
Management of large indoor point clouds: an initial exploration

H. Liu, P. Van Oosterom, M. Meijers, E. Verbree

OTB, Faculty of Architecture and the Built Environment, Delft University of Technology, the Netherlands – (H.Liu-6,

P.J.M.vanOosterom, B.M.Meijers, E.Verbree)@tudelft.nl

Commission IV, WG IV/7

KEY WORDS: Point Cloud, Indoor, Level of Detail, Oracle, Data Management, Benchmark, Morton Curve

ABSTRACT:

Indoor navigation and visualization become increasingly important nowadays. Meanwhile, the proliferation of new sensors as well as

the advancement of data processing provide massive point clouds to model the indoor environment in high accuracy. However,

current state-of-the-art solutions fail to manage such large datasets efficiently. File based solutions often require substantial

development work while database solutions are still faced with issues such as inefficient data loading and indexing. In this research,

through a case study which aims to solve the problem of intermittent rendering of massive points in the context of indoor navigation,

we devised and implemented an algorithm to compute the continuous Level of Detail (cLoD) where geometric and classification

information are considered. Benchmarks are developed and different approaches in Oracle are tested to learn the pros and cons.

Surprisingly, the flat table approach could be very efficient compared with other schemes. The crucial point lies in how to address

priority of different dimensions including cLoD, classification and spatial dimensions, and avoid unnecessary scanning of the table.

Writing results either to the memory or the disk constitutes major part of the time cost when large output is concerned. Conventional

solutions based on spatial data objects present poor performance due to cumbersome indexing structure, inaccurate selection and

additional decoding process. Besides, approximate selection in the unit of physical object is proposed and the performance is

satisfactory when large amount of data is requested. The knowledge acquired could prompt the development of a novel data

management of high dimensional point clouds where the classification information is involved.

1. INTRODUCTION

A paradigm shift from outdoor to indoor spatial services has

taken place in recent years, as the complexity of buildings

increases and people spend most of the time indoors. Due to

high accuracy and efficiency of data collection techniques, point

clouds are utilized more frequently for indoor 3D modelling

processes. In January 2018, the National Institute of Standards

and Technology (NIST) of US initialized a public safety

research program of which the topic was the collection of

indoor point clouds. The intention was to build a standard

prototype for indoor point cloud models as point clouds may

become the basis for indoor applications for the next generation.

Such agendas would definitely result in the harvesting of

massive point data.

Unlike most conventional point cloud with only X/Y/Z

attributes, indoor point clouds provide more abundant

information including colour, and also semantics, e.g.

classification which plays an important role in visibility

detection and navigation. These attributes could also be named

as dimensions because conceptually, there is no difference

between these two terms (Liu et al., 2018b). Every type of

information such as sound and temperature could be perceived

as one dimension for us to comprehend the world. However, in

terms of storage, two types of dimensions are identified. One

type is called organizing dimension which could be utilized to

cluster and index the data, e.g. X/Y/Z. The other is the property

dimension such as color, intensity and classification which is

not frequently queried. Depending on applications, these two

types of dimension are interchangeable. All dimensions together

form the nD point clouds. However, practical experience

indicates that current database management systems (DBMS)

present critical problems to manage massive nD point clouds

such as inefficient loading/indexing, lack of support of

continuous Level of Detail (cLoD) and limited functionalities.

Flat table-based approaches mostly suffer from full table scans

for simple queries, while block based solutions cost enormous

time for construction of data blocks as well as decoding them

for data extraction. Besides, the concept of LoD which serves as

a general way for processing big data is either missing in state-

of-the-art solutions or implemented using traditional Octree

structure which presents side effects such as visual artefacts

during rendering (Liu et al., 2018a). Basically, blocks of points

in various densities are shown in the same scene.

The research aims at exploring a model of data management for

large indoor point clouds. This will be constructed for specific

applications, i.e. visualization of the indoor environment

considering navigation needs. The whole paper is divide into 6

sections. The first two sections introduce the background

information. This is then followed by a description of

benchmark applied in Section 3. LoD in the indoor environment

is specifically discussed in Section 4. Then by implementing

different data schemas and testing in Oracle, results are

presented and analysed in Section 5. The lessons learnt as well

as research directions in the future are concluded in the end.

2. RELATED WORK

A data management solution normally starts from a conceptual

model which guides the organization of various information.

Hagedorn et al. (2009) proposed an indoor LoD model taking

account of geometry, semantics and appearance of indoor

objects for the purpose of indoor route visualization. The LoD

model put forward includes 4 levels. The first two levels are

based on 2D floor plans with different geometric accuracy and

details of topology. The last two levels utilize a 3D vector

model. The level LoD-3 only presents doors and windows in

addition to the floor plans while LoD-4 cover all objects in the

3D model with highest accuracy.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4, 2018
ISPRS TC IV Mid-term Symposium “3D Spatial Information Science – The Engine of Change”, 1–5 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-365-2018 | © Authors 2018. CC BY 4.0 License.

365

As regard to point cloud management, lots of approaches exist.

Most of them are file-based solutions such as LAS/LAZ (ISPRS,

2011), HDF (Folk et al., 2011), while other vendors adopt their

own formats. Additional sorting and indexing to create block

data structures for efficient querying have to be manually

performed. Yet the scalability with large data cannot be

guaranteed.

