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ABSTRACT: 

 

Vulnerability plays an important role in risk assessment. For flood vulnerability assessment, the map and characteristics of elements-

at-risk at different scales are strongly required depending on the risk and vulnerability assessment requirements. This study proposes 

a methodology to classify urban structure type by combining object-based image classification and different high resolution remote 

sensing data. In this study, a high resolution satellite image and LiDAR have been acquired over Kota Bharu, Kelantan which 

consists of highly heterogeneous urban structure type (UST) classes.  The first stage is data pre-processing that includes 

orthorectification and pansharpening of Geoeye satellite image, image resampling for normalised Digital Surface Model (nDSM) and 

followed by image segmentation for creating meaningful objects. The second stage comprises of derivation of image features, 

generation of training and testing datasets, and classification of UST. The classification was based on three types of machine learning 

classifiers, i.e. Random Forest (RF), Support Vector Machine (SVM) and Classification and Regression Tree (CART). The results 

obtained from the classification processes were compared using individual omission and commission error, overcall accuracy and 

Kappa coefficient. The results show that Random Forest classifier with all image features achieved the highest overall accuracy 

(93.5%) and Kappa coefficient (0.94). This is followed by CART classifier with overall accuracy of 93.7% and Kappa coefficient of 

0.92. Finally, SVM classifier produced the lowest overall accuracy and Kappa coefficient with 88.6% and 0.86, respectively. The 

UST classification result can be further used to assist detailed building characterisation for large scale flood vulnerability assessment.   
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1. INTRODUCTION 

1.1 Introduction  

In the context of flood management, flood risk assessment have 

widely been implemented to replace the traditional flood 

management. Details about the flood risk assessment can be 

referred to EU Flood Directive (2007/60/EC). Its aim is to 

reduce and manage the risks that floods pose to human health, 

the environment, cultural heritage and economic activity. The 

Directive requires Member States to first carry out a preliminary 

assessment by 2011 to identify the river basins and associated 

coastal areas at risk of flooding. For such zones they would then 

need to draw up flood risk maps by 2013 and establish flood 

risk management plans focused on prevention, protection and 

preparedness by 2015.  

According to Penning-Rowsell et al. (2005) and Foudi and 

Oses-Eraso (2014), the method used to assess flood-risk 

consists of four steps: (i) hazard assessment; (ii) exposure 

assessment; (iii) vulnerability assessment; and (iv) risk 

assessment. Among these four components of flood risk 

assessment, remote sensing imagery have extensively 

contributed in hazard assessment to achieve different purposes 

and scales. For instance, satellite-based rainfall estimates for 

estimating maximum discharge. A number of studies have been 

carried out using various satellite-based rainfall estimates 

(TRMM, CMORPH and PERSIANN) in which results show 

that estimates to generate streamflow as reliable as using rain 

gauge data, provided those estimates have to be calibrated 

(Stisen, S. and Sandholt, I. 2010; Meng et al. 2014; Zubieta et 

al. 2015; Jiang et al. 2010). In addition to estimate maximum 

discharge, producing flooded area is of great importance in 

flood hazard for which different resolution of Digital Elevation 

Model (DEM) is created using remote sensing technology. 

LiDAR data with 1 meter high resolution, higher accuracy of 

flood map can be produced using 1D hydrodynamic model or 

2D hydrodynamic model, Such studies have been carried out by 

Costabile et al. (2015), McDougall and Temple-Watts (2012), 

and Turner et al.( 2013).  

For vulnerability assessment, remote sensing data often to 

provide some biophysical parameters for mapping of flood 

vulnerability map in qualitative way using multi-criteria 

methods (e.g. Analytic hierarchy Process, AHP) (Rimba et al. 

2017; Ouma and Tateishi, 2014; Sambah and Miura, 2014) or 

vulnerability index (Kumar and Kunte, 2012; Islam etal. 2016). 

In this paper, we adopted the definition of vulnerability by Merz 

et al. (2007) where vulnerability is composed of two elements, 

exposure and susceptibility. However, less study focus on 

exposure assessment using remote sensing data (Gerl et al., 

2014; Angela et al. 2013). According to Merz et al. (2007), 

exposure can be quantified by the number of the value of 

elements which are at risk. The term elements at risk includes 

all elements of the human system, the built environment and the 

natural environment that area at risk of flooding in a given area. 

In this study, we focus elements at risk on built environment 
which can be described by land use land cover.  

Land use land cover map play an important role in flood risk 

assessment. Land use land cover maps describe the spatial 

location of variety type of elements at risk in the flooded area. 

However, existing coarser land use classes like residential 

buildings, industry, and agriculture are often obtained from 

agency and integrated in flood loss modelling (Foudi et al 2015; 

Gain et al. 2015; Budiyono et al. 2015; Cammerer et al. 2013). 

