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ABSTRACT: 

A knowledge-based system exploits the knowledge, which a human expert uses for completing a complex task, through a database 

containing decision rules, and an inference engine. Already in the early nineties knowledge-based systems have been proposed for 

automated image classification. Lack of success faded out initial interest and enthusiasm, the same fate neural networks struck at that 

time. Today the latter enjoy a steady revival. This paper aims at demonstrating that a knowledge-based approach to automated 

classification of mobile laser scanning point clouds has promising prospects. An initial experiment exploiting only two features, 

height and reflectance value, resulted in an overall accuracy of 79% for the Paris-rue-Madame point cloud bench mark data set. 

* Corresponding author

1. INTRODUCTION

Around 2003 mobile laser scanning (MLS) systems became 

operational for 3D mapping of outdoor scenes. Today MLS 

systems are used for surveying a variety of scenes with a point 

density reaching a thousand or more points per cubic meter. 

Within photogrammetry the exploration of MLS point clouds is 

directed towards 3D mapping: the outlining of objects along 

road scenes which are of interest for a particular task at hand, 

that means use case.  

Interpretation of images and point clouds concerns the 

identification and outlining of objects. For more than a century, 

the interpretation of aerial images is a profession of which 

methodologies and technologies are underpinned by sound 

concepts. Since manual image interpretation is a labour 

intensive and tedious task, automation has always been at the 

forefront of ambitions of photogrammetric professionals. With 

the emergence of computers in the fifties and sixties, it seemed 

that a completely automated pipeline from image to map would 

become a reality. Or simply stated: scan an aerial photo, store 

the pixels in the computer and extract a topographic map out of 

it without human intervention. At that time computer vision 

systems came into practice, which could automatically detect 

and outline objects lying on a conveyor belt in a factory or other 

restricted scenes. Inspired by the successes of computer vision - 

why would the same not be possible for aerial images? - own 

research on automatically detecting road networks started in the 

mid-eighties (Lemmens, et al., 1988). 

Indeed, exploiting the achievements of Artificial Intelligence 

(AI) and computer vision seemed to be the Holy Grail for fully 

automation. Later on the knowledge-based systems came in 

view (de Gunst et al. 1991; de Gunst and Lemmens, 1992; 

Vosselman and de Gunst, 1997; Zhang and Baltsavias, 2000). 

However, after a dozen years of toil, disappointment came – 

fully automation of mapping from aerial and satellite images 

appeared to be an illusion; only parts of the photogrammetric 

pipeline could be fully automated, including aero-triangulation, 

generation of Digital Surface Models (DSM), and creating 

orthoimages and digital landscapes. The latter consist of the 

superposition of orthoimages on DSMs from which a surveyor 

can measure objects of interest by roaming and clicking a 

mouse. However, the generation of Digital Elevation Models 

(DEM) from DSMs through ground filtering, which is a binary 

classification process, still requires manual editing step. 

Today, computer vision has developed new powerful tools 

which spark the hope on automated mapping, while passive 

image sensors got accompanied by active sensors, particularly 

Lidar, the last two decades. Mounted on manned or unmanned 

aircraft, cars, vans or boats, and also on human back or on 

hand-held sticks Lidar is able to produce very dense point 

clouds consisting of billions of points in only a view hours of 

surveying. 

Today’s Holy Grail is called Deep Learning. The amount of 

papers published within the photogrammetric and remote 

sensing community shows that many do have a deep belief 

Deep Learning is the ultimate solution. Particularly, Deep 

Learning approaches based on convolution neural networks 

(CNN) are extensively investigated. A CNN is not a magic tool 

box, but a software programme, made by humans, at the basis 

consisting of a concatenation of 2D  differential filters, such as 

the Laplace operator, and 2D integrating filters to construct a 

hierarchy of image pyramids by aggregating small 

neighbourhoods, e.g. windows of 3x3 or 5x5 pixels, called 

pooling. Usually the minimum or maximum value within the 

window is taken in the creation of the hierarchy of images, 

which makes the approach sensitive to the presence of noise and 
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texture. High success rates could be achieved for applications 

such as identifying whether the pet in an image is a cat or a dog. 

