
MULTIGRID CELL SHAPE EVALUATION IN DTM FILTERING OF MOBILE LIDAR 

POINT CLOUDS 

 

Luis Gézero 1, 2, Carlos Antunes 1, 3 

 
1 Faculty of Sciences of the Lisbon University, Campo Grande 1749-016 Lisbon Portugal 

2 LandCOBA, Digital Cartography Consulting Lda. - l.gezero@cobagroup.com  
3 Dom Luiz Institute, Faculty of Sciences of the Lisbon University, Campo Grande 1749-016 Lisbon, Portugal - 

cmantunes@fc.ul.pt 

 

Commission IV, WG IV/1 

 

 

KEY WORDS: Point cloud, Mobile LiDAR, Digital terrain models, Filtering, Delaunay triangulation, Barycentric coordinates  

 

 

ABSTRACT: 

 

The georeferenced information acquisition for large scales digital terrain models generation is usually a rather time-consuming and 

costly process. The use of point clouds gathered by mobile LiDAR systems therefore appears as a possible source for the creation 

of those models, particularly in remote areas where security issues requires a maximum speed field collection information. 

However, the filtering challenge to separate the points that represents the terrain surface from the remaining, in an automat ic and 

consistent way, is an open challenge that continues to arouse the interest of researchers. Using a multigrid filtering method, this 

work presents a comparative analysis of different shapes of regular grid cells, including the implementation algorithms for each 

cell shape. Also, a coordinate grid concept applied to each cell shape is proposed. Finally, a discussion about the obtained results 

of the method application using point clouds collected in different environments from different ground LiDAR systems are 

presented.  

 

 

1. INTRODUCTION 

The Digital terrain Model (DTM) is probably the single-most 

universally utilized geographical information source used in 

disciplines such as geology, geography, geophysics, biology 

and environment, engineering, land management, etc.. 

In last decades Mobile LiDAR Systems (MLS), rises as a very 

efficient technique in the acquisition of precise and dense point 

clouds. These systems, especially the MLS allows fast 

collection of large amounts of data along the roads, reducing 

the fieldwork time, when compared with classic topographic 

and photogrammetric methods. By lowering the acquisition 

costs and increasing safety, this technology can then be a 

solution for gathering fast and precise information that can be 

used to large scale DTM generation.  

 

However, LiDAR, is a non-selective technique, i.e., the 

georeferenced point clouds represent the surrounding physical 

reality at an acquisition moment, indiscriminately, with no 

classification including: terrain, vegetation, or any other object 

within the system range. Therefore, to use such type of data for 

DTM generation, it is necessary to identify and separate the 

terrain points from the remaining points of the cloud.  

This process has been, in the last years, designated in the 

literature as filtering (Chen et al., 2013, Mongus and Zalik, 

2012, Hu et al., 2015). The development of the filtering 

processes has challenged many researchers since the beginning 

of the first LiDAR systems.  

 

Chen et al., 2017, presents a good recent review of DTM 

methods generation, including the filtering algorithms. These 

methods are classified into six categories: surface-based 

adjustment; morphology-based filtering, triangulated irregular 

network (TIN)-based refinement, segmentation and 

classification, statistical analysis and multi-scale comparison.  

Most of the published work in this field of study is applied to 

point clouds exclusively collected from Aerial LiDAR Systems 

(ALS) ((Chen et al. 2017, Özcan and Ünsalan, 2017). 

However, the point clouds collected by these systems have very 

different characteristics from the collected by MLS, such as, 

the different collection angle, the higher information density 

and the complexity of the environment surrounding the system. 

Based on that, most of the DTM creation algorithms applied to 

ALS data do not work or are not very efficient for the data 

collected by MLS. Nevertheless, there are some studies that 

adapted filters initially designed for ALS or have applied 

specific algorithms to ground systems collected data (Pfeifer 

and Mandlburger, 2008; Fellendorf, 2013; Vallet and Papelard, 

2015; Tyagur and Hollaus, 2016; Yang et al., 2016). One of the 

most well-known methods type, is based on the classification 

of the lowest point within a cell as ground point. Then, the rest 

of the points are classified as ground points and non-ground 

points by analysing the spatial correlation between unclassified 

points and pre-set ground points. The main assumed rule is: the 

closer two ground points are, the smaller their elevation 

difference is. In other hand, if two nearby points have very 

different elevations, assuming the point with the lowest 

elevation is on the ground, there is a greater probability that 

the highest elevation point does not represent or is not part of 

the terrain. 

