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ABSTRACT:

This paper addresses the problem of extracting the drainage network in forested areas. A precise description of the drainage network
including intermittent streams is required for the planning of logging operations and environmental conservation. LiDARprovides
now high-resolution point clouds from which the terrain is modelled and the drainage extracted but it also brings some challenges for
traditional approaches. First, the raster DTM is interpolated from LiDAR ground points and has to be split in tiles for processing,
adding approximations. Second, drainage enforcement techniques alter the terrain and rely on parameters difficult to fix and limiting
the optimisation of the process. In this context, we discuss a new approach aiming at: (1) Designing a data structure to model the
terrain with a Triangulated Irregular Network in order to avoid interpolation. This data structure must enable the distribution of data
and processes across several nodes in Big data architectures and eventually, the processing of complete watersheds with no tiling. (2)
Modelling the river network through thalwegs and avoiding the filling and breaching operations. Thalweg detection is more robust,
removing the need for filling and breaching. However, it yields a very dense network requiring a simplification step. Combining this
model and the architecture will enable the design and modelling of a new tool for river network computation directly from LiDAR
ground points. In this paper, we mainly discuss the second point and propose to model the drainage by a network of thalwegs computed
from the terrain. Thalwegs are extracted from the surface network, a topological structure formed of peaks, pits and saddles as vertices
and ridges and thalwegs as vertices. We present preliminary results comparing the thalweg network and the drainage network.

1. INTRODUCTION

In forest management, knowledge of the hydrology is required for
planning logging operations and designing haul routes. Tradition-
ally, hydrological maps were drawn from photointerpretation on
aerial photographies and from digital terrain models. However,
the resolution and the quality of these maps were low because
most of the details is hidden by the canopy. Hence, a survey of
the logging area is performed before the operations start to locate
streams and wetlands. However, such surveys are long, fastidious
and, depending on the time of year and weather conditions, may
overlook some ephemeral or intermittent streams or some humid
areas.

Now, LiDAR provides datasets at a much higher resolution and
can see the floor under the canopy. As a consequence, many
mapping agencies or governmental organisations have launched
programmes to collect high-density point clouds and build high-
resolution DTM from which the hydrology is computed. The
principle of the approach consists in interpolating a grid DTM-
from the points on the ground, usually at a resolution around one
metre. The river network is then extracted by traditional flow
accumulation techniques.

However, LiDAR point clouds are massive, and a single water-
shed amounts to several terabytes of data. Current software and
approaches are not designed to handle such volumes at once. The
terrain is split into tiles but a watershed may be spread over sev-
eral tiles. The DTM is interpolated from scattered ground points
but their density varies according to the type of terrain, the thick-
ness of the canopy and the quality of the classification. Further-
more, network computation methods often rely on preprocessing
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techniques enforcing the drainage by altering the terrain. Their
parameters may depend on more or less arbitrary factors and re-
quire validation by an expert.

In order to move towards a fully automated processing of LiDAR
point clouds, we need to limit manual operations and avoid arbi-
trary parameters which affect the reliability of the result. We also
need to develop data structures that optimise data storage and ac-
cess and to preserve the quality of original measurements. The
objective is to be able to work on complete watersheds without
tiling and to avoid or linit interpolation and drainage enforcement
operations that modify the terrain model.

In this paper, we discuss the need for a change of paradigm and
propose (1) to model the terrain with a TIN directly from Li-
DAR points and (2) to identify rivers from thalwegs in order to
avoid limitations of flow accumulation approaches. The next sec-
tion presents the current approaches with its limitations. Section
3 more specifically addresses thalweg computation and presents
preliminary results comparing thalweg network and drainage net-
work. The last section concludes and presents on-going work and
future developments.

2. LIMITATIONS OF EXISTING APPROACHES

2.1 The processing chain

Current approaches rely on the extraction of the river network
from a raster DTM. Since LiDAR points are irregularly dis-
tributed, the DTM is computed by interpolation. However, the
amount of points is too large for current software to process them
all at once and they have to be tiled. LiDAR point classifica-
tion and DTM interpolation are then performed in each tiles sep-
arately.
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Figure 1: River network extraction through DTM interpolation
and flow accumulation

Computation of the river network is done in a separate stage for
each watershed. In the case a watershed spreads over several tiles,
these tiles have to be assembled, sometimes requiring some ad-
justment on the overlapping areas between tiles. If the watershed
is too big to be processed at once, tiles are processed separately
and sub-networks are connected afterward.

