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ABSTRACT: 

Remote sensing has been widely used for landslide inventory mapping and monitoring. Landslide activity is one of the important 

parameters for landslide inventory and it can be strongly related to vegetation anomalies. Previous studies have shown that remotely 

sensed data can be used to obtain detailed vegetation characteristics at various scales and condition. However, only few studies of 

utilizing vegetation characteristics anomalies as a bio-indicator for landslide activity in tropical area. This study introduces a method 

that utilizes vegetation anomalies extracted using remote sensing data as a bio-indicator for landslide activity analysis and mapping. 

A high-density airborne LiDAR, aerial photo and satellite imagery were captured over the landslide prone area along Mesilau River 

in Kundasang, Sabah. Remote sensing data used in characterizing vegetation into several classes of height, density, types and 

structure in a tectonically active region along with vegetation indices. About 13 vegetation anomalies were derived from remotely 

sensed data. There were about 14 scenarios were modeled by focusing in 2 landslide depth, 3 main landslide types with 3 landslide 

activities by using statistical approach. All scenarios show that more than 65% of the landslides are captured within 70% of the 

probability model indicating high model efficiency. The predictive model rate curve also shows that more than 45% of the 

independent landslides can be predicted within 30% of the probability model. This study provides a better understanding of remote 

sensing data in extracting and characterizing vegetation anomalies induced by hillslope geomorphology processes in a tectonically 

active region in Malaysia. 

1. INTRODUCTION

Landslides are the main geological hazards in many 

mountainous areas, where they occur regularly and rapidly at 

the same area in spatio-temporal way (McKean and Roering, 

2004; Lee, 2007a), causing major material loss, environmental 

damage and loss of life. Landslide occurrences are regularly 

triggered by several natural phenomena, such as heavy rainfall 

and earthquake. A landslide will be called rainfall-induced 

rainfall and earthquake induced landslide, respectively, which 

difficult to predict unless seismic activity and rainfall 

distribution data are available (Glenn et al., 2006; Schulz, 2007; 

Haneberg, Cole and Kasali, 2009).  It is essential to obtain an 

accurate landslide inventory analysis to make sure the accuracy 

of landslide susceptibility and risk analysis can be maintained 

(Ardizzone et al., 2007; Akgun, Dag and Bulut, 2008; Bai et al., 

2010; Constantin et al., 2011; Guzzetti et al., 2012).  

Landslide in Malaysia had caused huge amount of damages in 

terms of property, life and economic losses. It mostly affected 

mountainous and low stability areas due to rapid movement of 

soil. Due to modern development in Malaysia since 1980s, only 

a few low-lying and stable areas remain that are still available 

for residential or commercial development. This had put the life 

and property of people in risk of death and destruction. As a 

result, the development of highland or hilly terrain has increased 

to meet the demand for infrastructure, particularly in areas 

adjacent to high density cities. Such a situation has increased 

the probability of losses due to landslide phenomenon 

(Jamaludin and Hussein, 2010). 

For the last decade, method of detecting landslide under 

forested area has been dependent on geological, 

geomorphological features and drainage pattern of the area 

(McKean and Roering, 2004; Haneberg, Cole and Kasali, 2009; 

Hutchinson, 2009). Although this method would give a reliable 

landslide area, using tree condition as an indicator of landslide 

activity can lead to new methods of predicting and providing 

enough details about landslide activity (Harker, 1996; Razak et 

al., 2013; Razak et al., 2013b). Conventionally, landslide 

inventory mapping had undergone the process of visual 

interpretation based on stereoscopic images and verified with 

field verification. Next, image analysis by using aerial 

photographs, satellite and radar images had successfully 

emerged as it is efficiently capable in covering large areas; 

however, it is less accurate in mapping the landslide in forested 

terrain (Will and McCrink, 2002; Eeckhaut et al., 2007). This is 

because reflectance spectra of vegetation conceal the spectra of 

underlying soils and rocks and vegetation, which is the most 

critical barrier for geologic identification and mapping (Hede et 

al., 2015). This reason can be used to utilize trees in generating 

bio-indicators of landslide activity by recognizing local 

deformation and different episodes of soil displacement (Parise, 

2003). However, most of the study had not focused on 

vegetation anomalies due to the low accuracy and density of 

point clouds and lack of field data validation (Razak et al., 

2013). This has caused many researchers to neglect the LiDAR 

point clouds which represent the vegetation structures for 

landslide recognition (Mackey and Roering, 2011). Disrupted 

vegetation is often used as an indicator for landslide activity in 

forested region and to relate tree anomalies to landslides 

occurrence and its activity, the identification of disrupted trees 

in forested landslide is crucial (Razak et al., 2013). 

Remote sensing techniques for landslides investigations have 

undergone rapid development over the past few decades. The 

possibility of acquiring 3D information of the terrain with high 

accuracy and high spatial resolution is opening new ways of 
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investigating the landslide phenomena. Recent advances in 

sensor electronics and data treatment make these techniques 

more affordable. The two major remote sensing techniques that 

are exponentially developing in landslide investigation are 

interferometric synthetic aperture radar (InSAR), and LIDAR 

(Jaboyedoff et al., 2012). With the current remote sensing 

technology such as laser scanning, it had become easier for the 

authorities or stakeholders to determine the landslide area prior 

to the event. LiDAR data is currently being used for the 

delineation and analysis of landslide polygons that can be 

interpreted based on colour composite, hillshade, topographic 

openness or digital terrain model raster layer (Razak, 2014).  

There are still lack of landslide activity analysis that rely solely 

on the bio-indicator that had been derived from remotely-sensed 

data. There are many advantages of using topographic laser 

scanning data in detecting and predicting landslide, i.e.; it is a 

very accurate technique requiring less labor needed, and the 

ability to cover large areas, including areas previously deemed 

inaccessible. In addition, it has been acknowledged for its 

contribution in developing and implementing forest inventory 

and monitoring program. This method allowed extraction of 

several vegetation anomalies from LiDAR data, which include 

tree height, abrupt change in tree height, crown width, 

vegetation density, different vegetation type and many more. 

Previous studies have shown that the conventional method of 

producing landslide inventory analysis is undoubtedly time 

consuming, dangerous and expensive (Guzzetti et al., 2012). 

From this study, problems arising from implementing 

conventional methods can be kept to a minimum, as utilizing 

remote sensing technology enables the researcher to obtain 

vegetation anomalies as a bio-indicator of landslide activity 

mapping and analysis. In Malaysia, landslide analysis tends to 

have frequent site visit, and real-time monitoring of the 

deformation that can cause lots of budget to be put on, and 

potential hazard to property and life once the landslide struck. 

Thus, by using the result of this study, it can contribute to the 

thorough analysis of vegetation anomalies suitability as a bio-

indicator to landslide activity analysis. In addition, this studies 

also capable in defining the method to produce vegetation 

anomalies from remote sensing data and analyze the 

performance of geospatial-based approach. 