 

The present work intends to contribute in this research topic, 

by presenting a comparative analysis of different regular and 

irregular cell shapes, starting from a filtering method based in 

a recursive grid division of the space presented by Gézero and 

Antunes (2017). The method uses a recursive division of the 

space, trough consecutive iterations where the subsequent cells 

results from an initial cell division, called along this work, 

multigrid process. The method links only a cloud point to a 
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grid cell, however all points in the cloud must be iteratively 

processed. Therefore, the global method efficiency depends 

directly of the implementation effectiveness of the condition 

determination if a specific point cloud is inside the cell, which 

given the amount of cloud points and grid cells can be very 

slow. Instead of using directly the point and cell polygon 

coordinates to check that condition, an alternative method is 

proposed, based on the grid coordinates row and a column. 

This proposed algorithm turns easy the elevation comparison 

between two consecutive cells divisions by changing the cell 

size value and decrease drastically time consuming of the 

overall method. Based on this method, the implementation 

algorithms and a comparative evaluation study of different 

regular cell shapes is presented. Also, a triangular irregular 

grid space division is presented, keeping the multigrid concept. 

 

This paper is composed as follows. In section 2, a description 

of the different regular cell shapes is presented, namely, 

quadrangular, hexagonal and triangular. An irregular triangular 

multigrid is also presented, using 3D triangular cells, being the 

distance to the triangle plane used instead of the elevation 

point value used in the 2D regular grid cells. The different 

implementation algorithms are described thought the 

corresponding pseudo-codes.  In section 3, a brief description 

of the method operation is presented, in the way to help the 

understanding of the overall method working process flow. The 

obtained results evaluation in different environments and 

discussion are described along section 5. Finally, conclusions 

and future work are presented in the section 6.  

 

2. REGULAR AND IRREGULAR GRIDS 

Along this work, a grid is considered to be regular when all its 

cells are equal, not necessarily symmetric, three cell shapes are 

compared: quadrangular, hexagonal and triangular. Regardless 

the cell shape, an essential step to implement the method 

outcomes from the need to identify in which cell grid a point 

cloud is located. Instead of using the coordinates of the cell 

polygon, a different implementation is proposed, based in the 

determination of the grid coordinates row and column (Row, 

Col). The problem of assigning a cloud point to a cell, based on 

is planimetric coordinates (X, Y), is then reduced to find the 

grid coordinates of the cell. 

 

2.1 Quadrangular cells 

The use of quadrangular cells (particularly squares) is clearly 

the most intuitive way to divide space on a regular basis. The 

easy implementation and abstraction of this type of cells makes 

them the most popular way of representation through a regular 

grid. The square pixels associated to the raster format of an 

image are one paradigmatic case of this representation.  

The formulas to find the grid coordinates of a cell in which a 

point is inside based on is planimetric coordinates, is described 

in (1). 

 

       (1) 

Where Dcel – cell size dimension 

 Row – grid row containing the point 

 Col - grid column containing the point 

 X, Y – cloud point planimetric coordinates 

2.2 Hexagonal cells 

A known advantage of using hexagonal cells is related to the 

determination of their neighborhood. Unlike quadrangular and 

triangular cells, the distance to all hexagonal neighbors is the 

same, turning easier, without any ambiguity, the application of 

this cell shape in methods where the neighborhoods are 

needed. However, the implementation of hexagonal cells grid 

is much more complex than quadrangular, since they are not 

orthogonal to a coordinate system. 

 

In Figure 1, is presented the grid coordinate system defined for 

the hexagonal cells. The columns are vertical, but the rows are 

not horizontal, which increases the implementation complexity. 

Should be noted that the presented version of hexagonal cells 

is usually called horizontal, that is, the top of each cell is a 

horizontal edge. There is another version, called vertical, 

resulting from a 90º rotation of the cells, where the top of each 

cell is a vertex (also called flat or pointy). The presented 

algorithm can easily be applied to vertical hexagonal cells, 

inverting the rows and columns, in that case the rows will be 

horizontal, but the columns will be not vertical.  