In contrast, the DBMS does not have such problems. State-of-

the-art solutions are split into two types according to the storage

model. Take Oracle as an example. One is the flat table

approach where all dimensions are stored equally in each record

for a point. Psomadaki (2016) developed an approach based on

Oracle Index-Organized Tables (IOT) for the management of

large dynamic point data. The index node was a Morton key

(Figure 1) by encoding X/Y/Z or X/Y/T together, whereas other

dimensions were stored as normal attributes in the database. By

performing a benchmark, the best approach in the research

concerns an equal treatment of the spatial and temporal

dimensions in the Morton key. The other advanced solution is

utilization of the SDO_PC data type which groups points into

blocks which could be indexed by organizing dimensions. Van

Oosterom et al. (2015) implemented this approach for managing

and querying the AHN2 dataset consists of only xyz

information. Results indicated that the block approach did not

have noticeable scaling effects when increasing the data size.

The query accuracy is at point level, so that a significant

overhead would be incurred due to the need to unpack the

blocks for checking whether individual points were within the

query regions and also when dumping the selected points in the

results table. What was kept in the cache were the points instead

of the blocks. When the query was repeated, the blocks had to

be read again, which confined the scalability.

Figure 1. The first and second order of the Morton curve. In

each cell, the corresponding key is shown.

A comprehensive benchmark test as the last step is needed to

assess the performance of different solutions as well as to

prompt further optimization. Van Oosterom et al. (2015)

designed and implemented a benchmark for large point clouds

management, after collecting user requirements (Suijker et al.,

2014). The testing dataset AHN2 elaborates totally 640 billion

points with 12 TB size in LAS files. Various platforms and data

organizing approaches were tested including PostgreSQL flat

table, PostgreSQL block, Oracle flat table, Oracle block, Oracle

Exadata, MonetDB and LAStools. To exploit the scalability, the

benchmark was decomposed into several stages with different

data size, i.e. mini (20 million points), medium (20 billion

points), and full benchmark (640 billion points). Besides, two

parallel query processing algorithms were presented and partly

tested to learn the improvement of performance.

3. BENCHMARK

As is mentioned, the large nD point cloud data is the focus, and

an open dataset is utilized. From the query list provided by van

Oosterom et al. (2015), relevant processes of indoor

applications as well as the maintenance of data are selected for

the benchmark testing.

3.1 Data

The Stanford Large-Scale 3D Indoor Spaces Dataset (S3DIS)

(Armeni et al., 2016), containing totally 273,608,340 points, is

collected by a 3D camera (Figure 2). The dataset is split into 6

areas, corresponding to 6 folders. Each area (folder) is further

divided into separate rooms (subfolder) such as conference

room, hallway, office, etc. Inside a folder, different objects are

stored individually using text files, with desk_1 and floor_1 for

example, as the file name. Each text file contains 6 fields and

they are x, y, z, R, G and B. The spatial range is (-37.928, -

26.078, -2.645, 29.927, 46.056, 6.576) in (lower left corner,

upper right corner).

Figure 2. The S3DIS model

As the semantic information like classification of objects,

identifier of objects and room types is encoded into file names

in the original dataset, to manage all the information into a

DBMS, more dimensions should be added to each point record

explicitly. They are:

1. Classification such as floor, door and stairs

2. RoomType such as hallway and office

3. RoomID, a numeric identifier for each room

4. ObjectID, a numeric identifier for each object

5. LoD, a numeric value for each point indicating the

importance and it is a continuous field.

3.2 Queries

1. Multi-resolution/LoD selections. For example, select top 1%

of the points, i.e. the first 1% most important points.

2. Simple 2D range/rectangle filters of various sizes.

3. Selection on other dimensions such as the colour and the

classification.

4. The K nearest neighbours’ search.

5. Attribute statistics including minimum, maximum, average,

median, and count.

6. Update of point geometries, e.g. some small changes to

many points.

7. Computations of areas of implied surface by point clouds.

8. Computations of volumes below surfaces.

9. Deletion of portions of points (0.1%, 1%, 5%, 10%, 25%).

4. LOD COMPUTATION

Conventional LoD is comprised of discrete layers, for instance,

the 4-layer LoD model mentioned in Section 2. For indoor point

clouds, this entails visualizing the indoor environment with

several distinct densities. The sudden change between different

layers does not keep in line with human’s visual perception.

Hence the cLoD concept is developed to gradually visualize

points at different scales, which can make the rendering process

more smoothly and naturally. In the cLoD structure, every point

is assigned an importance value indicating its ranking among

the whole dataset. So there is no discrete data layers as before.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4, 2018
ISPRS TC IV Mid-term Symposium “3D Spatial Information Science – The Engine of Change”, 1–5 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-365-2018 | © Authors 2018. CC BY 4.0 License.

366

Unlike the 3D indoor models represented by vectors, the indoor

point cloud model does not address too much on topology. In

this research, when visualizing the point clouds for the

navigation purpose, the computation of LoD only takes account

of geometric and semantic information.

4.1 Geometric LoD

The method is to first construct a Btree, Quadtree or Octree

structure for each object, and then within each level of the tree,

the ranking of points is randomized. Afterwards, all levels are

combined sequentially. So the final result is the same as the

original data but with a different ranking of points. Specifically,

more important points which are located at geometric centres

are at the head of the list. In this method, the tree structure is

implicitly embedded. Every point represents a level.

To determine whether Btree, Quadtree or Octree for organizing

the points of an object, a dimapprox function is built. The basic

idea is to first grasp the range of x, y and z of the object where

90% of points fall respectively. Then the ranges are compared.