This study aims in estimating and mapping different landslide 

type, depth and activity probability area together with producing 

vegetation anomaly indices along a tectonically active region, 

Kundasang. This was supported by several objectives as follow: 

i. To delineate and characterize landslide

inventory based on different landslide type, depth and

activity.

ii. To generate vegetation properties and vegetation

anomalies using high density airborne LiDAR and other

remotely sensed data

iii. To generate landslide activity probability map

for different landslide type and depth occurred in

tectonically active region.

iv. To analyze the capability of vegetation

anomalies in characterizing landslide activity for

different landslide type and depth.

Vegetation anomaly maps used in generating probability maps 

were derived from both LiDAR and satellite image data. It is 

important to analyze the vegetation pattern on each landslide 

type, depth and activity as it gave us a new understanding about 

how vegetation characteristics differed from one landslide type, 

depth and activity to another. From the probability map, 

matrices for each of the scenarios has been tabulated to identify 

the most and the least significance vegetation anomaly 

characteristics in each landslide scenario. There were only a few 

studies conducted in Malaysia and most of the studies were 

using spectral reflectance to indicate the vegetation cover 

characteristics (Lee, 2007b; Pradhan et al., 2010; Jaewon et al., 

2012). Furthermore, the output from this study can be used in 

future landslide susceptibility analysis as a supporting detail in 

characterizing landslide areas based on their current vegetation 

characteristics. Also, current global and national projects, for 

example, Sendai Framework, Slope Hazard and Risk Mapping 

project also known as Peta Bahaya Risiko Cerun, National 

Slope Master Plan etc. can fully-utilize the result from this 

study to suit the purpose of their projects. 

2. STUDY AREA

2.1 Location of study area 

The study site is located at Kundasang, Sabah, Malaysia 

(5°59'0.69"N, 116°34'43.50"E), the Northern part of Sabah. 

Kundasang is a town located in Ranau district that lies along the 

bank of Kundasang Valley. As of 2010, the total population of 

Kundasang area is 5008 within the area of Ranau district, which 

is 3555.51 km2. With an elevation of about 1200 to 1600 metres 

above sea level, it is one of the coolest places in Sabah with 

temperatures dropping to 13ºC at night (BeautifulKK, 2010; 

Wikitravel, 2015). Kundasang has a tropical climate. There are 

large amount of rainfall all year, even during the driest month 

(ClimateData.ORG, 2015). The average annual rainfall is ±2189 

mm. Figure 1 shows the study area map along debris flow area

of Kundasang with focus on source zone, transport zone and

deposition zone.

Figure 1. Location of study area at Mesilau River in Kundasang 

region which was struck by debris flow in June 2015 

2.2 Geological Setting of Study Area 

Kundasang region consists of three (3) types of lithology; 

Pinasouk gravel, Trusmadi formation and Crocker formation. 

On 5th of June 2015, an earthquake measuring 6.0 Mw occurred 

in Sabah that had triggered the debris flow which caused the 

disruption of roads, houses and the vegetation along the channel 

(Wikipedia, 2015a). It has been recorded that the earthquake 

was caused by the movement on a SW-NE trending normal fault 

and the epicenter was near Mount Kinabalu. The shaking caused 

massive landslides around the mountain (Tongkul, 2015). Rocks 

located beneath Kundasang vary in age and type, which are the 
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rock starting from Paleocene-Eocene rocks to alluvial rock. 

Three formations are present include Trusmadi Formation, 

Crocker Formation and Quaternary sediment (Tongkul, 1987). 

Mensaban fault zone is located on the eastern side of 

Kundasang area which intersects with Crocker fault. The mass 

movements in Kundasang area can be the result of active 

movement in Crocker and Mensaban fault zones. 

Kundasang experiences heavy rainfall almost every month. This 

heavy rainfall is capable of inducing landslides as occured on 

15th and 16th July 2013 where heavy rainfall had triggered 

landslides in Kampung Mesilau that killed one resident and 

damaged concrete bridge. Heavy rainfall on 10th April 2011 

triggered landslide in Kampung Mohiboyan and the landslide 

was worsened by the eroded riverbank. The landslide event 

damaged 19 houses and villagers were evacuated. Landslides in 

Kampung Pinausok were also triggered by heavy rainfall that 

had caused electric power outage and damaged houses. Previous 

study has stated that there have been more than 20 landslide 

occurrences from 1996 to 2015 in Kundasang (UTM PBRC, 

2016). Along Mesilau River channel, at least 5 events were 

recorded from between year 2008 and 2015. Most of the 

landslides occurred due to heavy rainfall and recently the 

landslide occurred caused by an earthquake that happened in 

Sabah, which lasted for 30 seconds. The earthquake was the 

strongest to affect Malaysia since 1976 (The Borneo Post, 2015; 

United States Geological Survey, 2015; Wikipedia, 2015a). In 

June 2015, debris flow in Mesilau River channel (Daily 

Express., 2015)  had seriously damaged infrastructures along 

the channel (Ismayatim, 2015). 

3. METHODOLOGY

In general, the framework of the implemented methodology in 

this study contains five (5) main stages. The first stage 

concentrates on the data collection, which consists of field and 

remotely sensed data collection. The second stage emphasizes 

on the pre-processing of the collected data. The third phase 

focuses on delineating and characterizing landslides using 

remotely sensed data. In the fourth phase, the remotely sensed 

data was used to generate 13 vegetation anomalies indicators. 

The final phase focuses on data-driven modeling by generating 

the landslides activity maps that account different scenarios of 

landslide type and depth. The landslide activity maps were 

evaluated based on the success and prediction rate values. 

3.1 Data Collection 

The data collection phase can be divided into acquisition of 

remote sensing data and field data. Remote sensing data 

includes airborne LiDAR data, aerial photos and high-resolution 

of satellite images over the debris flow zone at Mesilau River. 

The derivatives of each data were listed as Table 1. 

Data Type Derivative 

Airborne Laser Scanning 

 ± 160 

point/m2 

 Captured 

on August 2015)  

Landslide Detection Source 

Data: 

1. Topography Openness

2. Hillshade

3. Colour Composite

Vegetation Characteristics: 

1. Tree Height

2. Tree Crown Gap

3. Density of Low

Vegetation

4. Density of Young

Woody Vegetation 

5. Density of Matured

Woody Vegetation

6. Density of Old Forest

Vegetation

Satelite Images 

 QuickBird 

2.4 m spatial resolution 

4 bands: 

Blue: 430 – 545 nm 

Green: 466 – 620 nm 

Red: 590 – 710 nm 

Near-IR: 715 – 918 nm 

 Captured 

on 29 September 2008 

Vegetation Characteristics: 

1. DVI

2. GDVI

3. GNDVI

4. NDVI

5. SAVI

6. OSAVI

Orthophoto 

 7 cm 

spatial resolution 

 Captured 

in August 2015) 

Landslide Detection Source 

Data: 

1. Landslide occurrence

interpretation

Vegetation Characteristics: 

1. Different Vegetation

Type Distribution

Field Measurement The tree parameters are azimuth, 

inclination, vegetation type, 

canopy gaps, vegetation type 

distribution, average tree height, 

lithology, soil condition etc. 