Some studies focused on micro-scale, however, most of the 

adopted land use data is relatively generalized (Velasco et al. 

2015). In Malaysia, Department of Irrigation and Drainage 

(DID) produced a guidelines for assessment of flood damage in 

which the adopted land use information in this guideline is 

rather generalized (report: Guidelines and Procedures for the 

Assessment of Flood Damages in Malaysia, 2003). Therefore, it 

is timely to update the detailed land use land cover information 

to assess the current flood risk situation in Malaysia and 

subsequently it facilitate related-agency to reduce flood damage. 

With the advent of remote sensing technology with the aid of 

image processing and classification method, such objective can 

be easily achieved, referred to (Manandhar et al. 2009; Adam et 
al. 2013; Yousefi et al. 2015; Mahmon et al. 2015).  

A more detailed land use land cover is refer to classification of 

Urban Structure Type (UST). Urban structure types is defined 

as spatial units of the built environment at an aggregated 

neighbourhood scale, which are relatively homogeneous with 

respect to the overall population in terms of their physical 

appearance (land cover) and usage (land use) (Wieland et al., 

2016). According to Wieland et al. (2016), characterization and 

analysis of an exposed building on the basis of its susceptibility 

attributes and combine with the output of hazard analysis is 

used to compute the expected damage. Several studies exist that 

use high resolution image with object-based image analysis for 

the classification of UST where these studies mostly at 

Germany in which the urban structure type is well planning 

(voltersen et al. 2014; Puissant et al. 2012; Bochow et al. 2010; 

Walde et al. 2014). However, Bochow et al. (2010) tried to 

classify slum areas as one of the urban structure types using 

Maximum Likelihood as classifier. Result shows highest error 
in term of commission error and omission error.  

Based on previous studies there are still lack of effort to classify 

highly heterogeneous UST in developing countries using high 

resolution remote sensing data. This has definitely complicate 

the process of flood vulnerability and risk assessment, 

especially in developing countries where detailed elements-at-

risk characteristic should be defined prior to vulnerability 

assessment. The aim of this study is to compare different 

methods of machine learning classifier in producing urban 

structure type map using combining high resolution satellite 

image and airborne LiDAR data.  

 

2. MATERIALS 

2.1 Description of Study area 

The city of Kota Bharu, Kelantan is located in north eastern part 

of Peninsular Malaysia where its neighbour country is Thailand. 

The Kota Bharu is the state capital and has become the central 

point for Kelantan’s administrative and business activities. The 

landscape of Kota Bharu is different to other cities in Malaysia 

in which surrounded by a number of Malay villages also known 

as kampung. According to Fee (1998), the development of 

kampung does not comply any plan, therefore, the spatial fabric 

of kampung is highly heterogeneity. The studied area shown in 

Figure 1 is part of city of Kota Bharu. Traditional houses 

(Kampung house) at Kota Bharu are mostly elevated wooden 

houses. Nowadays, most of these traditional houses are 

converted into different type of houses (Table 1).  

 

The topography of Kota Bharu city is relatively flat with 

average elevation of 5 m, please refer to Figure 2a. Every year, 

the Northeast Monsoon from November to January brought 

heavy rainfall to Kota Bharu which will cause flooding. Due to 

this reason, the traditional houses at this city are elevated house.  
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2.2 Description of Data 

There are two main data used in this study, i.e. GeoEye-1 (GE1) 

satellite image, and airborne Lidar data. Geoeye-1 satellite 

image was captured on June 6, 2016. The GE1 data come with 

four, 2.0 m spatial resolution, multispectral bands (Blue, Green, 

Red, and NIR) and one, 0.5 m resolution, panchromatic band. 

The complete LiDAR data (DSM and DEM) with 2 m spatial 

resolution was obtained in 2008. Both dataset have 8 years 

difference, however, due to slow development in Kota Bharu, 

the LiDAR data is still applicable to be used in this study.   

 

 
Figure 1. Study area  

  

(a) (b) 

(c) 

Figure 2. airborne LiDAR data (a) DTM, (b) DSM, (c) nDSM 

 

 

 

2.3 Method 

In this section, the flowchart of this study is divided into two 

parts, i.e. data pre-processing and classification of UST with 

assess its reliability (Figure 3).  

 

 

 

 

Table 1. Different type of houses. 