If the largest range is 10 times larger than the second, which

implies a linear feature, then the object is regarded as a 1D

object and Btree will be applied. If the second largest range is

10 times larger than the third, which indicates a surface, then

the object will be simulated in 2D and Quadtree will be

employed. Otherwise, the Octree will be adopted. In this way,

computing efficiency can be improved and geometric features

can be captured more accurately. As an illustration, a 2D wall is

presented in Figure 3.

Figure 3. Representation of a wall in a small scale and large

scale by controlling number of points to render after the cLoD

sorting.

As the objective is the visualization, a purely random ranking

could also be applicable to compute the cLoD. That is, by

assigning a random number between 0 to 1 to each point, sort

the points using the number. Unless the number of points to

visualize is too small, the object could be recognized. The

computational load becomes less than that of the tree-based

approach.

4.2 Semantic LoD

The geometric LoD cannot express the importance of objects

for navigation. Large objects like wall and floor would be

represented by much more points than small objects like

window and door by choosing a same range of cLoD values.

Hence, three classes are established to represent the importance

level. The first class (most important) includes 'stairs', 'floor',

'window' and 'door'. They are essential for navigation. The

second class contains objects like 'wall', 'ceiling', 'clutter', etc.

The third class refers to 'sofa', 'bookcase', 'board', 'table' and

'chair'. They are movable objects which are less significant for

routing.

The semantic LoD method is then to assign a unique importance

value to each point. Basically, after the geometric sorting, a

random series based on the uniform distribution between 0 and

1 will be generated. Then the random numbers are sorted and

each of them is attached to the end of a point record as the

initial LoD value. However, the LoD values belonging to

objects in the second class will be multiplied by 0.9, while for

the third class a factor 0.8 is applied. In the end, all points from

different objects are mixed and sorted according to the LoD

value. The head of the final point list would be occupied by

points in the first class and at the geometric centres. Figure 4

shows a demonstration of a conference room by utilizing the

geometric and semantic LoD method. It clearly presents that

when a small amount of points are selected, only the first class

objects are rendered.

Figure 4. Visualization of a conference room using the indoor

cLoD model. The scenes contain first 50 000, 100 000 points

respectively sorted by the cLoD value.

5. TEST RESULTS AND DISCUSSION

To get more understanding for managing and querying the

indoor point cloud data, possible approaches have been

implemented in Oracle. Data are stored in a normal flat table, a

nested table, a table with a spatial index, SDO_PC blocks and

an IOT respectively (schemas are provided in the Appendix).

Queries executed only include spatial selection, LoD selection

and classification selection. Each query is executed several

times with cache flushed until the response time converges to a

stable value. The time measurement starts from sending the

SQL command, while ends with storing the results into a

Python variable, i.e. an in-memory object. The SDO_PC

solution is an exception as it writes results into another table.

The aim of the testing is to examine the possible direction to

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4, 2018
ISPRS TC IV Mid-term Symposium “3D Spatial Information Science – The Engine of Change”, 1–5 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-365-2018 | © Authors 2018. CC BY 4.0 License.

367

realize an efficient data management. The test platform is a HP

DL380p Gen8 server with 2 × 8-core Intel Xeon processors, E5-

2690 at 2.9 GHz, 128 GB of main memory, a RHEL6 operating

system. The disk storage is a 41 TB SATA 7200 rpm in RAID5

configuration. Advanced disks such as SSD is also available but

they are not utilized.

5.1 Flat table

As every dimension might be queried, so no index is created.

The table contains following fields:

X, Y, Z, R, G, B, RoomType, RoomID, Classification, ObjectID,

LoD

All field use the same data type, NUMBER. With SQL loader,

the data can be directly imported into a flat table (Table 1). Its

storage space is 17,141 MB and utilizes 548,495 Oracle logical

blocks.

Due to the structure, whatever the selection is, a full table scan

will be executed. All queries tested are listed in Table 1. These

queries are applied for testing other solutions as well. The first

COUNT query is executed to learn the speed of a full table scan.

The second query is concerned with LoD selection, and 4 levels

are set to assess the scalability (Figure 5) which is linear.

Similarly, spatial selections are executed. The tendency also

shows a linear scalability and time cost can be modelled by 9 x

10-6 n + 6.54 where n is the number of points returned.

From the execution plan, all these queries experience the full

table scan. The time cost therefore includes table scanning, if-

statements for filtering and writing into the memory. The linear

tendency of the real measurements verifies this assertion. With

a constant representing full table scan and if-statements, the

main component of time cost lies in the writing part.

Query Number of

records returned
Time

cost (s)
1. select COUNT(*) from s3disflat 1 15.2

2. select * from s3disflat where

lod>0.99/0.95/0.8/0.5
657,295/

3,287,515/
31,730,001/
122,433,484

17.72/
39.57/

277.92/
1042.3

3. select * from s3disflat where x>12.075

and x<20.13 and y>15.267 and y<19.3 and

z>0 and z<2 / (-9.072, 17.307, 1, 3.208,
23.557, 2.8) / (4.7, 10.9, -1, 19.2, 31.6, 3.8) /

(-20.32, -5.9, -2, 21.2, 27.5, 2)

1,126,508/
6,117,966/

13,914,061/
98,991,886

16.5/
59.8/

125.93/
861.3

Table 1. Query performance on S3DISFLAT

Figure 5. LoD selection (Query 2) at different levels. The

tendency shows a linear scalability and Time = 8 x 10-6 n +

11.73, where n is the output size.