CNN research also focusses on making the dream of self-

driving cars a reality. 

 

There is nothing new about the use of neural networks for 

mapping purposes and the same is true for the knowledge-based 

approach. Already in the eighties and nineties of the previous 

century both approaches enjoyed intensive research efforts. A 

criticism on neural networks is that it is a black box approach 

which impedes a clear view on how the classifier obtained the 

solution; the rules learned by the neural network from feeding 

the system with training data are concealed in the weights of the 

hidden neurons of the hidden layers (Jensen et al., 2001). 

 

In the wake of AI and neural networks going through a revival 

in recent years, this paper aims at advocating studying the 

knowledge-based approach for creating 3D maps from MLS 

point clouds. We start with analysing the complexity of outdoor 

scenes to arrive at insight in the complexity of the automation of 

image interpretation and to derive four generic rules to transfer 

images and point clouds into 3D maps. Next the elements of 

visual image interpretation are in focus, followed by an analysis 

how to explore human craftmanship in a knowledge-based 

approach. This paper ends-up with an experiment, which 

demonstrates the feasibility of the knowledge-based approach. 

  

2. CLASSIFICATION OF OUTDOOR SCENES 

2.1 Basics of Classification 

Classification aims at assigning the most likely class to 

individual objects (Duda and Hart, 1973). In a general 

classification problem the set of classes is known in advance 

and depends on the use case, i.e. the task at hand. To assign a 

label to each object information has to be available in the form 

of measurements. From the measurements features, which give 

an indication about the possible class label, can be derived. A 

good decision rule should optimally explore all available 

information. The state of information in a labelling problem 

may thus consist of: 

 

  - A number of objects waiting to receive a label representing a 

class 

  - A set of classes which we want to assign to individual 

objects, which set is defined in advance and depends on the use 

case or task at hand 

  - A number of measurements joined in a measurement vector. 

From these measurements features can be computed which 

provide the information on which the classification is based. 

Also the measurements themselves may be used as features. The 

size of the measurement vector and the feature vector are not 

necessarily the same 

  - An appropriate classifier. 

 

Till so-far the concepts. How does it work out on complex 

scenes? 

 

2.2 Complex Scenes 

Many people react astonished when they hear that the automatic 

classification of images and point clouds of urban scenes is an 

elusive problem, yet unsolved. Google can do that, will be their 

convinced answer. Why should something a human being can 

do so easily not be done by an advanced computer? Researchers 

often state that the results are below expectation because of the 

complexity of the scene. What is meant by complexity? One of 

the biggest issues causing the complexity of scenes is the 

presence of real objects which are not relevant for the use case. 

Examples of such semantic noise are bicycles, parked cars, 

flags, balconies or shrubs when the use case consists of 3D 

mapping of an urban area in which buildings, streets, lampposts, 

and traffic signs have to be captured. 

 

Occlusion is another issue. From the viewpoint of the sensor a 

façade may be partly hidden by a truck, a donkey or other 

dynamic or static object. The human visual system is so well 

developed that it can fill in the missing parts. Objects may 

appear in different sizes, shapes and orientations with respect to 

the sensor. This issue arises when feeding a machine learning 

system with examples of traffic signs, which have various 

shapes, including triangle, circle, diamond and so on. So, the 

question arises: to be able to map the generic class of traffic 

signs, should subclasses be defined and the system trained by 

prototypes of these subclasses? 