Flow accumulation methods simulate a water flow over a terrain.
Rivers are defined by pixels whose flow accumulation is above
a given threshold. While the principle is simple, the method re-
quires some preprocessing to enforce the drainage. The process-
ing chain is summarised in Figure 1. Errors and approximations
mainly come from the steps in red on the figure where the terrain
model is modified. The quality of the terrain model also depends
on the quality of the ground point classification algorithm (in yel-
low). This step is still an open issue, especially in forest (Meng
et al., 2010), but will not be addressed in this paper.

2.2 DTM construction

Traditionally, terrain analysis is conducted on raster DTM since
terrain data were mainly obtained from aerial photography or
satellite images. However, LiDAR ground points are not dis-
tributed regularly. Instead of working on an irregular distribu-
tion, the raster DTM is interpolated from ground points. There
are two main reasons. First, triangulated irregular networks are
more complicated to handle, they require an explicit data struc-
ture where rasters have an implicit data structure allowing for
faster computation. Second, existing processes were designed
to handle raster DTM and handling triangulated terrain would re-
quire to implement new tools for this. Since the point density is
much higher than before, rasters produced from LiDAR points
are of a much higher resolution. Rasters built for drainage ex-
traction usually have a resolution of 1 metre while rasters used
for road detection can be of a resolution of 0.25 metres (Kiss et
al., 2016), compared to previous DTM at 10 or 30 metre resolu-
tion (James et al., 2007). The networks are therefore much more
detailed than before but the quality of the DTM depends mainly
of:

• The thickness of the canopy;

• The type of terrain;

• The interpolation method.

Aerial LiDAR mesures returns from the ground or objects on the
ground. Logically, in open areas, all points reach the ground
while, if the canopy is thick, most points hit the canopy and few
hit the ground. It is also more difficult in steep slopes to classify
ground points, leading to more unclassified points. In previous
works, (Sherba et al., 2014) obtained a ground point spacing of
0.91 metre in average with a LiDAR emitting 6 pulses per square
metre. However, (White et al., 2010) conducted a survey at high-
density (12 pts/m2) in forest with steep slope and a thick canopy
and observed that 94% of the points did not reach the ground.
Hence, the density of ground points varies considerably on a ter-
rain. (Montealegre et al., 2015) showed that in such areas, the
density is below 0.3 pts/m2. Hence, the raster DTM homoge-
neous resolution does not reflect the ground point distribution. In
places where few LiDAR points hit the ground, the raster gives
a false impression of precision since the DTM at 1 m was built
in some areas from samples of points distant of several metres,
sometimes more than 10 metres apart. The only piece of infor-
mation about the quality given to the user is the point density over
the whole terrain.

To a lesser extent, the DTM also depends on the interpolation
method computing the raster from the ground points. There is
no best method here and the quality depends also on the point
density and the terrain. Common methods are inverse distance
weight, kriging and triangulation followed by a linear interpola-
tion. (Montealegre et al., 2015) obtained best results with the
triangulation. (Stereńczak et al., 2016) also found that triangu-
lation yields smaller errors but all methods can achieve similar
errors. However, bias and RMSE depend on the slope and the
undergrowth height, meaning that the quality of the DTM is not
homogeneous.

As mentioned above, interpolation is conducted separately on
each tile. When computing the drainage network of a given wa-
tershed, only the part of the terrain corresponding to this water-
shed is processed. If the watershed overlaps two or more tiles,
the DTM is built by merging the tiles. Since elevations on over-
lapping areas do not match exactly (they were computed in two
different interpolation processes), a resampling may be done on
these areas. In the case the watershed covers too many tiles to be
processed at once, the watershed must be split in several pieces
which will be treated separately. This problem occurs for exam-
ple for very large watersheds like the St-Lawrence river in Canada
but also for its main tributaries.