5.2 Nested table

Oracle supports the nested table, i.e. the data type of a field in a

table can be another table. By observing the data, we find that

the fields including RoomType, RoomID, Classification,

ObjectID cause much redundancy. So, a solution is to store

these fields into a base table and by adding a Point_tab field of

which the data type is a table, other information of points could

be stored (Figure 6). Geom_extent is the spatial bounding box of

each object where a 3D R-tree index is created. Spatial queries

will be formulated into an intersection operation with the

bounding boxes. What is returned is a set of points of whole

objects, i.e. an approximate answer. This is reasonable as for

visualization, it is vague to show only part of an object. As LoD

is another dimension frequently queried, a B-tree index is

created on the sub tables. After population, the base table

contains 9,833 records. The total storage space is 21,366 MB,

out of which 5,246 MB is used to store the B-tree index.

RoomType RoomID Class ObjectID Geom_extent Point_tab

Num Num Num Num SDO_GEOMETRY POINTER

LoD X Y Z R G B
Num Num Num Num Num Num Num

Figure 6. Schema of the S3DIS nested table, S3OBJ_NEST,

containing a base table and many sub tables.

Query Number of

records

returned

Time

cost (s)

1. select COUNT(*) from (select u.* from

S3OBJ_NEST,
table(S3OBJ_NEST.point_tab) u)

1 25.3

2. select u.* from S3OBJ_NEST,table

(S3OBJ_NEST.point_tab) u where

u.lod>0.99/0.95/0.8/0.5

657,295/
3,287,515/
31,730,001/
122,433,484

5/
33.27/
207.14/
767.4

3. select roomtype, roomid, class, objected,

u.* from S3OBJ_NEST,table

(S3OBJ_NEST.point_tab) u where

u.lod>0.99/0.95/0.8/0.5

657,295/
3,287,515/
31,730,001/
122,433,484

74.66/
114.86/
342.6/

1092.48
4. select u.* from S3OBJ_NEST,table

(S3OBJ_NEST.point_tab) u where

u.R=223/142/
Roomtype = 2006

188,704/
2,117,209/
1,161,301/

14/
26.7/
7.54

5. SELECT u.* FROM s3obj_nest s,

table(s.point_tab) u WHERE

SDO_ANYINTERACT (s.geom_extent,

SDO_GEOMETRY(3008,NULL,

NULL,SDO_ELEM_INFO_ARRAY(1,1007

,3),

SDO_ORDINATE_ARRAY(12.075,15.267,
0, 20.13,19.3,2))) = 'TRUE' / (-9.072, 17.307,

1, 3.208, 23.557, 2.8) / (4.7, 10.9, -1, 19.2,

31.6, 3.8) / (-20.32, -5.9, -2, 21.2, 27.5, 2)

4,036,284/
14,195,028/
22,893,270/
129,250,908

27.6/
92.96/
149/
836.6

Table 2. Query performance on S3OBJ_NEST

Similar to the flat table approach, the second query, LoD

selection presents a linear tendency with the formula: Time = 6

x 10-6 n + 7.71. The execution plan shows that only indexed

range scan is performed. The slope is smaller as there are only 7

dimensions written out. However, when the RoomType and the

other attributes in the base table are added (i.e. the 3rd query),

the execution plan incorporates nested loops to join dimensions

and the time cost becomes larger.

Without index, the selection on the R (color) dimension of

Query 4 incurs the full table scan which indeed takes longer

than the selection on the indexed LoD dimension. However, the

increase of the output scale could make the writing process

dominant. Hence, the time cost does not vary much from that of

LoD when more points are selected. Besides, if the dimension

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4, 2018
ISPRS TC IV Mid-term Symposium “3D Spatial Information Science – The Engine of Change”, 1–5 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-365-2018 | © Authors 2018. CC BY 4.0 License.

368

selected resides in the base table, the process, in contrast, can be

very fast. Only full table scan of the base table (which nearly

has no cost) and the writing phase take up the time.

With regard to the spatial selection, i.e. Query 5, the original

full table scan for three dimensions turns into a spatial selection

using a spatial index. Yet the number of records for searching

decrease as well, i.e. from full records into records in the base

table. On the whole, the approximate spatial selection on the

S3OBJ_NEST table is faster than full table scan selections on

the S3SDISFLAT table (Figure 7). However, in all cases, the

approximate selections contain more points (Figure 8). On the

one hand, this is a result from selections of complete objects; on

the other hand, since the bounding box is utilized for

intersection, more objects might get involved. Sometimes the

outliers are even more than the accurate result itself.

Nonetheless, the ratios of outliers (the extra number of points

returend divided by the number of points from approximate

selection) are: 0.72, 0.57, 0.39 and 0.23, which presents a

decreasing trend as the output size grows. Consequently, in the

tail of the curve of time cost (Figure 8), we observe that the

approximate selection surpasses the accurate selection. It

implies that the time spent on full table scan becomes more

significant than the additional time to write extra records into

the memory.

Figure 7. Comparison between the accurate spatial selections on

the S3SDISFLAT table and the approximate selections on the

S3OBJ_NEST table.

Figure 8. Comparison of the number of points returned from

spatial selections on the S3SDISFLAT table presented as bars

and the S3OBJ_NEST table, together with the query execution

cost expressed using curves.

In summary, the nested table structure complexes the query

process to some extent, selections to join the dimensions in the

base table and sub tables for instance. The advancement from

the B-tree index on LoD is insignificant although it facilitates

queries with small output. It could be an alternative to order the

data according to the cLoD value and then use ROWNUM to

only scan parts of the sub tables to reduce the time cost. The

access pattern of the LoD dimension is always to select certain

continuous portion of the points. The approximate method

presents its advantage when the time cost on the full table scan

becomes inevitably significant with large output. Besides, it is

crucial to notice that the importance of each dimension is well

addressed by such a data structure, i.e. CLASS > SPATIAL >

LoD > Normal.