 

The photometric characteristics of passive sensors depend on 

sun light conditions, which may considerably vary during a 

survey of several hours. Shadow may cut one object into pieces 

with different photometric properties. Machine learning systems 

explore the same type of features for all pixels, cells or points, 

without distinction. The range of feature values per class are 

determined in a training stage and next classes are assigned to 

unknown objects in bulk – each pixel, cell or point undergoes 

the same treatment. No refinement takes place by identifying 

differences in the local structure or arrangement of objects. The 

local situation is embedded in the features themselves, e.g. in 

the form of eigenvalues or normal vectors. 

 

 

Figure 1. Dependence of features and classes on data source, 

type of scene and use case 

2.3 Rules 

The above considerations result in the formulation of four 

generic rules. 

 

Generic Rule 1: In 3D mapping one is not interested in the 

semantics of individual pixels or points but in what is present 

on-top of the surface of the Earth, or bare ground,  at specified 

locations. 

 

Generic Rule 2: A point cloud is a blind sampling of the scene, 

meaning that we have to deal with arbitrary points being part of  
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the surfaces of objects; the determination of object types 

requires an interpretation stage. 

 

Generic Rule 3: Everything is connected to something else and 

ultimately to the surface of the Earth. 

 

Generic Rule 4: The types of object (classes) which can be 

recognized in an image or point cloud depend on: (1) type of 

data source; (2) type of scene and (3) use case. 

 

Figure 1 illustrates Generic Rule 4. The data source is key for 

defining classes, e.g. a satellite image is not suited for mapping 

traffic signs. An aerial image provides a different view on a road 

scene than an MLS point cloud and it is obvious that one cannot 

extract classes from a geo-data set which are not implicitly or 

explicitly present in the data set. Also the type of scene restricts 

class definition. It may be a good idea to map banana trees in 

the city of Abuja, the capital of Nigeria, but not in the capital of 

Iceland. Also the task at hand or use case determines the classes 

to be mapped. A municipality may want to map other object 

types than a maintenance service of highways. 

To get a further grip on the complexity of classification of 

outdoor scenes it is appropriate to briefly look at the sound 

concepts of visual image interpretation developed within the 

century old craftmanship of manual interpretation of aerial 

photographs. In other words: how does a human operator 

accomplish the task? 

 

3. ELEMENTS OF VISUAL INTERPRETATION 

Mapping from images and point clouds is a profession which 

requires expert knowledge. Every human can recognize objects 

and give these objects a name and even outline them. But when 

given ten people the same aerial image one will end-up with ten 

completely different maps. Also people need training to map the 

objects which are relevant for a use case. It is well-know that a 

professional mapping operator uses a number of visual cues, in 

particular: tone, colour, texture, shape, size, height, shadow, site 

and association (Figure 2). See Estes et al. (1983) for an 

excellent discussion of these  so-called elements of image 

interpretation and the exploitation of each. 

 

The cues may be subdivided into geometric and photometric (or 

radiometric) elements. The statistical pattern recognition 

techniques used in remote sensing primarily explore the 

photometric features: tone, colour (multispectral bands) and 

texture. Texture can be quantified using the texture measures of 

Haralick et al. (1973). Tone and shape are the primary cues in 

image analysis from which the other basic elements can be 

derived using the prescriptions: extension, combination and 

repetition (Figure 3). This figure demonstrates why it is possible 

to develop a machine vision system to detect and outline objects 

in well-conditioned scenes. The background (e.g. surface of a 

conveyor belt) contrasts maximal with the objects. After 

histogram thresholding, edge detection or region growing 

objects can be fully outlined, followed by the calculation of 

shape measures and size. The light conditions are optimized so 

that no shadow is present. Other objects are absent and when 

present they do not occlude or clutter with the object under 

analysis. The complex cues of site and association have no 

meaning here.  

 

Everyone who has made an attempt to apply edge detectors or 

region growing techniques on aerial images, knows that the 

contours seldom correspond to boundaries of relevant objects. 

 

Figure 2. Basic elements of image interpretation arranged by 

increasing complexity (source: Estes et al. (1983)) 

 

So, cues such as shape and size are difficult to exploit in images 

of outdoor scenes, resulting in the exploration of tone, colour 

and texture only in remote sensing classification tasks. 