2.3 River network construction

Extracting the river network is commonly done by computing
the flow accumulation (O’Callaghan and Mark, 1984). It con-
sists in simulating a water flow and counting the amount of water
that flows through each pixel. In most approaches, water runs
along the steepest slope chosen among the eight neighbours of
a pixel but some approaches also consider multiple directions.
Pixels belonging to a stream are then defined by a flow accumu-
lation threshold. The classification is then vectorised to produce
a stream network and compute the stream order. One difficulty is
in fixing this threshold. A too high threshold may erase stream
heads and miss some connections between streams while a low
threshold will lead to too many streams and a difficulty to iden-
tify them. But the main issue is the spurious pits. They are points
on the terrain lower than their neighbours. As such, there is no
direction out of these pits and the flow is interrupted.

In order to correct this problem, several methods have been de-
veloped. A first method consists in integrating hydrographic data
in the DTM construction process as in the ANUDEM algorithm
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Figure 2: Drainages obtained after filling (green) and after
breaching (blue) on a one-metre resolution DTM

(Hutchinson, 1989). However, it requires an a priori knowledge
of the hydrography and existing maps (when they exist) lack of
data and precision compared to LiDAR data. A second approach
is the filtering of the terrain with a low-pass filter or a focal oper-
ation which assigns to a pixel the lowest elevation within a win-
dow. Filtering removes small pits by smoothing the terrain but it
works only for pits smaller than the window. Nonetheless, it is
often used to remove noise and enlarge existing channels before
applying other techniques.

Three main drainage enforcement techniques are applied to re-
move spurious pits and avoid flow interruptions: burning, filling
and breaching. Burning the DTM (Lindsay, 2016b) means that
users carves the terrain in places where they want to direct the
flow. It is often used to force the flow according to some hy-
drographic data. For example, streams are often diverted under
forest tracks by culverts. When these culverts are known, the ter-
rain is burnt at these location for streams to cross the tracks. This
method requires data of a higher accuracy than the DTM (Lindsay
and Dhun, 2015) and the procedure is arbitrary and done accord-
ing to the user’s knowledge. As such, it cannot be considered in
an automatic process.

The most popular approach is the filling of depressions (Jenson
and Domingue, 1988, Planchon and Darboux, 2002). The ter-
rain inside the depression is raised to the level of the first outflow
point, creating a flat area. The method is applied automatically
on the terrain to fill either all the pits or only pits below a certain
size. Hence it guarantees that streams are not interrupted but it
introduces large deformations in the terrain with large flat areas
and unnatural streams running in straight lines as shown in Figure
2.

Breaching lowers the terrain in order to create paths from outflow
points to lower depressions. Two main approaches are consid-
ered: breaches can follow a natural path, connecting one point
to a lower neighbour based on a least cost function (Soille et
al., 2003) or they can follow a more direct route (Lindsay and
Dhun, 2015). The latter leads to paths carved through eminences
and less natural patterns but provides more relevant results when
breaching across tracks.

Breaching has the benefit of limiting terrain deformations com-
pared to filling. In Figure 2, a large depression has been filled
and lead to straight streams where breaching carved the terrain
in a more limited area. We also note that depression filling con-
nect streams but breaching leaves them disconnected, showing
that stream order and watershed can both be affected by the en-
forcement method.

Like filling, breaching does not necessarily require parameters

but this may lead to connecting the wrong streams together. Of-
ten, breaching is constrained by a maximum length and carving
depth but these parameters may depend on the type of terrain and
the kind of breach to create. For example, in Figure 2, breach-
ing was constrained by a maximum distance. By breaching over
a longer distances, the two streams on the top right corner may
have been connected. Furthermore, the result is not the same
with different breaching techniques and some pits may remain
afterward. Hence, filling may still be performed after breaching
to remove any remaining pit (Lindsay, 2016a).

2.4 Application to large datasets

In order to extract river networks from large datasets, our objec-
tive is to provide an automated and robust method. The main
limitation comes from the need for enforcement methods: the
choice of a method and the setting of parameters depend on the
type of terrain and the experience of the user. Drainage enforce-
ment is still required because flow computation relies on the flow
direction. The flow direction is defined by the terrain gradient
computed for each pixel and enforcement helps in having consis-
tent flow directions.