5.3 Table with a spatial index

Compared to the S3DISFLAT, the xyz information is stored in a

SDO_GEOMETRY object, i.e. SDO_GEOMETRY(3001, null,

MDSYS.SDO_POINT_TYPE(X, Y, Z), null, null) in the

S3DISGEOM table. After it, a 3D R-tree is created on the

geometry column, while the index creation cost 3 hours and 9

minutes to finish. The other dimensions are normal attributes.

The table size is 19,175 MB, occupying 611,142 Oracle logic

blocks, while the spatial index size is 22,011 MB.

For the LoD selection and the spatial selection, initial tests

present high time cost. Hence, to reduce the workload for

writing, only XYZ are selected (Table 3). The linear model of

the LoD selection is: Time = 4 x 10-5 n + 17.6, which entails the

query execution is much slower than that of S3DISFLAT. The

main reason is that in the writing part, additional cost is spent

on converting binary geometry objects into plain coordinates.

It could be observed that the spatial selections based on

SDO_INSIDE fail to fetch the correct number of points. In

addition, the process takes huge amount of time to execute. As

is indicated in the table, the inefficient spatial computation

comprises the body. Besides, previous developers also proposed

that an index may not work out if the query was not selective

enough (e.g. query data distributed across the whole storage). It

could be much slower than a full table scan. The R-tree index

created in this solution is very large. With such a cumbersome

index, searching the pointers and then extracting the data are

less efficient than a direct full table scan.

Query Number of

records

returned

Time cost

(s)

select COUNT(*) from s3disgeom 1 17.3
select t.x,t.y,t.z from s3disgeom c,
table(SDO_UTIL.GETVERTICES(c.point

_geom)) t where lod>0.99/0.95/0.8/

657,295/
3,287,515/
31,730,001

41.54/
136.3/
1165

select t.x, t.y, t.z from s3disgeom c, table

(MDSYS.SDO_UTIL.getvertices(c.point_

geom)) t where SDO_INSIDE

(c.point_geom, SDO_GEOMETRY(3008,

NULL, NULL,

SDO_ELEM_INFO_ARRAY(1,1007,3),

SDO_ORDINATE_ARRAY(12.075,15.26
7,0,20.13,19.3,2))) / (-9.072, 17.307, 1,

3.208, 23.557, 2.8) / (4.7, 10.9, -1, 19.2,

31.6, 3.8)

911,090/
5,541,547/
13,163,720

549.87

(538.92)/
2917.9

(2761)/
6659.6

(6239.4)

Table 3. Query performance on S3DISGEOM. Time

measurements in brackets are roughly the time to perform the

SDO_INSIDE computation.

5.4 SDO_PC blocks

The schema is analogous to the nested table (Figure 9). In this

solution, the whole dataset is divided into blocks/BLOBs of

10,000 points. So each object might be stored into several

blocks. In the block table S3DISBLKTAB, the column

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4, 2018
ISPRS TC IV Mid-term Symposium “3D Spatial Information Science – The Engine of Change”, 1–5 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-365-2018 | © Authors 2018. CC BY 4.0 License.

369

BLK_EXTENT stores the bounding box of each block. On top of

it, a 3D R-tree index is created. The solution costs 32.5 hours to

finish, which includes the creation and population from a stage

table like S3DISFLAT. 32,525 blocks are created in the end.

The total storage size is 21,417 MB, which is 1/4 more than that

of the nested table. This is mainly because normally in the last

block of each object, only a part is used to store the points.

RoomType RoomID Class ObjectID PC

Num Num Num Num SDO_PC

S3DISBASE

OBJ_ID BLK_ID BLK_EXTENT NUM_POINTS POINTS

Num Num SDO_GEOMETRY Num BLOB

S3DISBLKTAB

X, Y, Z, R,

G, B, LOD

BLOB

Figure 9. Schema of the SDO_PC solution. It includes the base

table S3DISBASE, the block table S3DISBLKTAB, and the

BLOBs for real storage of points.

Queries are implemented in SQL scripts (Appendix) with

SDO_PC tools which is the standard operation in this solution.

The output is an Oracle flat table and it is difficult to store

results as an in-memory object.

From Table 4, the LoD selections take enormous amount of

time to execute, which is mainly caused by unpacking each

block for filtering, as was indicated by van Oosterom et al.

(2015). Additional queries are tested to learn the output writing

rate, and it turns out that in this case, the writing part is

negligible compared to the unpacking process.

Type Range Number of

records
returned

Time cost

(s)

LoD

query
>0.99
>0.95

-
-

>10,000
>10,000

Spatial

query
(12.075,15.267,0,20.13,19.3,2)
(-9.072, 17.307, 1, 3.208,

23.557, 2.8)
(4.7, 10.9, -1, 19.2, 31.6, 3.8)
(-20.32, -5.9, -2, 21.2, 27.5, 2)

1,155,519/
6,140,715/
13,916,132/
99,028,009

112.5/
485.4/
808.2/
9,380

Table 4. Query performance of the SDO_PC solution.

The spatial query is more efficient thanks to the spatial index.

However, still considerable time is spent on decoding the blocks

and the successive scanning to return the precise results. The

performance deteriorates severely in the last query. It should be

noted that the spatial operators utilized causes inaccurate

selections once again.

The schema of this solution is similar to the nested table, but

unpacking blocks is needed. It is not preferred considering the

LoD selection where each BLOB has to be unpacked for

filtering. But this is inevitable as no operators is available for

creating a 4D geometry (i.e. BLK_ENTENT) used for indexing.