Table 1. A set of remote sensing data used in this study 

Airborne LiDAR data was captured in August 2015, 

approximately two months after the debris flow that hit the 

Mesilau River. Figure 2 shows a visualisation of point clouds of 

the study area along debris flow. For this study area, there are 

25 tiles with ±1km2 area for each tile, and the mean point 

density of the acquired data was 160 points per meter square.  

Figure 2.  Close-up point clouds view of landslides area 

QuickBird satelite images was used for this study. This satellite 

image was derived from DigitalGlobe satellite which can give 

up to sub-meter level for panchromatic image and 2.4 m spatial 

resolution for multispectral image. QuickBird has a stable 

platform for precise location measurement that allows a high 

geolocational accuracy. In addition, its vast view is due to its 

off-axis unobscured design of telescope.   

Orthophoto image had been used in landslide interpretation and 

extraction of different vegetation type distribution. Generally, 

vegetation can be divided in two types based on their 

appearances in the aerial photographs. Natural vegetation like 

forests and grasslands is easy to detect due to their distinct 

pattern. Woody vegetation usually has dark tints indicating that 
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their leaves are darker, while planted trees and agricultural 

crops can be identified by their straight line patterns in which 

they are planted (Rice University, 2016). In this study, the 

orthophoto used had been captured in August 2015. The area 

covered was along the Mesilau River channel. 

The method of field measurement was carried out to collect 

several tree parameters. The tree parameters were valuable to 

enhance the understanding of vegetation differences between 

normal vegetation and disturbed vegetation due to landslide 

activities. The tree parameters are azimuth, inclination, 

vegetation type, canopy gaps, vegetation type distribution, 

average tree height, lithology, soil condition, etc. However, the 

field measurement will not be included in the generating 

probability model as it is the observation of tree characteristics 

to understand more about vegetation on landslide and non-

landslide areas. The parameters were collected by setting up the 

number of individual trees based on each location for creeping 

landslide and overall tree observation for rotational landslide. 

3.2 Data Pre-processing 

Pre-processing includes operations such as correction and 

calibration of the airborne LiDAR data. Filtering process which 

focus on the separation of point cloud into ground and non-

ground returns is the core component of LiDAR data pre-

processing phase (Chen, 2007). Deriving the height of tree, 

building and other land features, or further analysis on the study 

area is only possible if the point cloud is filtered. The filtering 

process conducted using Adaptive TIN Densification algorithm 

embedded in the Terrascan software. The ground points were 

interpolated to generate Digital Terrain Model (DTM). Digital 

Surface Model (DSM) was generated by taking the highest 

points within 25 cm moving window over the entire dataset. 

The resulting highest points were interpolated for DSM 

generation with 25 cm spatial resolution. Canopy Height Model 

(CHM) was generated by subtracting DTM from DSM with 25 

cm of spatial resolution. 

3.3 Landslide Inventory 

The landslide area was delineated based on several datasets i.e. 

topographic openness, hillshade, and colour composite. These 

datasets were generated using DTM and orthophoto. The 

interpretations for the landslide areas were focusing on natural 

terrain, agricultural terraces, and forested area. 

3.4 Estimation of Vegetation Anomalies 

Landslides are a significant cause of vegetation disturbance 

(Veblen and Ashton, 1978; Hupp, 1983). Based on Cruden and 

Varnes (1996), there were different vegetation characteristics 

for each landslide activity. Different landslide types can be 

characterized by monitoring the vegetation characteristics as 

stated Soeters and van Westen (1996). Vegetation anomalies for 

each landslides body can be used as the predictive sources of 

landslide analysis. It is strengthened by Van Westen (2003), 

who listed 5 vegetation anomalies that can be derived from 

landslide area which are: 

1) Disordered and partly dead vegetation.

2) Disrupted vegetation cover across the slope and

coinciding with morphological steps.

3) Less dense vegetated areas aligned and with lighter tones.

4) Difference in vegetation inside and outside of the

landslide.

5) Change in vegetation related with drainage conditions

To view the irregularities of vegetation characteristic in the 

study area, two (2) main phases involved, i.e. data preparation 

and estimation of vegetation anomalies. Overall, 13 vegetation 

characteristics or anomalies were extracted from remotely 

sensed data which listed as follow: 

1) Irregularity in tree height;

2) Tree crown gap;

3) Density of low vegetation;

4) Density of young woody vegetation;

5) Density of matured woody vegetation;

6) Density of old forest vegetation;

7) Different vegetation classes distribution;

8) Normalized Difference Vegetation Index (NDVI);

9) Difference Vegetation Index (DVI);

10) Green Difference Vegetation Index (GDVI);

11) Green Normalized Vegetation Index (GNDVI);

12) Soil Adjusted Vegetation Index (SAVI); and

13) Optimized Soil Adjusted Vegetation Index (OSAVI).

3.4.1 Irregularity in Tree Height: In this study, irregularity 

in tree height was calculated using standard deviation method as 

it show the amount of variation or dispersion of a set of data 

values (Bland and Altman, 1996; Wikipedia, 2017). Low 

standard deviation indicates that the data closed to the mean, 

while a high standard deviation indicates that the data points are 

spread out over a wider range of values. The formula of 

standard deviation is: 

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 =  
1

𝑁
 (𝑥𝑖 −  𝜇)2

𝑁

𝑖=1

  (1) 

where:  

xi= Individual values, µ= Mean value 

By using CHM generated from subtraction of DTM from DSM, 

a moving window of 3 x 3 was being applied to produce the 

irregularity of tree height. Figure 3 shows the cross section, 

CS(A-B) image derived from LiDAR data to provide evidence 

of irregularity in tree height on landslide area. 

 

(1) 

Cross-Section A-B 
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Figure 3. Irregularity in tree height on landslide area from toe 

(A) to crown area (B)

3.4.2 Tree Crown Gap: In this study, tree crown gap was 

obtained by measuring the percentage of gap beneath the 

canopy layer. Tree canopy layer was generated using tree crown 

delineation process i.e. inverse watershed segmentation, to 

delineate every single tree from the CHM raster layer. The 

delineating of individual trees will be based on cluster of height 

parameter (Rahman and Gorte, 2009). It is believed that the 

occurrence of landslide under forest can be detected by 

measuring the gaps of the area (Moos, 2014). Tree crown gap is 

proven as one of the important parameters for landslide 

analysis. The area with low vegetation cover or bare earth can 

be clearly seen with orthophoto. 

3.4.3 Density of Different Layer of Vegetation: Density of 

the vegetation was measured using density of high points (DHP) 

method by Rahman and Gorte (2009). This method believed 

that the density of received laser pulses on a certain height is 

high at the center of a tree crown and decreases towards the 

edge of the crown. The point clouds filtering process was done 

by dividing the point clouds into several layers vertically. The 

segmented tree height was focusing on low vegetation, young 

woody vegetation, matured woody vegetation and old forest 

vegetation. The tree height classification follows the different 

forest developmental stages defined in the Manual for the Aerial 

Photo Interpretation within the Swiss Forest Inventory (Ginzler 

et al., 2005). This classification can be referred in Table 2. 