 

 

Figure 3. From tone and shape the other basic elements can be 

derived using prescriptions (source: Lemmens (1987)) 

 

Based on the above considerations an approach can be 

developed in which the knowledge of the human expert is 

implemented in a knowledge-based system. This idea has been 

intensively investigated in the early nineties (see de Gunst, 1996 

and the references sited in there) but because of lack of success, 

research has been faded out. But as with neural networks, the 

time has come to reconsider the feasibility of a knowledge-

based approach. At least three developments underpin this 

proposal: 

 

  - The availability of Lidar sensors provide the height cue, 

which is an important basic element of visual interpretation, in 

an easy way; Lidar sensors become progressively cheaper, 

smaller, lighter and produce high point densities,  

  - Dense image matching which also provides the height cue in 

the form of point clouds derived from overlapping images 

  - Powerful computer combined with huge storage facilities. 
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Instead of a classifier trained by getting fed by examples, a 

knowledge-based system consists of an inference machine 

which iteratively exploits knowledge stored in a knowledge 

base often supported by additional geo-data (Figure 4). 

 

4. KNOWLEDGE EXPLORATION 

4.1 Objects 

Classification requires the definition of objects in advance. In 

multispectral classification the individual pixels are considered 

to be the objects. This approach is prone to error and as a result 

extensive post-processing is required to ‘clean’ the data set in 

an attempt to improve the classification result. To tackle the 

high sensitivity to errors of the pixel-is-the-object approach, 

methods have been developed in which adjacent pixels are 

aggregated based on similarities of distinguishable features, 

such as tone or texture, using region growing techniques. This 

so-called object based image analysis (OBIA) is now 

implemented in commercial image analysis software, e.g. 

eCognition. 

 

Similarly, in point-wise classification approaches the point is 

considered to be the object. Point-wise classification exploits 

the intensity of the return and geometric properties derived from 

the point itself and surrounding points. For point clouds also 

OBIA types of approach have been developed in which planes, 

spheres, cylinders or other geometric primitives are fitted 

through an ensemble of neighbouring points (see Grilli et al. 

(2017) for a review). The descriptive parameters of these 

segments are used as features for further grouping, classification 

and mapping. 

 

Figure 4. Schematic overview of a knowledge-based system for 

3D mapping from point clouds  

One of the characteristics of objects, which extend in the 

vertical direction, is that they are characterized by differing 

heights. For example, a building façade varies in height which 

may start at seven metres, or higher, depending on the urban 

area, while the height of a traffic sign mounted on a pole from 

ground level upwards usually does not exceed three metres. 

Many points reflected on traffic signs, façades, lamp posts, cars, 

pedestrians and trees all may have the same height. So, height 

above ground level weakly discriminates among the different 

classes and thus is not well-suited for point-wise classification.  

 

Figure 5.  MLS point cloud of an urban scene enriched with 

RGB (source: Cyclomedia, the Netherlands) 

 

Generic Rule 1 states that 3D mapping aims at finding objects 

present at a certain location at the surface of the Earth. A 

location on the Earth’s surface can be defined in many ways, 

e.g. as a point, a circle, or as a square. The extension of a point 

on the bare ground in vertical direction is a line, which will only 

intersect with a few points of the point cloud. So, a bare ground 

point would not be a proper option for being introduced as the 

object. A circle extended in vertical directions will become a 

cylinder. Circles will lead to gaps, i.e. uncovered parts of the 

surface, and/or overlaps. Therefore, square tiles seem to be the 

best choice to act as objects in a knowledge-based approach. Of 

course, the boundary of a tile can cut through a lamppost, traffic 

sign or other object. For example, when the height difference 

within a tile indicates a lamppost, but the fingerprint (see 

Subsection 4.3) violates this assumption, it may happen that the 

lamppost points are distributed over two or more adjacent tiles. 