 

Figure 1. Hexagonal grid cell coordinates and candidate’s rows 

and columns (red rectangles). 

 

Since the hexagonal cells height (h) and width (w) are 

different, the algorithm first step is to calculate the relationship 

between h and w. The triangle T, represented in Figure 2, is a 

right triangle, i.e., the relationship between its height and base 

is 1 / √3, and the total width of the hexagon will be four times 

the value of the base of triangle T, then the relationship 

between h and w can be represented thought (2). 

 

Figure 2. Hexagonal cell weight and height relationship 

     (2) 

 

Where w - hexagonal cell width 

 h - hexagonal cell Height 

 

The grid coordinates (Row, Col) determination algorithm is 

then performed in tree steps. In step 1, a rectangular cell 

candidate is identified (Cc, Rc), whose height is equal to the 

hexagonal cell height (h) and the width are tree-fourths of the 

of the hexagonal cell width (red rectangles of Figure 1 and 3). 

Since the rows are not orthogonal, it is necessary to separate 
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the cells columns into even and odd. The step 1 formulation is 

presented in (3). In step 2 its verified if the point is inside the 

cell corresponding to the rectangle or is in the above or below 

row, that is, in the areas green and blue inside the rectangle of 

Figure 3. 

 

Based in the same figure, if the point is in the left fourth of the 

hexagon width (otherwise the grid coordinates are equal to the 

candidate coordinates Cc and Rc), it is necessary to check if 

the point is inside the green or in blue areas. Since booth areas 

are right triangles, the problem is reduced to check if the point 

is in the top or bottom half of the left fourth of the hexagon and 

if is inside those right triangles. The step 2 formulation is 

presented in (4). 

 

Figure 3. Auxiliary rectangle and above (green) and bellow 

(blue) areas 

 

Finally, in step 3, the candidates grid coordinates (Cc, Rc) are 

adjusted and the row and col determined, the step conditions 

are presented in (5).  

 

Step 1:      (3) 

Boolean A =False 

Boolean B =False 

  
  

Step 2:       (4) 

  

 
 

Step 3:       (5) 

 
 

Where Cc - grid column candidate 

 Rc - grid row candidate 

 h – hexagonal cell height 

 w - hexagonal cell width, 

 X, Y - cloud point planimetric coordinates 

 

2.3 Triangular cells 

The triangle is the most basic unit of all geometrical patterns, 

since a rectangle, hexagon or any other shape polygon can be 

decomposed into a series of triangles.  

 

The proposed regular triangular grid uses vertical isosceles 

triangles. As in the hexagonal grid, horizontal triangles can be 

used, by a rotation of 90 º and an inversion of rows and 

columns in the presented calculation. The relation of the 

isosceles triangles height (h) and width (w) is presented in (6).  

 

     (6) 

 

Where w - triangular cell width 

 h - triangular cell Height 

 

In the triangular cells case, it’s necessary to distinguish 

between the triangles pointing up and down. To do so an 0.5 

value is added to the value of the previous column if the 

triangle is pointing down. So, all triangles pointing down will 

have a half unit column index and all triangles pointing up an 

integer column index. 

 

Considering that the first column corresponds to the number K, 

the column sequence will be: K, K + 0.5, K + 1, K + 1.5, K + 

2, etc.. The triangular grid coordinates scheme is presented in 

Figure 4.  

 

Figure 4. Triangular cells grid coordinates 

 

The algorithm is divided in 2 steps, in the first step presented 

in (6) a candidate rectangle with the width (w) and height (h) 

of the triangle is used to establish the candidate coordinates 

(Rc, Cc). In this case the final row value is equal to the 

candidate row, therefore, only the column value is calculated 

along the algorithm. In Figure 5, the candidate rectangle is 

represented in red and the respective formulation is presented 

in (9). Along the second step the auxiliary rectangle is divided 

in 3 triangles. The central tested triangle and the remaining 

both sides right triangles, green and blue, showed in Figure 5.  