1 Single storey concrete house with tile roofing 

2 Single storey concrete house with metal roofing 

3 
Modified single storey conceret house (partial second floor 
additions - concrete wall) with tite roofing 

4 
Modified single storey conceret house (partial second floor 
additions - concrete wall) with metal roofing 

5 
Modified single storey conceret house (partial second floor 
additions - wooden wall) with tite roofing 

6 Elevated wooden house with metal roof (zinc) 

7 Elevated wooden house with tile roofing 

8 
Elevated wooden and partial concrete house with metal 

roofing (zinc) 

9 
Elevated wooden house and partial concrete with metal roof 

(zinc) 

10 Elevated concrete house with tile roofing 

11 Elevated concrete house with metal roofing 

12 Wooden house with metal roofing (zinc) 

13 Double storey conceret house with tile roofing 

14 Double storey conceret house with metal roofing 

15 
Double storey (ground floor: concrete; first floor: wood) with 

metal roofing 

16 
Double storey (ground floor: concrete; first floor: metal) with 
metal roofing 

17 
Mix single and double storey concrete house with metal/tile 
roofing 

18 
Mix elevated wooden and partial single storey concrete house 

(metal and tile roofing) 

19 
Mix elevated and partial single storey concrete house with 

tile roofing 

20 
Mix elevated wooden and partial single storey concrete house 

with metal roofing 

21 Mix wooden and concrete house with metal roofing 

 

 

Main Data

Geoeye

LiDAR

Preprocessing

Geoeye: Orthorectification, image 
sharpening

LiDAR: DSM – DTM = nDSM, 
resampled

Derivation of features/Generation of 
Training and Testing data Set  

Geoeye: Descriptive statistics, band 
indices, GLCM

LiDAR: height information

Segmentation 

Create meaningful objects

Classification of UST 

Machine learning classifier (RF, 
SVM, CART) + features

Accuracy Assessment 

Overall accuracy and Kappa

 
Figure 3. Flow chart, red box is data pre-processing, while 

green box is classification of UST.  
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2.3.1 Data pre-processing: Orthorectification and image 

sharpening applied to GE-1 satellite image. An nDSM is created 

by subtracting Digital Terrain Model (DTM) from a Digital 

Surface Model (DSM). Next, resampling the nDSM to 0.5 m in 

order to match the resolution of satellite image. Prior to run 

image segmentation, a tool called ‘Estimation of Scale 

Parameters’ (ESP) version 2 developed by Drăgut et al. (2010) 

was used to estimate the suitable scale parameter for 

multiresolution image segmentation. The scale parameter 

estimated by ESP is 116 and associated with other segmentation 

parameters, i.e. shape (0.9) and compactness (0.1) are well used 

for creating meaningful objects in this study.  

 

2.3.2 UST mapping: In this step, the classification of UST is 

important. As there are no compulsory and consistent urban 

structure types, the classification scheme depends on the study 

area and the objective of the respective analysis (Banzhaf & 

Höfer, 2008). Therefore, we defined 8 USTs which shown in 

Figure 4. 

  

Planned house/row house Water Body 

   
 

Buildings 

   
 

Impervious Grassland Tree 

   
 

Bare land Unplanned house 

   
   

Figure 4. The urban structure type at study area 

 

In this study, we derived a total of 74 image features on the 

basis of four feature classes, i.e. Spectral, Band indices, 

Haralick texture, and height information (Table 2). In addition, 

three different machine learning classifiers, i.e. Random Forest 

(RF), Support Vector Machines (SVM) and Classification and 

Regression Tree (CART), were used to implement UST 

classification. However, present study is an preliminary study 

on the classification of UST, therefore, the parameter of each 

classifier is set to default.  

 

Both CART and Random Forest are tree-based algorithm. 

CART is a single tree of classification model in which we can 

prune the overgrown trees while RF is an ensemble of number 

of CART. Also, pruning is not allowed in it thought some 

tuning function is available in which we can pass parameter like 

no of trees etc. SVM is a non-parametric algorithm that allow 

fast and dependable classification with limited amount of data.    

 

Following an object-based approach to image analysis, 

segments have been used as sample type. In this study, total of 

460 segments were generated. Total of 36% of the segments are 

assigned as training data sets while the rest are testing data sets 

(295 segments). Training sets data are used for classification 

purposes while testing sets data are used to evaluate the 

accuracy of classification result.  

 

Next, accuracy assessment of image classificaiton is carried out 

by calculation of overall accuracy and Kappa coefficient which 

are the standard and common method to assess the reliability of 

the produced thematic map. According to Thomlinson et al. 

(1999) accurate a classification when the OA is at least equal to 

85% and no class is less than 70%. 

  

3. RESULTS AND DISCUSSION 

This section briefly explained on the results of UST 

classification shown in Figure 5 and discuss the performance of 

every machine learning classifier, the producer’s accuracy and 

user’s accuracy of every class and also the influence of the 

image features used for classification.  

  

 
Figure 5. Comparison of every classifier in term of overall 

accuracy and Kappa coefficient.  

 

Classification of UST was conducted using three different 

machine learning classifiers, which were CART, RF and SVM. 

