address the geometric computations needed for the program. 

Unfortunately, the specific algorithm bindings in CGAL, the 

point/shape detection tool needed for the study was not yet 

bound to Python.  

 

For this study, a sample area in Pulilan, Bulacan containing a 

total of 9 buildings with an area of 1080.63 sq.m. is used. The 

program was able to detect 8 of the 9 buildings and a total of 

7,879 points were classified as belonging to a building. It is 

recommended that for larger and well-spaced building areas like 

the sample area used, a larger number of minimum points is set 

due to the smaller number of iterations, short amount of runtime 

and generalized plane features. For smaller and more detailed 

areas, a larger density of the area and smaller minimum points 

for acceptance may be required to get more details of the planes 

and the buildings.  

 

The authors recommend the extension of the study to use plane 

as the geometric primitives instead of points so that 

computations may become less tasking for the computations. 

Plane outputs (.ply) would also be better since it could be 

applicable to convert to COLLADA for a better 3D 

visualization, such as exporting the building outputs into 

Google Earth Features. Other programming means, or other 

python modules may do automated generation of shapefiles, as 

it requires isolation of the boundaries of each building. The 

point filtering system used is not optimized. It is still not tuned 

to work for all kinds of dataset. The tuning of the parameters for 

filtering of points may be improved to further refine the results 

of the program. Aggregation of points to a polygon shapefile 

may also be automated by the use of ArcPy or with the aid of 

the Model Builder, an extension of ArcGIS to further extend the 

use of the program. In line with the use of CGAL, it is 

recommended to develop the program in other platforms to test 

the efficiency and effectivity of the platform, as well as the 

CGAL library. 
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