While breaching seems the most appropriate technique, it cannot
guaranty that all streams were detected and it may add streams
that do not exist. Enforcement methods also alter the terrain
model in a significant way creating an elevation difference of sev-
eral metres with the original raster DTM (up to 2 metres for the
example of Figure 2) and stream location can vary of several me-
tres with the method.

Hence, while LiDAR brings in data with a considerable precision,
drainage enforcement approaches significantly modify the terrain
and provide inaccurate results in comparison. Main river streams
are usually detected correctly but small streams, often ephemeral
or intermittent, cannot be mapped accurately. We consider that,
because of the need for enforcement, flow accumulation meth-
ods lack of robustness at such a high resolution and may require
a user’s supervision and possibly intervention. Alternative ap-
proaches shall be explored in view of a full automation of the
process. The points to take into account are:

• Alterations on the terrain must be avoided to preserve terrain
accuracy and limit deviations;

• User-set parameters should be avoided to improve the ro-
bustness of the computation.

A first terrain approximation occurs when interpolating the raster
DTM. Another issue with raster DTM is the large volume of data
imposing a tiling. As mentioned above, in large watersheds, the
river network has to be assembled from different tiles which is
a source of inconsistencies. In order to avoid interpolation that
brings inaccuracies in the DTM and facilitates partitioning in wa-
tersheds, a solution is to work on a TIN terrain built directly from
LiDAR ground points. Drainage computation algorithms have
also been designed for TIN (Freitas et al., 2016) but they follow a
similar approach and require drainage enforcement (Silveira and
van Oostrum, 2007) which brings significant alterations in some
places.

Indeed, the drainage network is closely related to the topography:
rivers run towards lower areas and watercourses follow valley
thalwegs. Thalwegs on a DTM can be detected by morphometric
classification but these approaches still rely on pixel classifica-
tion. The result is scale-dependent and yields areal features that
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Figure 3: Surface network and contour lines (plain) of a terrain
from (Cortés Murcia et al., 2016)

need to be vectorised. We propose instead to extract directly the
set of thalwegs as part of the surface network and to associate it
with the river network. In the next section, we present the surface
network and compare it with the drainage network.

3. AN APPROACH BASED ON THALWEG DETECTION

3.1 The surface network

A surface network (Wolf, 2004) is a tripartite graph connecting
three independent sets of vertices, the pits, peaks and saddles (or
passes) of a terrain by edges representing its ridges and thalwegs
(Figure 3). A surface network can be computed on any 2D mani-
fold and observes several topological constraints:

1. A ridge connects a saddle and a peak;

2. A thalweg connects a saddle and a pit;

3. The number of ridges and of thalwegs connected to a saddle
are equal and cannot be lower than 2;

4. Vertices obey the Euler-Poincaré formula:

#peaks +#pits −#saddles = 2 (1)

Equation (1) takes into consideration the multiplicity of a saddle.
It is given by the number of ridges (or thalwegs) connecting at
this saddle minus one. For example, if three ridges and three
thalwegs start at the same saddle, this saddle is of multiplicity
2. This equation applies to surfaces topologically equivalent to
the surface of a sphere. Hence, a virtual pit below the terrain is
added to close the DTM. In the case the DTM contains holes,
a virtual pit needs to be added to each hole to close the surface
(Cortés Murcia et al., 2016).

Surface networks can be computed on both raster and TIN. In the
case of TIN, vertices are critical points of the triangulation: pits
are points lower than their neighbours, peaks are higher and sad-
dles correspond to a minimum in one direction and a maximum in
another. On a raster, two approaches can be used: the raster can
be triangulated by splitting each grid square in two triangles and
the network is built on the subsequent triangulation (Takahashi et
al., 1995) or vertices are calculated by bilinear or bicubic interpo-
lation from the raster (Schneider, 2003). In the second case, they
do not necessarily correspond to nodes on the raster grid.

