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ABSTRACT: 

 

Indoor navigation and visualization become increasingly important nowadays. Meanwhile, the proliferation of new sensors as well as 

the advancement of data processing provide massive point clouds to model the indoor environment in high accuracy. However, 

current state-of-the-art solutions fail to manage such large datasets efficiently. File based solutions often require substantial 

development work while database solutions are still faced with issues such as inefficient data loading and indexing. In this research, 

through a case study which aims to solve the problem of intermittent rendering of massive points in the context of indoor navigation, 

we devised and implemented an algorithm to compute the continuous Level of Detail (cLoD) where geometric and classification 

information are considered. Benchmarks are developed and different approaches in Oracle are tested to learn the pros and cons. 

Surprisingly, the flat table approach could be very efficient compared with other schemes. The crucial point lies in how to address 

priority of different dimensions including cLoD, classification and spatial dimensions, and avoid unnecessary scanning of the table.  

Writing results either to the memory or the disk constitutes major part of the time cost when large output is concerned. Conventional 

solutions based on spatial data objects present poor performance due to cumbersome indexing structure, inaccurate selection and 

additional decoding process. Besides, approximate selection in the unit of physical object is proposed and the performance is 

satisfactory when large amount of data is requested. The knowledge acquired could prompt the development of a novel data 

management of high dimensional point clouds where the classification information is involved.  

 

1. INTRODUCTION 

A paradigm shift from outdoor to indoor spatial services has 

taken place in recent years, as the complexity of buildings 

increases and people spend most of the time indoors. Due to 

high accuracy and efficiency of data collection techniques, point 

clouds are utilized more frequently for indoor 3D modelling 

processes. In January 2018, the National Institute of Standards 

and Technology (NIST) of US initialized a public safety 

research program of which the topic was the collection of 

indoor point clouds. The intention was to build a standard 

prototype for indoor point cloud models as point clouds may 

become the basis for indoor applications for the next generation. 

Such agendas would definitely result in the harvesting of 

massive point data.  

 

Unlike most conventional point cloud with only X/Y/Z 

attributes, indoor point clouds provide more abundant 

information including colour, and also semantics, e.g. 

classification which plays an important role in visibility 

detection and navigation. These attributes could also be named 

as dimensions because conceptually, there is no difference 

between these two terms (Liu et al., 2018b). Every type of 

information such as sound and temperature could be perceived 

as one dimension for us to comprehend the world. However, in 

terms of storage, two types of dimensions are identified. One 

type is called organizing dimension which could be utilized to 

cluster and index the data, e.g. X/Y/Z. The other is the property 

dimension such as color, intensity and classification which is 

not frequently queried. Depending on applications, these two 

types of dimension are interchangeable. All dimensions together 

form the nD point clouds. However, practical experience 

indicates that current database management systems (DBMS) 

present critical problems to manage massive nD point clouds 

such as inefficient loading/indexing, lack of support of 

continuous Level of Detail (cLoD) and limited functionalities.  

Flat table-based approaches mostly suffer from full table scans 

for simple queries, while block based solutions cost enormous 

time for construction of data blocks as well as decoding them 

for data extraction. Besides, the concept of LoD which serves as 

a general way for processing big data is either missing in state-

of-the-art solutions or implemented using traditional Octree 

structure which presents side effects such as visual artefacts 

during rendering (Liu et al., 2018a). Basically, blocks of points 

in various densities are shown in the same scene.   

 

The research aims at exploring a model of data management for 

large indoor point clouds. This will be constructed for specific 

applications, i.e. visualization of the indoor environment 

considering navigation needs. The whole paper is divide into 6 

sections. The first two sections introduce the background 

information. This is then followed by a description of 

benchmark applied in Section 3. LoD in the indoor environment 

is specifically discussed in Section 4. Then by implementing 

different data schemas and testing in Oracle, results are 

presented and analysed in Section 5. The lessons learnt as well 

as research directions in the future are concluded in the end. 

 

2. RELATED WORK 

A data management solution normally starts from a conceptual 

model which guides the organization of various information. 

Hagedorn et al. (2009) proposed an indoor LoD model taking 

account of geometry, semantics and appearance of indoor 

objects for the purpose of indoor route visualization. The LoD 

model put forward includes 4 levels. The first two levels are 

based on 2D floor plans with different geometric accuracy and 

details of topology. The last two levels utilize a 3D vector 

model. The level LoD-3 only presents doors and windows in 

addition to the floor plans while LoD-4 cover all objects in the 

3D model with highest accuracy.  
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As regard to point cloud management, lots of approaches exist. 