The classification accuracy statistics are summarized in Figure 

4. The results show that classification using RF3 provided the 

highest overall accuracy (95.2%) and Kappa coefficient (0.94). 

SVM generated the least accurate classification map with 78.9% 

overall accuracy and Kappa coefficient of 0.74. Moreover, 

CART produced relatively high overall accuracy and Kappa 

coefficient with above than 90 % and 0.85, respectively. The 

reason SVM produced least overall accuracy compared to other 

two classifiers is attributed to the parameter of SVM is set to 

default.  

For the RF3, the classes with the highest producer’s accuracy 

were those of water (100%), tree (100%), planned house 

(100%), impervious (100%), and grassland (100%) followed by 

unplanned house (97.8%), bare land (94.7%) and buildings 

(83.6%). User’s accuracy was higher for water (100%), Tree 

(100%), planned house (100%), impervious (100%), and 

grassland (100%), followed by buildings (98.6%), bare land 

(96.6%), and unplanned house (79.1%). All classes were easily 

separable by all classifier algorithms applied.  
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Table 3. Summary of confusion matrix of each finest classifier. 

 

 
CART 1 SVM 2 RF 3 

Class 
Prod. 

Acc. 

User 

Acc. 

Prod. 

Acc. 

User 

Acc. 

Prod. 

Acc. 

User 

Acc. 

Water 100.0 99.0 100.0 100.0 100.0 100.0 

Unplanned 

house 
88.1 93.7 81.3 78.0 97.8 79.1 

Tree 98.9 96.9 93.3 90.1 100.0 100.0 

Planned 

house 
100.0 100.0 0.0 0.0 100.0 100.0 

Impervious 100.0 100.0 100.0 100.0 100.0 100.0 

Grassland 95.9 97.3 86.5 90.7 100.0 100.0 

Buildings 88.7 92.1 86.4 84.3 83.6 98.6 

Bare land 88.8 66.4 87.6 100.0 94.7 96.6 

 

In addition, we divided the 74 sub features into four groups 

(Table 2) in order to examine their influence on classification. 

Apparent result of classification using RF classifier depicted 

that taking more sub-features into consideration, the overall 

accuracy and Kappa coefficient is increasing. Similar condition 

is noticeable in using SVM classifier. On the contrary, the 

overall accuracy and Kappa coefficient of CART classifier is 

decreasing with increase the numbers of sub-features.  

 

The difference of group 1 and group 4 of sub-features is group 4 

take height information into consideration. By looking at 

classification accuracy statistics, it noticed that the overall 

accuracy of group 4 is lower than group 1. The overall accuracy 

of RF1 and RF4 are 93.2% and 92.8%, respectively where the 

overall accuracy of CART1 (93.7) and CART 4 (92.3%). The 

reason is that the Geoeye-1 satellite image captured at 19.3° off 

nadir. However such off nadir degree is considerable large 

compared to LiDAR data, therefore, this is the source of causing 

misclassification.    

 

4. CONCLUSION 

In this study, classification of UST by using three different 

machine learning classifiers is conducted. Results show that 

Random Forest classifier achieve highest overall accuracy of 

95.2% and Kappa coefficient of 0.94, followed by CART 

classifier and SVM classifier. Nevertheless, further study should 

be carry out in few aspects. The building class in present study 

is too general, further study should try to classify different type 

of buildings. In addition, more focusing on tuning parameter of 

classifier, especially SVM. This result can be further use to 

assist detailed building characterisation for flood vulnerability 

assessment.   

 

 

Table 2. The main feature class and its associated image features.  

 
Image Feature description Feature class G1 G2 G3 G4 

Mean DN value in image band i Spectral x x x x 

Standard DN of reflectance values in image band i Spectral x x x x 

Maximum of DN value in image band i Spectral x x x x 

Minimum of DN value in image band i Spectral x x x x 

Median of DN value in image band i Spectral x x x x 

Mean, standard deviation, median and mode values of  

normalized difference vegetation index (NDVI) 

Band index x x x x 

Mean, standard deviation, median and mode values of  

soil adjusted vegetation index (SAVI) 

Band index x x x x 

Mean, standard deviation, median and mode values of  

simple ratio (SR) 

Band index x x x x 

Mean and standard deviation of height values Elevation   x x 

Angular second moment derived from the  

grey-level co-occurrence matrix (GLCM) in band x 

Textural  x x  

Homogeneity derived from GLCM in band x Textural  x x  

Contrast derived from GLCM in band x Textural  x x  

Dissimilarity derived from GLCM in band x Textural  x x  

Entropy derived from GLCM in band x Textural  x x  

Angular 2nd moment derived from GLCM in band x Textural  x x  

Mean derived from GLCM in band x Textural  x x  

Standard deviation derived from GLCM in band x Textural  x x  

Correlation derived from GLCM in band x Textural  x x  
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