A substitute is to utilize X/Y/LoD as the bounding box to index.

However, Z dimension plays a more important role in the

indoor environment than outdoor. Additionally, the solution

also has the problem of long loading process.

5.5 Index-Organized Table (IOT)

The Oracle IOT is an index integrated data structure. The

primary key and non-key column data stored within the same B-

tree structure in leaf nodes. The logical model is however, still a

table. Changes to the table, for example, adding new rows, or

updating or deleting existing rows, result only in updating the

index. It is the fact that most of the time, X/Y/Z/LoD would be

selected together. Using pySFC (Meijers, 2017), we encode

X/Y/Z/LoD into a Morton key which is the primary key of the

IOT. Specifically, X, Y and Z values are multiplied by 1,000 to

become integers. The cLoD value are expressed as the ranking

number. Then by interleaving the bits of the four dimensions

(Psomadaki, 2016), the Morton key could be derived. As the

length of bits after encoding could exceed the limit of the

NUMBER type, so VARCHAR is used to store the key. Other

dimensions keep the same as that of the S3DISFLAT. The total

storage size is 21,179 MB.

Type Range Search

depth/Number

of ranges

Number of

records

returned

Time cost (s)

LoD

query
>0.99
>0.95
>0.8
>0.5

57/105
56/51
53/61
51/59

688,127/
3,342,335/

31,981,567/
123,731,967

8.8 + 36.36/
22.69 + 193/

217.2 +

2,019/ 775.6

+ 7,848.5
Spatial

query
(12.075,15.267,0,2

0.13,19.3,2)
(-20.32, -5.9, -2,
21.2, 27.5, 2)

52/261
52/261

273,608,340/
273,608,340

3001.7 +

(>10,000)/
2950.5 +

(>1,0000)

Table 5. Query performance of the IOT solution. The first part

of time cost is query time including writing into the memory,

while the second part is the decoding cost.

The searching process is based on the key, so the original

dimension spans have to be translated into the ranges in the one-

dimensional key. Due to the LoD structure embedded in the

Morton code (in this case, every four bits represent a level), it is

possible to control the computational depth (Table 5) to

generate the ranges. It implies that a larger depth corresponds

more ranges, i.e. the result selected would be more accurate. In

the end, these ranges are inserted into the WHERE clause in a

SQL command to execute. Initial tests indicate too many ranges

in the WHERE clause would be very inefficient. For all queries,

the computation of ranges takes less than 1 second.

In the tests, the writing results contain all dimensions except

LoD. As Table 5 shows, the querying process takes less time

than that of the S3DISFLAT thanks to the index although more

points are returned. This is more obvious when the output is

small where writing is not the body. However, more time is

spent on decoding. In fact, the decoding process constitutes

another linear factor in the performance in addition to writing

results. The current implementation of decoding is of

complexity O(n) where n is the output size. If we intend to

achieve the O(logN) (N refers to the input data size)

performance of the B-tree, the n should be below of level of 106

if N does not exceed 1030. Otherwise, the decoding process

would become dominant. It implies that for large point clouds

management, the additional encoding/decoding is not a

rationale choice unless a new computational framework would

be directly built on the encoded data.

With respect to the spatial queries, due to large time cost, the

smallest spatial query and the largest spatial query are used for

testing. As can be seen from the table, both queries return the

whole dataset as the result. In real experiments, larger search

depth is tried, but the query execution takes too much time to

return the result. The inefficient spatial querying is radically

caused by the value distribution of different dimensions

encoded in the Morton key. Basically, the LoD dimension is a

long series with distinct values for each point, which makes it

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4, 2018
ISPRS TC IV Mid-term Symposium “3D Spatial Information Science – The Engine of Change”, 1–5 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-365-2018 | © Authors 2018. CC BY 4.0 License.

370

superior in the Morton key. The query then becomes extracting

a thin slice from a large 4D cube, which is bound to be

inefficient. The continuous LoD dimension may thus be

removed from the Morton key encoding, but LoD selection then

becomes a problem. Hence, employing the appropriate unit

which controls the resolution and range of the data

representation in the Morton code is a critical issue in which a

proper balance has to be determined.

There are two major advantages in applying an IOT approach.

First, it utilized the B tree to organize the whole storage based

on a combined column SFC key where several dimensions are

involved. Second, SFC is leveraged to group points together so

that relationships such as spatial neighbouring could be

sustained. So the selection could be more consecutive instead of

too many intermittent retravel from the memory. Besides, the

structure is more compact compared with the separate table and

index approach with less pointers stored. This has direct

influence on querying process where the “join” between index

and table is more efficient.

6. CONCLUSIONS AND FUTURE WORK

This research is an exploration of a state-of-the art solution to

manage large indoor point clouds for visualization in the

navigating mode. First the cLoD which could help improve the

performance of large data visualization is introduced into data

management. Then by establishing a benchmark and utilize

various Oracle solutions to test, we gained essential insights

which indicate possible directions to further develop a nD

PointCloud structure (Liu et al., 2018a):

1. Flat table with B-tree index and plain scanning could be

efficient enough for management of large point clouds. A trick

is how to realize the priority of different dimensions. Current

unsatisfactory performance is mainly caused by the long writing

process. In case of visualization, a possible solution is to

transfer the data retrieved directly to GPU for rendering. Then

smart caching strategies might be applied to buffer a part of the

query results into memory in parallel. Besides, the superfluous

table scanning could also be improved. An intuitive approach is

to avoid unnecessary scanning by harnessing the cLoD

dimension of which the access pattern is normally extraction of

a continuous portion of the storage. Another option is to

develop an approximate accessing scheme.