The knowledge-based approach allows a piecewise, iterative 

refinement and to define new tile which covers the entire object. 

Next, the fingerprints of the column of this tile can be re-

examined.  

 

4.2 Features 

Figure 5 shows a part of an MLS point cloud enriched with 

RGB data simultaneously acquired with a fish-eye camera using 

Cyclomedia’s Mobile Mapping technology. In general, MLS 

point clouds are attribute poor. In addition to the 3D 

coordinates in a local, national or regional reference system, 

usually only the reflectance value of each point – often 

represented as a digital number in the range from 0 to 255 – is 

available in a point cloud (Lemmens, 2017). As a result, many 

classification approaches rely on enriching the attribute set with 

RGB values from imagery, which may not always be available, 

and on examining the local geometric structure of a set of 

neighbouring points. The suitability of the local geometric 

structure is based on the observation that many objects differ in 

shape; e.g. buildings do have a planar shape, pole-like objects a 

cylindrical shape, while foliage is characterized by normal 

vectors which point in arbitrary directions. Geometric features 

have been extensively explored by Weinmann et al. (2015). 

Becker et al. (2017) have shown that point clouds enriched with 

RGB  results in a significant increase in classification accuracy. 
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Figure 6. Maximum height above ground level in 50x50cm tiles 

 

The above features are assigned to individual points resulting in 

a point-wise classification, i.e. the individual point is 

considered as the object. When introducing tiles as objects, 

other features may be derived, including number of points 

present in the column (N) and difference between maximum and 

minimum height values (△h). Figure 6 shows △h for tiles of 

50x50cm of the point cloud shown in Figure 5. 

 

 

Figure 7. Number of points present within the 50x50cm tiles 

 

One would expect a large correlation between △h and N – the 

higher the object in the column above a tile the more laser 

pulses will be reflected. Figure 7, which represents the number 

of points per 50x50cm tile, shows that this assumption is only 

partly true. Since vegetation is semi-permeable for laser pulses, 

the trees show high △h but only a modest number of points. 

Furthermore, the façades of buildings are clearly visible as lines 

in Figure 7 and it would probably be possible to trace them by a 

line-following technique. Many points passed the windows of 

buildings and next reflected on indoor walls, furniture and so on 

(see upper-left corner of Figures 6, 7). The height values in 

Figure 6 are rather large, however the number of points is 

relatively modest enabling to distinguish building indoors from 

façades. The windows appear also in the fingerprints of façades 

(Figure 8). 

4.3 Fingerprints 

The diverse fingerprints of each tile may be compared with 

prototype fingerprints stored in the knowledge base and based 

on the matching result a class or several classes, in case more 

than one object is present within the column, may be assigned 

to the column or part of the column. In case no unique matches 

can be found the points in the columns may be scrutinized more 

in depth by computing eigenvalues, normal vectors or other 

geometric features of a subset of the points within the column. 

Also other feature types may be computed. 

 

The differences found  in these additional features may give the 

clue for proper class assignment. This approach includes that 

the exploitable set of features is not assigned at forehand to the 

objects but may be extended depending on the progress of the 

classification process and the local structure. In other words, the 

selection of features depends on a decision tree with at the top a 

generic set of features (FS-1). If FS-1 is sufficient to obtain a 

proper classification result, the task for that tile is finished. If 

not, a second set of features (FS-2) can be brought into position 

and so on. 

 

Figure 8. Histogram of the number of points present within a 

façade tile of 50x50cm (see black arrow in Figure 5) 

 

Figure 9. Histogram of the number of points present within a 

lamppost tile of 50x50cm (see red arrow in Figure 5).  
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4.4 Scene Knowledge 

Different object types may have similar feature values. So, when 

only using the limited amount of features of point clouds the 

classification may be prone to error. To avoid that the 

classification is only depending on the use of features, a priori 

scene knowledge can be brought in. 