Most of them are file-based solutions such as LAS/LAZ (ISPRS, 

2011), HDF (Folk et al., 2011), while other vendors adopt their 

own formats. Additional sorting and indexing to create block 

data structures for efficient querying have to be manually 

performed. Yet the scalability with large data cannot be 

guaranteed.  

 

In contrast, the DBMS does not have such problems. State-of-

the-art solutions are split into two types according to the storage 

model. Take Oracle as an example. One is the flat table 

approach where all dimensions are stored equally in each record 

for a point. Psomadaki (2016) developed an approach based on 

Oracle Index-Organized Tables (IOT) for the management of 

large dynamic point data. The index node was a Morton key 

(Figure 1) by encoding X/Y/Z or X/Y/T together, whereas other 

dimensions were stored as normal attributes in the database. By 

performing a benchmark, the best approach in the research 

concerns an equal treatment of the spatial and temporal 

dimensions in the Morton key. The other advanced solution is 

utilization of the SDO_PC data type which groups points into 

blocks which could be indexed by organizing dimensions. Van 

Oosterom et al. (2015) implemented this approach for managing 

and querying the AHN2 dataset consists of only xyz 

information. Results indicated that the block approach did not 

have noticeable scaling effects when increasing the data size. 

The query accuracy is at point level, so that a significant 

overhead would be incurred due to the need to unpack the 

blocks for checking whether individual points were within the 

query regions and also when dumping the selected points in the 

results table. What was kept in the cache were the points instead 

of the blocks. When the query was repeated, the blocks had to 

be read again, which confined the scalability.  

 

 
Figure 1. The first and second order of the Morton curve. In 

each cell, the corresponding key is shown. 

 

A comprehensive benchmark test as the last step is needed to 

assess the performance of different solutions as well as to 

prompt further optimization. Van Oosterom et al. (2015) 

designed and implemented a benchmark for large point clouds 

management, after collecting user requirements (Suijker et al., 

2014). The testing dataset AHN2 elaborates totally 640 billion 

points with 12 TB size in LAS files. Various platforms and data 

organizing approaches were tested including PostgreSQL flat 

table, PostgreSQL block, Oracle flat table, Oracle block, Oracle 

Exadata, MonetDB and LAStools. To exploit the scalability, the 

benchmark was decomposed into several stages with different 

data size, i.e. mini (20 million points), medium (20 billion 

points), and full benchmark (640 billion points). Besides, two 

parallel query processing algorithms were presented and partly 

tested to learn the improvement of performance. 

 

3. BENCHMARK 

As is mentioned, the large nD point cloud data is the focus, and 

an open dataset is utilized. From the query list provided by van 

Oosterom et al. (2015), relevant processes of indoor 

applications as well as the maintenance of data are selected for 

the benchmark testing.  

 

3.1 Data 

The Stanford Large-Scale 3D Indoor Spaces Dataset (S3DIS) 

(Armeni et al., 2016), containing totally 273,608,340 points, is 

collected by a 3D camera (Figure 2). The dataset is split into 6 

areas, corresponding to 6 folders. Each area (folder) is further 

divided into separate rooms (subfolder) such as conference 

room, hallway, office, etc. Inside a folder, different objects are 

stored individually using text files, with desk_1 and floor_1 for 

example, as the file name. Each text file contains 6 fields and 

they are x, y, z, R, G and B. The spatial range is (-37.928, -

26.078, -2.645, 29.927, 46.056, 6.576) in (lower left corner, 

upper right corner). 

 

 
Figure 2. The S3DIS model  

 

As the semantic information like classification of objects, 

identifier of objects and room types is encoded into file names 

in the original dataset, to manage all the information into a 

DBMS, more dimensions should be added to each point record 

explicitly. They are: 

1. Classification such as floor, door and stairs 

2. RoomType such as hallway and office  

3. RoomID, a numeric identifier for each room 

4. ObjectID, a numeric identifier for each object  

5. LoD, a numeric value for each point indicating the 

importance and it is a continuous field.  

 

3.2 Queries 

1. Multi-resolution/LoD selections. For example, select top 1% 

of the points, i.e. the first 1% most important points. 