2. The approximate querying shows its superiority when the

output size is large. The nested table approach is based on

objects, i.e. semantic information, while the IOT approach

controls the accuracy of query through the search depth. In

general, the probability density function (Kraska et al.,2017)

could be utilized to locate the targets roughly in the storage, for

example, development of a nD histogram based on the

distribution of points to refine the ranges.

3. Use of spatial data types is not recommended. In the

experiments, none of the spatial computation could return

accurate results. This might be related to the tolerance settings

in the metadata table used for executing queries. Also such an

approach relies on spatial indexes which turn out to be very

cumbersome. The index size is even larger than original data

and it works inefficiently. Lastly, additional encoding/decoding

processes are required. The decoding is a linear factor in the

time cost, which undermines any gain of time from smart

searching of the data. This point is not only confined in spatial

data types, but also applies to the Morton coding. In the

research, a physical bound of 106 for the IOT approach is

derived. If the output size exceeds it, the decoding process

would become dominant. However, such a threshold could be

improved by developing best practices, e.g. implementation

inside the DBMS. Then the approach can be acceptable for

example, in virtual realize equipment where the memory size is

limited. Accordingly, research focus could shift to the LoD

computation to determine the most representative points.

With knowledge acquired, the research could be extended to

integrate point cloud models of cities where classification

information is also involved. As the object is the minimum unit,

a semantic index structure could be established, e.g. name of

town and then the city’s name. A high dimensional point cloud

management could then be developed as a case study.

Apart from novel data management, more aspects could be

improved. Current implementation including Python query and

encoding/decoding scheme, the SDO_PC and IOT structure is

not optimal. Benchmarks applied are simple and are not verified

and discussed with industrial professionals. Scalability is not

fully incorporated. The computation of LoD still originates from

an engineer thinking, instead, visual perception/computer vision

should also be taken into account. The argument on whether

utilize a cLoD or discrete LoD reserve to be solved.

ACKNOWLEDGEMENTS

The funding of this research comes from the Chinese

Scholarship Council (CSC) and Fugro. Thus, their support is

greatly acknowledged.

REFERENCES

Armeni, I., Sener, O., Zamir, A.R., Jiang, H., Brilakis, I.,

Fischer, M. and Savarese, S., 2016. 3D semantic parsing of

large-scale indoor spaces. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, pp.

1534-1543.

Folk, M., Heber, G., Koziol, Q., Pourmal, E. and Robinson, D.,

2011, March. An overview of the HDF5 technology suite and

its applications. In Proceedings of the EDBT/ICDT 2011

Workshop on Array Databases (pp. 36-47). ACM.

Hagedorn, B., Trapp, M., Glander, T. and Döllner, J., 2009,

May. Towards an indoor level-of-detail model for route

visualization. In Mobile Data Management: Systems, Services

and Middleware, 2009. MDM'09. Tenth International

Conference on (pp. 692-697). IEEE.

ISPRS, 2011. Las 1.4 format specification. Technical report,

The American Society for Photogrammetry And Remote

Sensing https://www.asprs.org/wp-

content/uploads/2010/12/LAS_1_4_r13.pdf (13 May 2018).

Kraska, T., Beutel, A., Chi, E. H., Dean, J., & Polyzotis, N.

2017. The Case for Learned Index Structures. arXiv preprint

arXiv:1712.01208.

Liu, H., van Oosterom, P., Meijers, M. and Verbree, E., 2018a.
Towards 1015-level point clouds management - a nD PointCloud

structure. In Proceedings 21th AGILE Conference on

Geographic Information Science, Lund, Sweden.

Liu, H., van Oosterom, P., Tijssen, T., Commandeur, T. and

Wang, W., 2018b. Managing large multidimensional hydrologic

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4, 2018
ISPRS TC IV Mid-term Symposium “3D Spatial Information Science – The Engine of Change”, 1–5 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-365-2018 | © Authors 2018. CC BY 4.0 License.

371

datasets: A case study comparing NetCDF and SciDB. Journal

of Hydroinformatics, https://doi.org/10.2166/hydro.2018.136.

Meijers, M., 2017. Functionality to use Space Filling Curves

inside PostgreSQL for clustering and indexing.

https://bitbucket.org/bmmeijers/pysfc

NIST. 2018. Notice of funding opportunity NIST public safety

innovation accelerator program (PSIAP) – point cloud city.

Technical report, National Institute of Standards and

Technology

https://www.nist.gov/sites/default/files/documents/2018/01/05/2

018-nist-psiap-pc2_nofo.pdf (13 May 2018)

Psomadaki, S. 2016. Using a space filling curve for the

management of dynamic point cloud data in a relational DBMS.

Master’s thesis, Delft University of Technology, the

Netherlands.

Suijker, P.M., Alkemade, I., Kodde, M.P. and Nonhebel, A.E.,

2014. User requirements massive point clouds for eSciences

(WP1).

http://www.pointclouds.nl/docs/User_Requirements%20_MPC.

pdf (13 May 2018)

Van Oosterom, P., Martinez-Rubi, O., Ivanova, M., Horhammer,

M., Geringer, D., Ravada, S., Tijssen, T., Kodde, M., and

Goncalves, R. 2015. Massive point cloud data management:

Design, implementation and execution of a point cloud

benchmark. Computers & Graphics, 49:92–125.