Height Vegetation Type 

0 m < 3 m Low vegetation 

3 m to 8 m Young woody vegetation 

8 m to 20 m Matured woody vegetation / Timber 

> 20 m Old forest vegetation 

Table 2. Tree height classes (Ginzler et al., 2005). 

3.4.4  Different Vegetation Type Distribution: Mapping of 

land use and land cover (LULC) at regional scales is essential 

for a wide range of applications, including landslide, erosion, 

land planning, global warming etc. (Reis, 2008). As stated in 

MS 1759:2004, documented by The Information Technology, 

Telecommunications and Multimedia Industry Standards 

Committee (2004), vegetation is listed as one of the land use 

and land cover features and attributes that need to be mapped. In 

this study, different vegetation type distribution was mapped 

using object-oriented approach. Using this approach, semantic 

image information can be gathered (Willhauck, 2000). Before 

LULC map can be generated, several rule-sets had to be set to 

enable the process of segmentation to be executed. 

Segmentation is the process to group the picture elements by 

certain criteria of homogeneity. Vegetation type in this study 

follows the classes provided by MS 1759:2004 which defined 

vegetation into 4 types: Primary Forest, Secondary Forest, 

Agriculture, and Shrub/Grass. 

To characterize these vegetation types, several thresholds were 

set to differentiate one vegetation type from another. Primary 

forest and secondary forest were extracted automatically by 

fine-tuning several parameters, i.e. mean of green index, 

standard deviation of green index, mean of red index, mean of 

normalized digital surface model (nDSM) and standard 

deviation of nDSM. By using nDSM, degraded primary forest 

and secondary forest can be characterized by assigning 11m 

above ground for primary forest and 5m to 11m as secondary 

forest. Kundasang area is assumed as degraded primary forest 

because of disturbances and development on the surrounding 

areas. Other green objects were classified into combination of 

Shrub/Grass and Agriculture, which then reclassified manually 

using visual inspection of 7cm orthophoto into separate classes.  

Merging process of manual digitized features with automatic 

delineated features from object-based image analysis produced 

topological errors in terms of overlapping features. Millions of 

errors resembling of overlapping features require 

computational-intensive cleaning from conventional GIS 

approach of topological fixing. Alternative of using object-

based approach significantly reduces time taken by retaining the 

actual accuracy of LULC for susceptibility and hazard modeling 

purposes. 

3.4.5 Vegetation Index: Vegetation indices are 

mathematical transformations designed to assess the spectral 

contribution of vegetation to multispectral observations. Usually 

the bands used are Green, Red and Near Infrared (NIR). These 

vegetation indices operate by contrasting intense chlorophyll 

pigment absorptions in the red against the high reflectivity of 

plant materials in the NIR (Tucker  J., 1979; Elvidge D. and 

Chen, 1995). As one of the criteria in landslide area is low 

presence vegetation (Soeters and van Westen, 1996), it is 

essential that anomalies be analyze in this study. There are six 

vegetation indices derived from Quickbird of 2.40m spatial 

resolution. These vegetation indices as stated in Table 3: 

Vegetation 

indices 

Description 

Normalized 

Difference 

Vegetation Index 

(NDVI) 

No green leaves give a value close to zero 

and close to positive 1 (0.8 - 0.9) 

indicates the highest possible density of 

green leaves. Low value of NDVI is 

usually related to the frequency of the 

landslide occurrence as it shows low 

vegetation cover (Lina, Lin and Chou, 

2006). 

Difference 

Vegetation Index 

(DVI) 

DVI is a method primarily sensitive to the 

green leaf material or photosynthetically 

active biomass present in the plant 

canopy (Tucker  J., 1979). High value of 

difference vegetation index will indicate 

low landslide activity in that area. 

Green Difference 

Vegetation Index 

(GDVI) 

GDVI is originally designed with colour-

infrared photography to predict nitrogen 

requirements for corn (Sripada et al., 

2006). 

Green 

Normalized 

GNDVI is an index of plant "greenness" 

or photosynthetic activity and is one of 
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Vegetation Index 

(GNDVI) 

the most commonly used vegetation 

indices to determine water and nitrogen 

uptake into the crop canopy. 

Soil Adjusted 

Vegetation Index 

(SAVI) 

It uses a canopy background adjustment 

factor, L, which is a function of 

vegetation density and often requires 

prior knowledge of vegetation amounts. 

This index is best used in areas with 

relatively sparse vegetation where soil is 

visible through the canopy (Huete, 1988), 

coinciding with fact that landslide is often 

associated with bare soil conditions that 

are located amongst vegetation area. 

Optimized Soil 

Adjusted 

Vegetation Index 

(OSAVI) 

It uses a standard value of 0.16 for the 

canopy background adjustment factor. 

This value provides greater soil variation 

than SAVI for low vegetation cover, 

while demonstrating increased sensitivity 

to vegetation cover greater than 50%. 

Thus, this index is best used in areas with 

relatively sparse vegetation where soil is 

visible through the canopy (Rondeaux, 

Steven and Baret, 1996). 

Table 3. Description of vegetation indices derived from satelite 

imageries 

3.5 Determination of Landslide Activity Probability Map 

To produce landslide activity probability map, bivariate 

approach was applied. The bivariate approach used Hazard 

Index formula by inputting specific number of factor maps and 

preferably executes selected landslide type and activity. To 

produce various numbers of maps based on different landslide 

activity, type and depth, repetitive steps performed. The output 

map layer has been evaluated by using success rate and 

predicted rate. The fact that this concept utilizes a significant 

number of factor maps means several weights were generated. 

These distinctive weights were finally combined and produced 

vegetation anomalies indices. Equation 2 used in conducting the 

process: 

𝑊𝑖 = 𝑙𝑛  
𝐷𝑒𝑛𝐶𝑙𝑎𝑠𝑠 

𝐷𝑒𝑛𝑀𝑎𝑝
 = ln 

𝐴𝑟𝑒𝑎 𝑆𝑖 
𝐴𝑟𝑒𝑎 𝑁𝑖 

𝐴𝑟𝑒𝑎 𝑆𝑖 
𝐴𝑟𝑒𝑎 𝑁𝑖 

 (2) 

where, 

Wi = the weight given to a certain factor class 

Densclas = the landslide density within the factor class 

Densmap = the landslide density within the factor map 

Area (Si) = area that contain landslides in a certain factor class 

Area (Ni) = the total area in a certain factor class 

3.6 Vegetation Anomalies Indices 

Generating vegetation anomalies indices required 13 layers of 

vegetation anomalies together with different landslide activities, 

types and depth to be evaluated. These layers will be ranked 

based on their importance in the landslide occurrences. The 

importance of the vegetation anomalies will be sort based on 

their weight generated from Hazard Index model. The 

importance value is then being measured using Pairwise 

comparison. Pairwise comparison generally is a process of 

comparing entities in pairs to judge which of each entity is 

preferred, or has a greater amount of some quantitative 

property, or whether or not the two entities are identical 

(Wikipedia, 2015b). Pairwise comparison is a kind of divide-

and-conquer problem-solving method. It allows one to 

determine the relative order (ranking) of a group of items. This 

is often used as part of a process of assigning weights to criteria 

in design concept development (Filippo, 2005). By using 

pairwise comparison, the output will be in the form of 

percentage of importance. 