 

 

Figure 5. Triangular cells grid coordinates calculation 
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Dividing the rectangle vertically, a similar situation to the 

hexagonal cells can be established, by checking if the point lies 

inside one of the right triangles (blue and green areas of Figure 

5). A final adjustment of the column value is then made, 

adding 0.5 to the cell column index if the triangle is pointing 

down. The sequential operations and auxiliary values to this 

calculation are presented in (8). 

 

Step 1:      (7) 

  
 

Step 2:      (8) 

  

  

  

  

 
 

Where w - triangular cell width 

 h - triangular cell Height 

 X, Y - cloud point planimetric coordinates 

 

2.4 Irregular grid 

Although different approaches, namely quadrangular (Kang, et 

al., 2015), the most common irregular cell shape to space 

division and DTM representation, is the triangle, usually called 

Triangular Irregular Network (TIN). Unlike the regular, the 

irregular grid requires a pre-established set of initial points 

along the work area in order to start the recursive triangulation 

division process. Those initial points can be established using a 

single initial triangle that contains all the points of the cloud 

inside (Figure 6), or in order to accelerate the process, a grid of 

regular cells where the lowest elevation point is identified 

within each cell, can be used. That set of points are then 

triangulated and the resulting triangles used to start the 

recursive triangulation division process. 

 

The triangles division are recursively made, using the point 

identified within each triangle. Therefore, in each iteration, 

each triangle is divided in three new triangles. 

 

Figure 6. Irregular recursive triangulation 

 

In irregular grids it’s not possible to use the coordinate grid 

concept (Row, Col), but the spatial multigrid relationship 

between the divided cell and the resulting cells in consecutive 

iterations is kept.  

 

The concept of point inside a triangle in space can be faced in 

two different ways, depending if we consider a 2D or 3D 

approach to the problem. In Figure 7 is represented a triangle T 

and two points in space, P1 and P2. 

 

Since, the variable used to compare the points inside the cell is 

the point elevation, if we project the point P1 and P2 along the 

Z axis, in the X, Y coordinates plane (P1’’ and P2’’), it may be 

concluded that P2’’ is outside the triangle T’ and consequently 

outside T. In other hand P1’’ will be inside T. However, if we 

consider the projections of P1 and P2 in the triangle plane (P1’ 

and P2’), the opposite can be concluded. 

 

To take advantage of the 3D triangles, especially in terrain 

slope areas, only the method based in the triangle plane point’s 

projection was considered. The efficient algorithm presented 

by Heidrich (2005) to compute the triangle barycentric 

coordinates where used to compute the point projection into the 

triangle plane and based on that check if the point projection 

lies inside the triangle. 

 
 

Figure 7 - Point in 3D triangle, and point to plane distance 

 

Based on the triangle T represented in the Figure 7, defined by 

the points (Pa, Pb, Pc), the algorithm starts by building vectors 

between two triangle vertices and both a triangle vertex and 

the point in space P2. The B1, B2 and B3 coefficients, 

described in (9) are then calculated in way to compute the P2 

point projection barycentric coordinates. The verification if the 

point projection P2’ is inside the triangle is reduced to check if 

that point is in the left side of the triangle edges, i.e., all B1, 

B2 and B3 coefficients are between 0 and 1.  

 

  

  

  

  
 

  

    (9) 

  
 

  
 

Where P – 3d point in space)  

 Pa, Pb, Pc – the tree triangle points 

B1, B2, B3 - barycentric coordinates of P2 projection 

in the triangle plane 

 

After checking if the point lies inside the triangle, it is 

necessary to measure the distance from the point to the triangle 
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plane. In this case such distance is equal to the distance 

between the point P2 and its projection in the triangle plane 

P2’’. Then the cartesian coordinates of P2’’ can be calculate 

trough (10). 

 

   (10) 

 

Where X’’, Y’’, Z’’ – cartesian coordinates of the point 

projection in the triangle plane  

B1, B2, B3 - barycentric coordinates of the point 

projection in the triangle plane 

Xi, Yi, Zi - cartesian coordinates of the tree triangle 

points 

 

Knowing the cartesian coordinates of P2 and P2’’, the distance 

from the point to the triangle plane can be directly calculate by 

the tridimensional Euclidian distance between these two 

points. 