 

Roads and their vicinity are man-made. So, the placing of 

objects, their shape, size and orientation have to obey official 

regulations. The specifications may differ in various countries, 

but will be usually consistent in the same jurisdiction. As a 

result lampposts, traffic signs, and other road objects appear in 

zones parallel to the main road direction, while the distance to 

the road edge stays within certain limits. Added to this, the 

orientation of pole-like traffic signs is usually perpendicular to 

the road direction. Rule 3 can be specified as: all objects on and 

near roads are situated either at surface level or expand in the 

vertical direction, while their heights are often defined by 

regulations. In a first stage ground points can be separated from 

non-ground points, for which algorithms are available although 

editing is usually required (Meng et al., 2010). 

 

Added to regularities in the zonal distribution, there may also be 

regularities available about the along-track arrangement of 

objects at road sides. For example, lampposts are usually placed 

at regular distances of each other. This knowledge may be 

explored to remove erroneous lamppost assignments to a tree or 

a flagpole, or guide the searching of missing lampposts. Yang et 

al. (2017) demonstrated that  exploration of scene knowledge 

improves classification accuracy. 

 

5. INITIAL EXPERIMENT 

To demonstrate the feasibility of a knowledge-based approach 

an experiment has been conducted using the benchmark dataset 

of the Robotics laboratory (CAOR) at MINES ParisTech, 

France. The point cloud covers a 160m-traject in Paris acquired 

February 8, 2013 and contains 20 million points of which the 

X,Y,Z coordinates, the reflectance value per point and the 

object class are given (Serna et al., 2014). 

 

In this experiment we use a point-wise classification scheme 

exploring two features: height and reflectance value. Façades, 

cars, pedestrians, motorcycles and traffic signs are the classes 

selected. When combining knowledge about the scene with a 

thorough inspection of height values (H) and reflection values 

(R) a rule pops-up which states that the heights of objects in 

classes other than façade are less than 2.25m (Figure 10). 

Figure 10. Knowledge on Height (H) and Reflectance (R) 

shown in a 2D feature space (Adopted from Zheng et al., 2018) 

Points with heights smaller than 2.25m may be reflected on 

other object classes but on façades as well.  The 2.00 – 2.25m 

height interval may contain points reflected on façades and 

traffic signs points. Scrutinizing the reflectance values reveals a 

threshold of R = 190: points with R > 190 are likely traffic sign 

and when R is below this value the point will likely be part of a 

façade. Points within the 1.70 – 2.00m height interval may 

belong to façade or pedestrian. Since the reflectance value gives 

no clue about the type of object, the assignment of façade or 

pedestrian to the point is done randomly. The points with H < 

2.00m lying within the 170 – 190 reflectance interval are likely 

traffic sign. The points with 1.5m < H < 2.0m and R >190 can 

be identified as cars. The points with H < 1.5m and R > 190 

belong either to cars or to motorcycles. The assignment either 

the class car or motorcycle is done in a random way. 

 

This knowledge-based approach has been used as a baseline 

reference in Zheng et al. (2018). With this simple knowledge-

based approach, implemented as what is known in remote 

sensing as box classification, an overall accuracy could be 

achieved of 79%. 

 

6. CONCLUSIONS 

There is nothing new about the use of neural networks for the 

classification of point clouds and the same is true for the 

knowledge-based approach. Neural networks in particular in the 

form of Convolutional Neural Networks have enjoyed a 

remarkable revival in recent years. This paper has argued and 

demonstrated that a knowledge-based approach is likewise 

feasible and worthwhile to scrutinize in future research. With a 

relatively simple knowledge-based rule schema an overall 

accuracy of 79% could be achieved for the Paris-rue-Madame 

point cloud bench mark data set. Conventional classification 

schemes may be looked at as a bulk approach, one size fits all, 

while a knowledge-based approach focusses on a stepwise, 

iterative refinement depending on the fingerprints of the diverse 

features in the vertical direction. 
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