4. RESULTS AND DISCUSSION

4.1 Field Observation of Landslide Area 

Site visit was done to make sure of the presence of vegetation 

anomalies on the landslide area. This procedure was done using 

the finalized version of landslide inventory for rotational 

landslides, and for creep landslide, it was recommended by the 

geologist expert as it is outside of the study. Although it is 

outside of the study area, based on the geologist expert, it is 

interesting to study about creeping landslide as it is highly 

correlated with the fault-line as evidenced by the slanted trees. 

Therefore, the analysis of this subtopic will be divided into two 

parts, which is rotational slide and creeping landslide. The final 

output of this stage will be used as one of the recommendations 

for the mitigation procedure. 

4.1.1 Creep Landslide: Figure 4 shows the rose diagram for 

trees measured at the TM Resorts, Kundasang. The diagram 

shows that most of the trees are oriented towards 10º to 30º 

from the North. The direction of the movement has been 

analyzed with the nearby active fault. The direction of inclined 

trees was parallel with the direction of the strike-slip fault. 

Figure 4. Rose Diagram of inclined trees found at TM Resort 

creeping landslide (a) that are parallel to the direction of nearby 

fault line (b) 

From the histogram of the tree inclination angle at the TM 

Resort plot, it shows that the inclination angle ranges between 

63º and 90º (Figure 5). Inclination angle is the angle of tree 

trunk from the ground, in which the ground is set as 0º. The plot 

was mostly covered by matured trees and small (37º to 10º) 

inclination angles reflect the speed of movement of the area. 

The surrounding area still accommodates buildings and other 

facilities. The road maintenance was still manageable due the 

nature slow movement of the creep slides. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W9, 2018 
International Conference on Geomatics and Geospatial Technology (GGT 2018), 3–5 September 2018, Kuala Lumpur, Malaysia

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-4-W9-201-2018 | © Authors 2018. CC BY 4.0 License.

 
206



Figure 5. Histogram of inclination angle at TM Resort creeping 

landslide 

Based on Figure 6, it can be seen that most of the trees in TM 

Resort plot are inclined between 80º and 90º with the 

percentage value of 76%. Only 24% of the total trees were 

classified the second group with 63º to 79º of inclination from 

the ground. 

Figure 6. Percentage of trees according to the inclination angle 

at the TM Resorts 

Figure 7 shows the percentage of trees according to their DBH 

values. The slow movement of slides in this area clearly allows 

mature trees to grow. The data shows that 42% of the trees at 

the TM Resort area were trees with 30cm to 50cm DBH. The 

percentage of trees with DBH below 30cm and above 50cm was 

26% and 32%, respectively. The slow movement of the creep 

landslides has clearly allowed the growth of the matured trees. 

Figure 7. Percentage of trees according to the DBH 

measurement of trees at the TM Resort 

Plot at the Celyn Resort was covered by small trees. Several 

landslide mitigation measures have been taken to reduce the 

impact of movement on the buildings of the resort. The field 

observation has found several pieces of evidence of the past 

movements and some of them have been strengthened by 

constructing gabion wall and proper water outlets. Figure 8 

shows the orientation or direction of the trees at the Celyn 

Resort, which ranges between 315º and 355º from North. The 

direction of movement as obtained from trees was parallel with 

the past movements observed in the field. 

Figure 8. Rose diagram of Celyn Resort creeping landslide (a) 

and the past movements as observed in the field (b) 

The inclination angle for trees at the Celyn Resort ranges 

between 40º and 90º from the ground (Figure 9). The range is 

bigger than trees at the TM resort, which were more consistent 

inclination angles. 

Figure 9. Histogram graph of inclination angle in Celyn Resort 

plot 

Figure 10 shows the trees at the Celyn Resort and the pie chart 

indicates there was good balance between trees with 80º to 90º 

inclination angles and below 80º from the ground surface. Only 

6% of the total trees marked obvious inclination between 40º 

and 60º. The trees in this plot were well maintained and the 

inclination process of the trees might be controlled by effective 

landslide mitigation measures in downslope areas. 

Figure 10. Percentage of trees according to the inclination angle 

at the Celyn Resort 

Trees at the Celyn Resort vary with age with 38%, 34% and 

28% of the trees classified under 20-30cm, 10-19cm and 20-

35cm of DBH, respectively (Figure 11). About 38% of the trees 

DBH at the Celyn Resort plot were measured from small trees 

with DBH below than 10cm. Furthermore, since Celyn Resort 

management team has strong landslide hazards awareness, they 

continuously plant trees to reduce the impact of landslides. 
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Figure 11. Percentage of trees according to the DBH 

measurement of trees at the Celyn Resort 

4.1.2 Rotational Landslide: Each plot for rotational 

landslides consists of several units of landslides (Figure 12 and 

Figure 13). Figure 12 shows the scarp areas on the left side 

covered by dense shrubs (Napier grass) with height between 3m 

and 4m. The landslide body was covered by dense woody plants 

with height ranged between 18m and 30m and characterized by 

relatively dense canopy cover. This area is a dormant landslide 

area with stable soil condition mostly covered by huge trees. 

Figure 12. Plot 1 landside multi-photo vertical profiling 

On the right side of the plot, the terrain of the landslide body is 

mostly covered by Napier grass/shrub. The soil is spongy and 

damp, which is suitable for Napier grass to grow (Henderson 

and Preston, 1977; Orodho, 2006). This plot is classified as an 

active landslide area with clear evidence of fresh cracks on the 

terrain. The terrain condition of this area is totally different 

compared to the right-side area with more stable terrain 

condition. Figure 13 shows 6 landslide polygon located in Plot 2 

of rotational slide. 

(i) 

(ii) 

Figure 13. Landslide profiling on 6 landslide polygons (green 

color) and its delineation based on different type of vegetation 

The plot is characterized by Pinosouk gravel lithology type, 

which is comprised of large boulders, stone and sand. The scarp 

area for landslide 1 was mainly covered by shrubs and slowly 

replaced by woody trees (with height ranged between 14m and 

28m) and dense understory vegetation in a stable landslide body 

(dormant) on the left side. This aligns with the finding that there 

is strong contrast between mobilized zones (with a loss of 

vegetation cover) and non-mobilized zones (that conserve the 

vegetation cover) (Fernández et al., 2008). The right side of the 

landslide body showed a fresh evidence of the new landslide or 

reactivation of the old landslide. The shrub was mainly 

dominated by Napier grass, which indicates high water content 

in the underneath soil (Henderson and Preston, 1977; Orodho, 

2006). 