 

3. METHOD OPERATION AND IMPLEMENTATION 

In the overall DTM multigrid method implementation in 

regular grids, an initial cell size is defined or just the height 

value in the case of hexagonal and triangular cells. In each 

iteration, a cell list is created and identified by their grid 

coordinates (Col, Row) and just a cloud point is associated to 

each cell. In the first iteration, for each point cloud, the grid 

coordinates are retrieved, associating to each (Col, Row) pair 

the minimum elevation point inside each cell. In the follow 

iterations, a restriction based in a minimum elevation 

difference regarding the previous cell point is established. The 

minimum elevation candidate point that fulfils all restrictions, 

is associate to the new cell. If no point fulfils the restrictions, 

then the process stops and in the next iteration no point will be 

considered for the process inside that cell. The method 

stopping criteria can be defined by a limited number of 

iterations, a minimum number of points in an iteration or a 

minimum difference of points between consecutive iterations.  

 

Although the cell size value considered between two 

consecutive iterations is always half of the previous iteration 

cell size, the division process is very different regarding the 

different shapes. Figure 8 shows the different cell shapes 

division, with half size reduced between two consecutive 

iterations. Although, both squares and triangles are divided in 

four new cells, the division is made differently in the cell 

space. The hexagonal cell division results in seven new cells, 

furthermore, unlike the others cell shapes the new hexagonal 

resulting cells do not cover only the previous cell area. This 

means that the point of some cells can be compared with the 

neighbor’s previous cells and not with the divided cell. This 

does not represent by itself a problem for the method operation 

but brings a new variation to the point selection.  

 

Figure 8. Regular cell division 

In the irregular triangular implementation, a relevant aspect of 

the 3D triangles is the side to which the point is regarding to 

the triangle plane. The point position relative to the triangle 

plane, can be obtained by the sign of the dot product between 

the cross product ( ) and , defined in (9). Considering 

two points, if the dot product signs for each point are equal, 

they lie in some triangle side, on the contrary, they are in 

opposite sides. 

 

A way to control the side that a point is regarding to a triangle 

plane is unsure that the triangles points are clockwise ordered. 

In such case, the dot product will be positive if the point is 

above a horizontal triangle, and negative if it is bellow that 

plane. Figure 9 represents a 3D triangle crossing a schematic 

street curb cross section collected by a point cloud. If the 

triangle T vertices are clockwise ordered, the defined dot 

product regarding P1 point is positive and negative for P2 

point. In the method implementation, the restrictions are 

adapted to Lmin<Di<Lmax, where the candidate point with 

minimum Di is associated to the triangular cell.  

 

 

Figure 9. Triangle side illustration 

 

4. RESULTS AND DISCUSSION 

In the top of the Figure 10, is presented a point cloud collected 

by a Trimble MX8 MLS, the point cloud has 7800500 points. 

In the bottom of the same figure the resulting points method 

application using different cell shapes are presented, squares 

(green), hexagons (red) and triangles (blue). The presented 

results are obtained with only two iterations. 

 

At a first glance, the results are very similar. All the points 

representing elements outside the ground were globally 

eliminate, i.e., houses, trees, poles, traffic signs, etc.. Also, the 

resulting point distribution are irregular, less points in flat 

quasi horizontal areas, and higher density in areas with greater 

terrain elevation variations. The resulting amount of points, 

with the initial cell size 1 meter and for each cell type were: 

16018 (squares), 17600 (hexagons) and 25310 (triangles). 

 

Despite the same initial cell size used, the difference between 

the amounts of resulting points are significant, especially 

between the squares and triangles cells shape. The justification 

for that, comes from the different areas occupied for each cell 

shape. Therefore, for the same height value, the space area 

occupied by the triangles are less and more cells are needed to 

cover the all area and consequently the resulting DTM contains 

more points. 
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Figure 10. Different cell shape results, squares (green), 

hexagons (red) and triangles (blue) 

 

To compare the different cell shapes with the same area, a new 

processing was made using 1 m for the initial values of cell 

size to the quadrangular cells, 1.075 m for hexagonal cells and 

1.316 m for the triangular cells. The resulting amount of 

points, with the initial cell area of one square meter, for each 

cell type, were: 16018 (squares), 16223 (hexagons) and 1660 

(triangles). In Figure 11 is presented an amplification of the 

yellow square draw in the Figure 10 point cloud.  