Figure 4: Segmentation of 3 thalwegs connected to a same pit
into streams

Such a definition of peaks, pits and saddles lacks of robustness in
the case two neighbouring points have the same elevation. A so-
lution proposed by (Takahashi et al., 1995) is to introduce a lexi-
cographical order between the points: if two points have the same
elevation, the one on the right is considered higher or, if both have
the same x coordinate, the one with the highest y is higher. This
simple rule is effective on natural terrains since completely flat
areas hardly occur.

Computation of ridges and thalwegs comes in a second stage. A
ridge is a line starting from a saddle and moving upward along
the steepest slope to a peak. Respectively, a thalweg is computed
by marching downward from a saddle to a pit. Whether a TIN or
a raster, computation of the surface network yields a connected
graph. Since a pit is located at the bottom of a depression and
outflow points correspond to saddles, pits are usually connected
by two or more thalwegs. That means that water courses associ-
ated to thalweg lines are not interrupted by pits and no drainage
enforcement is performed in the process. Furthermore, since no
vectorisation is required, no accumulation threshold is defined in
the process. These aspects guarantee the robustness of the ap-
proach compared to flow accumulation.

However, surface networks face several limitations and cannot
substitute yet the drainage network in hydrological applications.
While pits and peaks are of importance in the characterisation of
a terrain, most saddles have little significance (Brändli, 1996).
Ridges are seen as equivalent to water divides separating water-
sheds but they connect to thalwegs at saddle points while streams
and drainage divides connect at points of confluence which are
not modelled in the network. This is reflected by the fact that
several thalwegs connecting to the same pit may partially overlap
when coming close to the pit.

Hence, in order to remove overlaps which creates redundancy, we
propose to insert confluences as nodes in the graph. Thalwegs are
then segmented into streams where a stream is a line connecting a
saddle and a pit (the stream is equal to the thalweg), a saddle and
a confluence (in the upper part of the thalweg), two confluences
(in its middle part) or a confluence and a pit (in its lower part).
In Figure 4, 3 thalwegs have been divided into 6 streams, three
upper streams, two middle streams and one lower stream. At
this stage, saddle points are kept to maintain the connection with
ridges which can later be used to build the drainage divide.
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Figure 5: DEM with drainage network (blue) superimposed on
thalweg network (red)

3.2 Preliminary results and analysis

The surface network was compared with a drainage network com-
puted from a raster DTM interpolated from LiDAR data points
shown in Figure 5. The one-metre resolution DTM was provided
by the Ministry of Forests, Wildlife and Parks of Québec. It repre-
sents a watershed in the Montmorency forest in Québec, Canada
of an area of 1.05 km2. The watershed sink is the rightmost point
on the figure. Drainage computation followed the subsequent
process:

1. Filtering assigning the lowest elevation to a pixel within a
3× 3 window;

2. Constrained breaching;

3. Depression filling;

4. Flow accumulation;

5. Drainage extraction by thresholding.

The surface network algorithm was implemented in Python us-
ing Numpy and the QGIS 2.18 API, using the same approach as
(Cortés Murcia et al., 2016) but was applied on a raster DTM
instead of a TIN for comparison with existing data. Since the ob-
jective of the project is to compute networks on TIN, the raster
was triangulated. Triangulation was performed to minimise the
number of pits and better align edges with thalwegs (de Kok et
al., 2007): each quadrangle formed by four grid points is split
in two triangles by tracing the diagonal joining the lowest node.

Original DTM Filtered DTM
Peaks 10596 5661

Pits 4615 2536
Saddles 15209 8195
Ridges 30210 16321

Thalwegs 30210 16321

Table 1: Number of vertices and edges in the drainage network.
Saddles are counted with their multiplicity.

Figure 6: Pits (green) and saddles (blue) with thalwegs (red) and
streams (blue) from box 2 of Figure 5

This approach is also more realistic for fluvially eroded terrains
(Brändli, 1996) where there are few depressions. Point elevation
is not modified by this operation.

The surface network was computed on the original DTM and on
the filtered DTM used to compute the drainage. About twice as
many features were found on the original DTM (Table 1). Indeed,
filtering removed most noise on the terrain and surface network
is very sensible to it.