Landslide 2 consists of mature woody trees and understory 

vegetation growing on a stable terrain of a dormant landslide 

unit. There were also several slanted trees, which might also 

indicate that the terrain is still slowly moving downwards. It is 

strengthening by the fact that trees with curved trunks due to 

soil creep may provide a useful indication of slope instability 

(Harker, 1996; Razak et al., 2013a; Razak et al., 2013b). The 

lower part of landslide 3 was mainly covered by matured trees 

and understory vegetation. There was also a clear sign of 

erosion in the steep side of the area that might trigger new 

landslides in future. The upper side of landslide 3 has been 

utilized for agricultural activities. The landslide body for unit 4 

was mainly used for agricultural proposes (Figure 15), which 

indicates fertile and stable terrain condition with terraces. Due 

to intensive irrigation activities in the upslope area, this might 

trigger reactivation or new landslide on right side and the 

growth of dense shrubs on the left side of the downslope area. 

The presence of water can permeate into the soil or rock. 

Therefore, it will replace the air in the pore space or fractures 

since water is heavier than air. Hence, water filling the gap will 

increase the weight of the soil. Weight is force, and force is 

stress divided by area, so the stress increases and this can lead 

to slope instability (Watkins and Hughes, 2004; Ritter and Eng, 

2012). The scarp area of landslide 4 was mainly occupied by 

shrub. 

For landslide unit 5, the landslide body was occupied for 

agricultural purposes and slowly replaced by shrubs and woody 

trees in the landslide toe. The landslide was classified as 

dormant but the agricultural purposes might trigger new 

landslide in future. The excessive irrigation activity might cause 

dense understory vegetation in the lower part of the landslide 

unit. The body of landslide unit 6 was covered by shrub and 

matured woody vegetation in the toe area. The landslide was 

classified as dormant. The shrub area on the body of the 

landslide might be the sign of unstable terrain of this area. The 

rainfall and excessive irrigation activities in the plot have 

revealed few spots of ground water flow as shown in Figure 14. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W9, 2018 
International Conference on Geomatics and Geospatial Technology (GGT 2018), 3–5 September 2018, Kuala Lumpur, Malaysia

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-4-W9-201-2018 | © Authors 2018. CC BY 4.0 License.

 
208



Figure 14. Evidence of groundwater flow marked by the yellow 

circle 

Figure 15. Landslide body been used as agricultural area 

The results have clearly showed that the physical condition of 

the terrain classified as landslides has strong relationship with 

the vegetation type and its unique characteristics. The presence 

of Napier grass indicates high water content in the soil. Shrub 

generally dominates the unstable terrain, in which it is difficult 

for woody vegetation grow. Dense matured woody vegetation is 

normally found in a stable area that allows the trees to grow for 

a considerable period of time. However, slanted trees might 

indicate reactivation of the landslides in this area. Slanted trees, 

also known as drunken trees, were mainly found in creep type 

of landslide. 

4.2 Landslide Activity Probability Based on Different 

Depth and Type 

The procedure of obtaining the probability map was derived 

from statistical analysis of bivariate approach. This method was 

proven as one of the promising methods to produce probability 

map. The generated probability map was evaluated by using 

success rate and prediction rate (Van Westen, 2008). The 

success rate procedure was carried out to know how well the 

model performs and prediction rate used to determine how well 

the model can be used as a prediction model. Both evaluation 

methods were carried out by using 70% and 30% from total 

number of landslide scenarios for success rate and prediction 

rate, respectively. 

Figure 16 shows the active landslides probability map. This 

probability map was generated using all the landslides with 

active state of activity without categorized based on their depth 

and type. The output from this scenario shows a high 

probability of active landslide at the initial state of transport 

zone. This location is where the landslides (Figure 17) had 

caused severe road damage.   

Figure 16. Probability map of active landslide 

Figure 17. Active rotational landslide on the Mesilau riverbank 

From the field observation of the landslides, it seems that the 

soil of the landslide is constantly moving and induced the 

landslide area to expand from time to time. The probability map 

of middle area of transport zone of debris flow in Mesilau River 

area shows low probability of the occurrence of active 

landslides.  

Probability map of dormant landslides (Figure 18) shows a 

contradictory result from the active landslide map. The high 

probability for dormant landslides to occur was located at the 

middle of transport zone until the initial part of deposition zone. 

Transport zone of the study area seems to have large number of 

dormant landslides of significant size compared to active 

landslide. Deposition zone is where Ranau area is located which 

dominated by residential, government and commercial 

buildings. Source zone of the study area also considered as high 

probability of the dormant landslide. 

Success rate: 

64.96% 

Prediction 

rate: 47.83% 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4/W9, 2018 
International Conference on Geomatics and Geospatial Technology (GGT 2018), 3–5 September 2018, Kuala Lumpur, Malaysia

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-4-W9-201-2018 | © Authors 2018. CC BY 4.0 License.

 
209



Figure 18. Probability map of dormant landslide 

Figure 19 shows the probability map for the relict landslides. 

There were only 19 landslide polygons detected with relict state 

of activity along the study area. Thus, this makes the result 

incomprehensive and focuses only on areas with landslides. The 

map shows that most of the study area was covered with high 

probability of relict landslides except at the initial part of 

transport zone. This area mainly categorized by active landslide 

area. 

Figure 19. Probability map of relict landslide 

The landslide probability map based on different type and state 

of activity also were derived using bivariate approach. 

Deep-seated 

Deep-seated active landslide probability map shows the similar 

pattern as the probability map for active landslides especially 

for high probability category, however the medium and low 

probability shows a slightly different pattern. The pattern of 

deep-seated dormant probability map shows similar pattern as 

the dormant probability map, however the number of pixels for 

high probability were slightly decreased as the number of pixel 

for low probability for deep-seated dormant increased. The 

probability map for deep-seated relict landslide shows a mixture 

of both high and low probability at source zone and initial part 

of transport zone. 

Shallow 

In case of shallow active probability map, low probability at the 

source zone and high probability at the initial part of transport 

zone were identified. The remaining transport zone shows a low 

probability of shallow active as the area densely occupied with 

vegetation, therefore low opportunity for active landslides to be 

occured. Probability map for shallow relict dominantly 

classified as medium probability to occur. The corner of the 

transport zone shows high probability of the shallow relict to 

occur where this area is fully covered by well-grown woody 

vegetation (Figure 20). This is because the inactive state of 

landslide will enable the vegetation to grow or re-vegetate. 

Figure 20. High probability of shallow relict landslide and 

orthophoto of the area 

Rotational 

Most of the study area was covered with medium probability of 

rotational active, except at the middle of transport zone, which 

shows high probability for rotational active to occur. The 

probability map generated based on rotational active does not 

show a clear pattern as the location of rotational active is only 

located in the middle of transport zone. Probability map for 

rotational dormant landslides shows a clearer pattern compared 

to rotational active, as the number of landslides were 4 times 

more compared to the rotational active map. Most of the area at 

source zone shows high probability of rotational dormant, while 

the transport zone shows low probability of dormant landslides 

since most of the active landslides were located. Transport zone 

was covered with low vegetation, whereas the high probability 

of rotational dormant was located within the tall vegetation as 

shown in Figure 21. 