 

Figure 11. Grid cell shapes resulting points from Figure 10 

point cloud yellow zoomed area 

 

In the triangular shape result (blue) of Figure 11, can be 

observed a “pair of point’s” effect, here nearby two by two 

points appear in flat surfaces. This effect results from the way 

that the triangles were divided in each iteration, especially due 

to the middle inverse triangle (Figure 8).  

 

In Figure 12 a gravel road surrounded by dense vegetation is 

represented by a point cloud collected by a Lynx – Optech 

MLS. The three presented results are obtained after 4 

iterations, with the initial cell area = 4 square meters. The 

point cloud has 3000500 points, and for the different cell 

shapes the obtained amount of points were: squares (green) 

7587, hexagons (red) 8754 and triangles (blue) 8379.  

 

In this case, the cell shape with highest number of points is the 

hexagonal grid. That results from a highest space discretization 

of the hexagons regarding to the other cell shapes (Figure 8). 

Consequently, more terrain variations between iterations are 

detected and more points are included in the final DTM, 

especially when the number of iterations increases.  

The resulting points obtained from the hexagons, reveals to be 

more equidistant, along the road, than the resulting points from 

the other cell shapes. The reason for that, is the symmetry of 

the hexagons neighbors, that allows to eliminate the method 

sensitivity to the terrain inclination. 

 

Although almost all the points representing the vegetation has 

been eliminated, there are still some points representing 

vegetation that remains in the resulting DTM points, mostly in 

the left side of the road. That happens because in that area the 

points with lower elevation are not in the ground, probably 

because the emitted LiDAR sensor pulses where reflected in 

the dense vegetation and did not reach the ground.  

 

 

Figure 12. Height vegetation results 

 

A well-known challenge in DTM creation and representation is 

the terrain modelling along break lines, being the line along 

the street curb in urban areas a good example. The parked cars 

along roads are other common issue in DTM in urban 

environments. The goal of the filtering methods is opposite for 

these two elements, i.e., keep the curb break-line and remove 

the cars form the final DTM. In Figure 13 a point cloud 

collected by a Lynx – Optech MLS, of an urban area are 

presented. A sidewalk with the respective curb, and a parked 

truck are collected. In the same figure a triangulation of the 

resulting points forming the different cell shapes, are shown 

through a hill shade representation. Once more, for the 

different cell shapes, the points that represent all elements 

outside the terrain where almost all eliminated, including the 

points representing the truck. On the contrary, along the curb, 

there are a highest point concentration, which allows a better 

representation of the break-line in the triangulated surface. 

 

After several tests with different size cells and iteration 

numbers, there are not clear differences between the different 

cell shapes in the break-line definition. However, significantly 
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differences are verified in the triangulation method used to 

represent the resulting points 

 

Figure 13. Height vegetation results 

 

The Delaunay triangulation of a point set S introduced by Boris 

Nikolaevich Delaunay in 1934, is characterized by the empty 

circumdisk property: no point in S lies in the interior of any 

triangle’s circumscribing disk. In two dimensions, it has a 

striking advantage: among all possible triangulations of set of 

points, the Delaunay triangulation maximizes the minimum 

angle. It also optimizes several other geometric criteria related 

to interpolation accuracy (Cheng et al., 2012). Since only the 

planimetric coordinates (X, Y) are used to define the Delaunay 

calculations, besides the resulting triangles with 3D 

coordinates, the Delaunay triangulation are usually known as a 

2.5D method. Due its proprieties, this triangulation method is 

clearly the most used terrain representation through TIN, in the 

last decades. However, mostly due the resulting point irregular 

distribution, and the growing cell process from bottom to topo 

along the terrain, the Delaunay triangulation method reveals 

some limitations in the curb break-lines representation. Figure 

14 shows two different triangulations of an amplification of the 

yellow square draw in the point cloud of Figure 12. The 

Delaunay method were used in the triangulation 

representation. The curb definition is visibly and not well 

represented, especially the bottom of the break line. 