APPENDIX

SQL for table creation

Flat table:
CREATE TABLE S3DISFLAT (X number, Y number,

Z number, R number, G number, B number,

RoomType number, RoomID number, Class

number, ObjectID number, LoD number);

Nested table:
CREATE TYPE Point_type as object (X number,

Y number, Z number, R number, G number, B

number, LoD number);

CREATE TYPE Point_table IS TABLE OF

point_type;

CREATE TABLE S3OBJ_NEST (RoomType number,

RoomID number, Class number, ObjectID

number, Geom_extent SDO_GEOMETRY, Point_tab

Point_table) NESTED TABLE Point_tab STORE

AS Points;

CREATE INDEX bb_idx ON S3OBJ_NEST

(Geom_extent) INDEXTYPE IS

MDSYS.SPATIAL_INDEX PARAMETERS

('sdo_indx_dims=3');

CREATE INDEX nested_tab_idx ON Points (LoD);

Table with a spatial index:
CREATE TABLE S3DISGEOM (Point_geom

SDO_GEOMETRY, R number, G number, B number,

RoomType number, RoomID number, Class

number, ObjectID number, LoD number);

CREATE INDEX point_idx ON S3DISGEOM

(Point_geom) INDEXTYPE IS

MDSYS.SPATIAL_INDEX PARAMETERS

('sdo_indx_dims=3');

SDO_PC blocks:
CREATE TABLE S3DISBASE (RoomType number,

RoomID number, Class number, ObjectID

number, PC SDO_PC);

CREATE TABLE S3DISBLKTAB AS select * from

mdsys.sdo_pc_blk_table;

CREATE TABLE tmp_heap as (select X as

VAL_D1, Y as VAL_D2, Z as VAL_D3, R as

VAL_D4, G as VAL_D5, B as VAL_D6, LoD as

VAL_D7 from S3DISFLAT;

PC := SDO_PC_PKG.init('S3DISBASE ', 'PC',

'S3DISBLKTAB', 'blk_capacity=10000',

mdsys.sdo_geometry(3008, null, null,

mdsys.sdo_elem_info_array(1,1007,3),mdsys.s

do_ordinate_array(-37.928, -26.078, -2.645,

29.927, 46.056, 6.576)), 0.0001, 7, null);

SDO_PC_PKG.create_pc(PC, 'tmp_heap', null);

IOT:
CREATE TABLE S3DISIOT (SFC varchar2(200), R

number, G number, B number, RoomType number,

RoomID number, Class number, ObjectID

number, CONSTRAINT SFC4D_PK PRIMARY KEY

(SFC)) ORGANIZATION INDEX;

SDO_PC query script

LoD:
INSERT into PC_RES SELECT query_points.X,

query_points.Y, query_points.Z from

table(SDO_PC_PKG.CLIP_PC(each.pc,

SDO_GEOMETRY(3008, null, null,

SDO_ELEM_INFO_ARRAY(1,1007,3),

SDO_ORDINATE_ARRAY(-37.928, -26.078, -2.645,

29.927,

46.056,6.576)),SDO_MBR(SDO_VPOINT_TYPE(0,0,

0,LoDmin), SDO_VPOINT_TYPE

(256,256,256,1)),null,null))

query_blocks,table(SDO_UTIL.GETVERTICES(SDO

_PC_PKG.TO_GEOMETRY(query_blocks.points,

query_blocks.num_points,3,null)))

query_points; (LoDmin equals

0.99/0.95/0.8/0.5)

Spatial:
INSERT into PC_RES SELECT query_points.X,

query_points.Y, query_points.Z from

table(SDO_PC_PKG.CLIP_PC (PC, SDO_GEOMETRY

(3008, null, null, SDO_ELEM_INFO_ARRAY (1,

1007, 3),

SDO_ORDINATE_ARRAY (Xmin, Ymin, Zmin, Xmax,

Ymax, Zmax)),null,null,null)) query_blocks,

table(SDO_UTIL.GETVERTICES(SDO_PC_PKG.TO_GE

OMETRY (query_blocks.points,

query_blocks.num_points,3,null)))

query_points; (Spatial range are

(12.075,15.267,0,20.13,19.3,2) / (-

9.072,17.307, 1, 3.208, 23.557, 2.8) / (4.7,

10.9, -1, 19.2, 31.6, 3.8)) / (-20.32, -5.9,

-2, 21.2, 27.5, 2)

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4, 2018
ISPRS TC IV Mid-term Symposium “3D Spatial Information Science – The Engine of Change”, 1–5 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-365-2018 | © Authors 2018. CC BY 4.0 License.

372

https://bitbucket.org/bmmeijers/pysfc
https://www.nist.gov/sites/default/files/documents/2018/01/05/2018-nist-psiap-pc2_nofo.pdf
https://www.nist.gov/sites/default/files/documents/2018/01/05/2018-nist-psiap-pc2_nofo.pdf
http://www.pointclouds.nl/docs/User_Requirements%20_MPC.pdf
http://www.pointclouds.nl/docs/User_Requirements%20_MPC.pdf

	1. INTRODUCTION
	2. RELATED WORK
	3. BENCHMARK
	3.1 Data
	3.2 Queries

	4. LOD COMPUTATION
	4.1 Geometric LoD
	4.2 Semantic LoD

	5. TEST RESULTS AND DISCUSSION
	5.1 Flat table
	5.2 Nested table
	5.3 Table with a spatial index
	5.4 SDO_PC blocks
	5.5 Index-Organized Table (IOT)

	6. CONCLUSIONS AND FUTURE WORK
	ACKNOWLEDGEMENTS
	REFERENCES
	APPENDIX