(a) 

(b) 

Figure 21. Landslide polygons located within (a) low 

probability of rotational dormant (b) high probability of 

rotational dormant 

Success rate: 

71.88% 

Prediction 

rate: 64.63% 

Success rate: 

71.49% 

Prediction 

rate: 68.61% 
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Translational 

Probability map for translational dormant landslides shows 

similar pattern with the translational dormant in which the high 

probability of translational dormant located in the middle of 

transport zone. The source zone area was classified as high 

probability of translational relict while the middle transport 

zone still shows high probability for translational relict, same as 

translational dormant probability map.  

Complex 

Most of the area was classified as low probability for complex 

landslides to occur except at the initial part of transport zone. 

This is because complex landslide seldom occurs because a 

combination of two or more of the landslide types is required 

(USGS, 2004). 

From the generated maps, success rate and prediction rate have 

been calculated based on the listed landslide scenarios. The 

success and prediction rate of the scenarios were shown in 

Table 4: 

Landslide 

Type and 

Process 

Landslide 

Activity 

Success 

Rate (%) 

Prediction 

Rate (%) 

All type of 

landslide 

Active 64.96 47.83 

Dormant 71.88 64.63 

Relict 71.49 68.61 

Deep-seated 

Active 75.48 28.77 

Dormant 76.15 69.74 

Relict 81.43 
Not 

Available 

Shallow 

Active 72.7 47.34 

Dormant 71.93 54.75 

Relict 81.95 83.04 

Rotational 
Active 71.45 45.55 

Dormant 69.05 81.92 

Translational 
Dormant 77.65 70.6 

Relict 84.44 
Not 

Available 

Complex Active 77.32 
Not 

Available 

Table 4. Success rate and prediction of the 14 scenarios 

Table 4 shows the success rate and prediction rate for each 

landslides probability map scenario. There were 14 success 

rates generated from the probability map, however only 11 

prediction rates were successfully executed due to the other 

three scenarios consist of low landslides polygon. The highest 

value of success rate was the translational relict landslides with 

84.44%. Meanwhile, active landslide recorded the lowest 

success rate value with 64.96%. In case of prediction rate, the 

highest value obtained from rotational dormant landslide with 

81.92%, while deep-seated active landslide recorded the lowest 

prediction rate value with 28.77%. Overall, the prediction rate 

value was ranged from 55% to 70%. 

4.3 Vegetation Anomalies Indices 

Weight obtained from the statistically bivariate approach had 

been extracted manually. The weight listed was based on 

classified vegetation anomalies raster layer that were derived 

from satelite images and airborne LiDAR. Then, the weight has 

been sort according to the weightage value from highest to the 

lowest. After the sorting phase, pairwise comparison has been 

done by comparing the factor maps. The comparison tables are 

based on their data source; LiDAR and satellite image. After the 

process of comparing each of the raster layers, the percentage of 

importance for each vegetation anomaly were obtained. As 

vegetation can easily hide the slide condition, especially the 

dormant and relict landslides, it is important to know which 

vegetation anomalies can be used as a bio-indicator in landslide 

analysis. Table 5 shows the vegetation anomalies index for all 

landslide activities (i.e. active, dormant, and relict) 

Vegetation Anomalies 
Percentage of importance (%) 

Active Dormant Relict 

LiDAR-derived 

Canopy Gap 19 9.52 23.8 

Density of Shrub 23.8 4.76 9.52 

Density of Young Woody 

Vegetation 
9.52 19 0 

Density of Mature Woody 

Vegetation 
14.3 23.8 14.3 

Density of Old Forest 0 28.6 4.76 

Irregularity in Vegetation 

Height 
4.76 0 28.6 

Vegetation Type 

Distribution 
28.6 14.3 19 

Satelite Image-derived 

DVI 0 20 26.7 

GDVI 6.67 26.7 33.3 

GNDVI 13.3 33.3 20 

NDVI 33.3 0 6.67 

OSAVI 26.7 13.3 0 

SAVI 20 6.67 13.3 

Table 5. Vegetation anomalies index in percentage for all 

landslide activities 

Table 5 indicates that vegetation type distribution map is the 

most important index with 28.6% index value for active 

landslides. The type of vegetation that highly is grass type while 

the least important vegetation anomalies are the density of old 

forest vegetation. This is because it is impossible to have old 

forest vegetation on a moving landslide body and scarp. For 

satellite image-derived data, NDVI with negative values to 0.1 

give the highest percentage with 33.3%. This NDVI value 

indicates very low presence of vegetation and ground. For 

dormant landslides, the highest percentage is the density of old 

forest. Forest can grow very well due to stable soil condition. 

Next, the second most important indicator is medium and high 

density of mature woody vegetation. This type of vegetation 

always located among the old forest vegetation as shown in 

Figure 22. GNDVI shows the highest percentage of the data 

derived from satellite image. This is because woody vegetation 

takes up more water content compared to grass vegetation on 

active landslides (Chan et al., 2013). Irregularity in tree height 

is the most important indicator of recognizing relict landslides. 

Relict landslides normally occupied with a very dense 

vegetation cover (Wong et al., 2004) with different growth rate. 

GDVI shows the highest important value for category of 

satellite imagery derived data. 

Vegetation index values based on different type and depth of 

landslides also were calculated. The percentage of importance 

value was separated into two categories i.e. LiDAR-derived and 

satelite image-derived. Table 6 shows the index value of active 

landslide activity categorized by landslide types. 
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(a)    (b) 

Figure 22. High density mature woody vegetation (a) located in 

the same area of high density of old forest vegetation (b) 

Vegetation 

Anomalies 

Percentage of importance (%) 

DS S R T C 

LiDAR-derived 

Canopy Gap 23.8 19 23.8 - 23.8 

Density of Shrub 19 23.8 28.6 - 19 

Density of Young 

Woody Vegetation 
14.3 0 9.52 - 9.52 

Density of Mature 

Woody Vegetation 
4.76 4.76 4.76 - 14.3 

Density of Old 

Forest 
0 9.52 0 - 0 

Irregularity in 

Vegetation Height 
9.52 14.3 19 - 4.76 

Vegetation Type 

Distribution 
28.6 28.6 14.3 - 28.6 

Satelite Image-derived 

DVI 0 13.3 33.3 - 0 

GDVI 6.67 0 20 - 6.67 

GNDVI 13.3 6.67 13.3 - 13.3 

NDVI 20 20 6.67 - 33.3 

OSAVI 33.3 33.3 26.7 - 26.7 

SAVI 26.7 26.7 0 - 20 
*DS = Deep Seated, S=Shallow, R=Rotational, 

T=Translational, and C=Complex 

Table 6. Vegetation anomalies index in percentage for active 

landslide activity with different landslide type 

According to Table 6, vegetation type distribution is the most 

important indicator of characterizing deep-seated active 

landslides. The vegetation type that contributes the highest 

percentage is grass because deep-seated landslide usually 

caused severe loss to the vegetation cover (Forbes and 

Broadhead, 2011). Canopy gap is the second most important 

indicator. This is proven by field validation data distinctly 

indicated the signature of canopy gap in the landslide area 

compared to the healthy forests and also parallel with the 

research by Gode and Razak (2013). Meanwhile, OSAVI with 

range from 0 to 0.25 is shown as the highest frequency of 

occurrence in the deep-seated active scenario for category 

satelite image-derived as it shows the bare-earth surface.  