 

 
 

Figure 14. Delaunay triangulation of the DTM resulting points 

 

In Figure 14 b) is presented the exact same points that in 

Figure 14 a), therefor the triangulation was made using the 

Poisson reconstruction surface. 

 

The approach of Poisson surface reconstruction is based on the 

observation that the (inward pointing) normal field of the 

boundary of a solid can be interpreted as the gradient of the 

solid’s indicator function. Thus, given a set of oriented points 

sampling the boundary, a watertight mesh can be obtained 

through 3 steps: 1) Transform the oriented point samples into a 

continuous vector field in 3D; 2) Finding a scalar function 

whose gradients best match the vector field; and, 3) Extracting 

the appropriate iso-surface (Kazhdan and Hope, 2013). In the 

Poisson surface reconstruction representation, the curb is 

clearly better defined then in the Delaunay triangulation. The 

watertight property allows a better top and bottom break-line 

definition. 

 

In Figure 15 is presented a point cloud sample of a road 

surrounded by slope areas. The blue points where obtained 

from the method application using a triangular regular grid 

after 4 iterations with an initial cell area of 2 square meters. 

The magenta points result was obtained thought the method 

application using triangular irregular grid cells. The triangular 

regular result has 6393 points and the irregular has 2899 

points. The significant difference number of points is justified 

using the point height variable in the regular grid and the 

triangle plane projection distance in the irregular grid, 

allowing to decrease the number of points in flat areas. 

 

Figure 15. Slope planes comparing results 

 

The drastic execution time difference between the regular 

cells, where the grid coordinates system was implemented, and 

irregular cells, is well patent from the analysis of Table 1 

values. 

 

 
Regular Irregular 

Iterat. 

Squares Hexagons Triangles Triangles 

Pnts 
Time 

(s) 
Pnts 

Time 

(s) 
Pnts 

Time 

(s) 
Pnts 

Time 

(s) 

1 141 2.6 144 2.6 143 2.6 143 2.6 

2 346 3.1 367 4 365 3.4  219  178 

3 707 3.2 857 4.1 878 3.4 545  382 

4 778 3.3 963 4.2 988 3.5 1259  1073  

5 1258 3.3 1680 4.2 1651 3.9 2804  3284 

Totals 3230 16 4011 19 4025 17 4070 4920 

Table 1. Number of points and execution time statistics 

 

5. CONCLUSIONS AND FUTURE WORK 

Along this work a multigrid concept is implemented, taking 

advantage of the grid coordinates (Column and Row), instead 

of using directly the solid coordinates. This solution makes 

easy the different cell shapes method implementation, since 

whole process is similar after the grid coordinates algorithm 

implementation. A comparative study of different regular grid 

shapes, namely quadrangular, hexagonal e triangular, is 
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presented. Also, an irregular triangular grid is implemented, 

and the results compared with the regular grids. None of the 

different regular grid shapes comes out as an undoubtedly 

better solution for the DTM point filtering. Nevertheless, small 

differences are manifest in the different environments 

presented along the work. The quadrangular cells are the most 

intuitive and easiest implementation. The regular triangular 

cells are the most basic unit geometrical patterns, since all the 

others can be decomposed into a series of triangles. But these 

triangular regular grids tend to create pair of points pattern in 

flat horizontal terrain surfaces. The regular hexagons have the 

advantage of the neighborhood similarity, what gives this cell 

shape an insensitivity to the point cloud and terrain direction. 

Finally, the irregular triangular cells take advantage of 3D 

triangles, especially along low slope quasi-plane surfaces 

where less points are needed to represent the terrain. However, 

the irregular process has a very high time cost when compared 

with the regular grids, turning this process very inefficient. The 

implemented algorithms to obtain the grid coordinates turns to 

be very fast as showed in Table 1. The Delaunay interpolation 

process reveals to be not suitable to the method resulting 

points triangulation, especially along break lines.  In a future 

study, a hybrid process of regular and irregular cell shapes can 

lead to more consistent results, especially in break-lines and 

vegetation areas. For that, a deeper study to optimize the 

irregular cell implementation is essential. The method 

parameters adaptation values along the different iterations can 

also be a solution for a more efficient point discretization and a 

better terrain surface representation. 
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