The thalweg network is much denser than the drainage network
(Figure 5). Since no thresholding or selection has been done, no
detail has been removed while the drainage depends on an accu-
mulation threshold. However, many thalwegs are not significant
streams and the distribution of thalwegs is heterogeneous. In the
upper part and lower parts of Figure 5, the two networks are quite
similar. They correspond to smooth slopes where all streams run
towards the centre of the terrain. The most noticeable difference
is that thalwegs are initiated at a higher point than streams be-
cause stream heads have been removed by the thresholding.

Most thalwegs are concentrated at some places on the borders of
the watershed and along the main stream in the centre. These ar-
eas correspond to relatively flat areas located on higher or lower
grounds (Figure 6). As such, a lot of saddles and pits are found,
generating many thalwegs because of the roughness of the ter-
rain. Variations in elevation between adjacent saddles and pits
are around 20 cm, the precision of the LiDAR. Much breach-
ing is done in these areas to connect low points together but few
streams are defined because the accumulation is too low.

The results were also compared with sample data collected on
the ground. These data are point positions acquired when walk-
ing up the streams. Most computed streams fit with field data.
The few points for which no stream was computed were located
further up the streams and were matched by thalwegs (Figure 7).
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Figure 7: Field points acquired along real streams with thalwegs
(red) and streams (blue) from box 1 of Figure 5

Hence thalwegs can represent relevant streams that were lost oth-
erwise. These streams mainly correspond to ephemeral or inter-
mittent streams whose flow accumulation is low or are located
in humid zones where the position of the stream is difficult to
establish.

Finally, the surface network algorithm failed to detect fifteen
streams in box 3 of Figure 5, all flowing northward. These
streams were detected on the original DTM but missed on the
filtered DTM. Indeed, there were not enough saddle points to ini-
tiate the thalwegs. The filter created many flat areas of 3 × 3
pixels and, because of the orientation of the slope and the lexico-
graphic rule chosen above, no saddle point was detected in this
area. On the original terrain, this rule was relevant because adja-
cent points hardly have the same elevation but is not appropriate
when the terrain contains many flat areas due to some filtering or
enforcement techniques.

4. CONCLUSION AND PERSPECTIVES

Overall, the detection of thalwegs instead of streams can be an in-
teresting solution in place of the stream approach because it does
not require any drainage enforcement altering the terrain. But,
at this stage, it detects too many thalwegs and a selection has to
be done. Surface network simplication methods exist (Bremer
et al., 2003, Danovaro et al., 2003, Rana and Morley, 2002) and
take into accont topological (to maintain network consistency)
and geometrical criteria such as the difference of elevation be-
tween vertices or change of slope along edges. The latter was
used by (Cortés Murcia et al., 2016) to characterise submarine
canyons. In comparison to flow accumulation or other indicators
such as slope computed on the terrain, they are not pixel-based
and less sensitive to noise.

The algorithm needs to be improved to handle flat or nearly flat
areas. In the first case, some saddles may be missed meaning
that some streams are missed. The definition of vertices needs to
be modified to look on a larger window but also to handle water
surfaces, such as a lake or a large stream whose two banks can be
delineated, which we did not deal with so far.

In the second case, many details are detected that relate to noise
rather than real streams. A simplification method should remove

most if not all this noise but, especially in lower ground, these
areas can be humid zones. These zones need also to be detected
and preserved. Hence it is more relevant to delineate them and
integrate them in the data structure instead of computing a stream
whose location is fuzzy.

Finally, we mentioned that the large volume of data imposes tiling
of the terrain. Current systems cannot handle such volumes and a
new architecture needs to be defined. We suggested using a TIN
data structure since the DTM can be built directly from LiDAR
ground points, avoiding an interpolation step. TIN is also more
adaptive and makes it easier to extract a part of a terrain, such as
a watershed to work with it. However, TIN are heavier to manip-
ulate and geospatial big data architectures must be considered to
distribute the workload. Few solutions exist that guarrantee scal-
ability. Some promising work has been done for vector data and
topological data structure (Engélinus and Badard, 2018) but more
specific architectures handling TIN need to be investigated.
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