For shallow active landslides, the most importance indicator is 

presence of agriculture, followed by high density of shrub. 

Kundasang area specifically is well-known as the famous 

agriculture area of Malaysia. Therefore, the result obtained in 

this scenario will not be suitable for areas other than agriculture 

area. From the field observation, most of the shallow active 

landslide is usually being used as an agricultural site due to high 

nutrient content. This is because the soil has undergone a 

process of movement that has indirectly been undergoing soil 

cultivation process.  

Vegetation anomalies index for rotational active landslide 

shows that high density of shrub is the most frequent vegetation 

anomaly. A rotational active landslide is happened with rotating 

type of motion in the soil movement. With a rapid movement of 

landslide in rotational-type of motion, it is hard for the woody 

vegetation to grow. DVI value with low vegetation index is 

shown as the most frequent vegetation index class in rotational 

active. This is because low DVI value indicates that low 

photosynthesis process has occurred.  

Next, grass was shown as the most important indicator in 

characterizing complex active landslides. Complex active 

landslides happened when two (2) or more landslide types 

occurring in a landslide area. The presence of woody vegetation 

is the least important indicator that can be derived from 

complex active landslide area. NDVI with range from negative 

value to 0.1 indicates as the most importance characteristic of 

complex active landslides. This range is representing nearly 

non-vegetated area. Next, vegetation anomalies index for 

dormant landslide activity can be seen in Table 7.  

Vegetation 

Anomalies 

Percentage of importance (%) 

DS S R T C 

LiDAR-derived 

Canopy Gap 9.52 9.52 4.76 0 - 

Density of Shrub 0 0 9.52 23.8 - 

Density of Young 

Woody Vegetation 
14.3 23.8 23.8 28.6 - 

Density of Mature 

Woody Vegetation 
23.8 28.6 28.6 19 - 

Density of Old 

Forest 
28.6 19 19 9.52 - 

Irregularity in 

Vegetation Height 
4.76 4.76 0 14.3 - 

Vegetation Type 

Distribution 
19 14.3 14.3 4.76 - 

Satelite Image-derived 

DVI 20 20 20 33.3 - 

GDVI 26.7 26.7 26.7 26.7 - 

GNDVI 33.3 33.3 33.3 20 - 

NDVI 0 0 0 0 - 

OSAVI 6.67 6.67 6.67 6.67 - 

SAVI 13.3 13.3 13.3 13.3 - 
*DS = Deep Seated, S=Shallow, R=Rotational, 

T=Translational, and C=Complex 

Table 7. Vegetation anomalies index in percentage for dormant 

landslide activity with different landslide type 

Based on Table 7, the most important bio-indicator for deep-

seated dormant is high density of old forest because in the 

dormant state, well-vegetated forest established. For shallow 

dormant landslides, high density of mature woody vegetation 

was the most important indicator as it gave 28.6%. Meanwhile, 

density of shrub shows the least important indicator among the 
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LiDAR-derived vegetation indicator. GNDVI shows the highest 

percentage for satellite-derived result due to high water uptake 

by the matured woody vegetation (Chan et al., 2013). NDVI 

shows the least significance parameters towards recognizing 

shallow dormant landslide areas. 

Vegetation anomalies index for rotational dormant landslides 

shows that medium density of matured woody vegetation was 

the most important indicator while medium density of young 

woody vegetation is the second most important indicator. Same 

as other previously mentioned dormant-state landslides, GNDVI 

is shown as the most important indicator derived from satellite 

image data. For translational dormant landslides, high density of 

young woody vegetation was shown as the most important 

indicator for LiDAR-derived vegetation anomalies. Meanwhile, 

canopy gap is shown as the least important vegetation anomaly 

as the vegetation has been well-established. High value of DVI 

was shown as the most important vegetation anomaly derived 

from satellite image. High value of DVI means high 

photosynthesis activity occurred in translational dormant 

landslide. Next, vegetation anomalies index for relict landslide 

activity can be seen in Table 8. 

Vegetation 

Anomalies 

Percentage of importance (%) 

DS S R T C 

LiDAR-derived 

Canopy Gap 19 14.3 - 14.3 - 

Density of Shrub 9.52 0 - 4.76 - 

Density of Young 

Woody Vegetation 
4.76 4.76 - 0 - 

Density of Mature 

Woody Vegetation 
14.3 23.8 - 28.6 - 

Density of Old 

Forest 
0 9.52 - 9.52 - 

Irregularity in 

Vegetation Height 
23.8 28.6 - 23.8 - 

Vegetation Type 

Distribution 
28.6 19 - 19 - 

Satelite Image-derived 

DVI 33.3 26.7 - 26.7 - 

GDVI 26.7 20 - 20 - 

GNDVI 20 6.67 - 13.3 - 

NDVI 0 0 - 6.67 - 

OSAVI 13.3 13.3 - 0 - 

SAVI 6.67 33.3 - 33.3 - 
*DS = Deep Seated, S=Shallow, R=Rotational, 

T=Translational, and C=Complex 

Table 8. Vegetation anomalies index in percentage for relict 

landslide activity with different landslide type 

According to Table 8, most important indicator of deep-seated 

relict landslide is presence of secondary forest on the landslide 

area. However, due to minimal number of polygons in deep-

seated relict landslide scenario, the result obtained in this 

iteration is less accurate since density of old forest is the least 

important. Density of old forest should give high value and it is 

reflected in the observations during field visit. 

Irregularity in vegetation height is shown as the most important 

indicator, while high density of mature woody vegetation is 

shown as the second most important indicator for shallow relict 

landslides. For satellite data source, SAVI with value of ranged 

0.75 to 0.95 as the most important indicator. This range value is 

located on the matured woody vegetation area. 

Medium density of mature woody vegetation was shown as the 

highest percentage of importance for translational relict, 

followed by irregularity in vegetation height as the second most 

important indicator. Again, SAVI as the most important 

indicator for translational relict landslides for satellite-image 

data derived. 

5. CONCLUSION AND DISCUSSIONS

Analysing vegetation anomaly patterns using remotely sensed 

data is a new approach of mapping and analysing landslide 

activity based on different landslide type and depth. Previously, 

many studies that have been done in analysing landslide 

activity, especially based on interpretation of morphological and 

drainage pattern. However, different approach was taken in this 

study by focussing in the vegetation anomalies pattern. This 

study demonstrates a procedure in generating vegetation 

anomaly index library from remote sensing data that may be 

used in future as a landslide interpretation source. This 

procedure was done by characterizing the weight obtained from 

the landslide activity probability maps focussing on Kundasang, 

which had been struck by earthquake in June 2015. The 

performances of the landslide activity probability map 

generated using bivariate statistical approach were evaluated 

using success rate and prediction rate. The results revealed that 

vegetation anomalies as the indicator of analysing landslide 

activity is reliable as it gave average of 75% success rate value 

and 72% of the scenarios gave more than 50% prediction rate 

value. The results obtained vary across different landslide 

activity, type and depth. 
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