2. Simple 2D range/rectangle filters of various sizes. 

3. Selection on other dimensions such as the colour and the 

classification. 

4. The K nearest neighbours’ search. 

5. Attribute statistics including minimum, maximum, average, 

median, and count. 

6. Update of point geometries, e.g. some small changes to 

many points. 

7. Computations of areas of implied surface by point clouds. 

8. Computations of volumes below surfaces. 

9. Deletion of portions of points (0.1%, 1%, 5%, 10%, 25%). 

 

4. LOD COMPUTATION 

Conventional LoD is comprised of discrete layers, for instance, 

the 4-layer LoD model mentioned in Section 2. For indoor point 

clouds, this entails visualizing the indoor environment with 

several distinct densities. The sudden change between different 

layers does not keep in line with human’s visual perception. 

Hence the cLoD concept is developed to gradually visualize 

points at different scales, which can make the rendering process 

more smoothly and naturally. In the cLoD structure, every point 

is assigned an importance value indicating its ranking among 

the whole dataset. So there is no discrete data layers as before.  

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4, 2018 
ISPRS TC IV Mid-term Symposium “3D Spatial Information Science – The Engine of Change”, 1–5 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-4-365-2018 | © Authors 2018. CC BY 4.0 License.

 
366



 

Unlike the 3D indoor models represented by vectors, the indoor 

point cloud model does not address too much on topology. In 

this research, when visualizing the point clouds for the 

navigation purpose, the computation of LoD only takes account 

of geometric and semantic information.  

 

4.1 Geometric LoD 

The method is to first construct a Btree, Quadtree or Octree 

structure for each object, and then within each level of the tree, 

the ranking of points is randomized. Afterwards, all levels are 

combined sequentially. So the final result is the same as the 

original data but with a different ranking of points. Specifically, 

more important points which are located at geometric centres 

are at the head of the list. In this method, the tree structure is 

implicitly embedded. Every point represents a level.  

 

To determine whether Btree, Quadtree or Octree for organizing 

the points of an object, a dimapprox function is built. The basic 

idea is to first grasp the range of x, y and z of the object where 

90% of points fall respectively. Then the ranges are compared. 

If the largest range is 10 times larger than the second, which 

implies a linear feature, then the object is regarded as a 1D 

object and Btree will be applied. If the second largest range is 

10 times larger than the third, which indicates a surface, then 

the object will be simulated in 2D and Quadtree will be 

employed. Otherwise, the Octree will be adopted. In this way, 

computing efficiency can be improved and geometric features 

can be captured more accurately. As an illustration, a 2D wall is 

presented in Figure 3.  

 

 
 

 
Figure 3. Representation of a wall in a small scale and large 

scale by controlling number of points to render after the cLoD 

sorting. 

 

As the objective is the visualization, a purely random ranking 

could also be applicable to compute the cLoD. That is, by 

assigning a random number between 0 to 1 to each point, sort 

the points using the number. Unless the number of points to 

visualize is too small, the object could be recognized. The 

computational load becomes less than that of the tree-based 

approach.  

 

4.2 Semantic LoD 

The geometric LoD cannot express the importance of objects 

for navigation. Large objects like wall and floor would be 

represented by much more points than small objects like 

window and door by choosing a same range of cLoD values. 

Hence, three classes are established to represent the importance 

level. The first class (most important) includes 'stairs', 'floor', 

'window' and 'door'. They are essential for navigation. The 

second class contains objects like 'wall', 'ceiling', 'clutter', etc. 

The third class refers to 'sofa', 'bookcase', 'board', 'table' and 

'chair'. They are movable objects which are less significant for 

routing. 

 

The semantic LoD method is then to assign a unique importance 

value to each point. Basically, after the geometric sorting, a 

random series based on the uniform distribution between 0 and 

1 will be generated. Then the random numbers are sorted and 

each of them is attached to the end of a point record as the 

initial LoD value. However, the LoD values belonging to 

objects in the second class will be multiplied by 0.9, while for 

the third class a factor 0.8 is applied. In the end, all points from 

different objects are mixed and sorted according to the LoD 

value. The head of the final point list would be occupied by 

points in the first class and at the geometric centres. Figure 4 

shows a demonstration of a conference room by utilizing the 

geometric and semantic LoD method. It clearly presents that 

when a small amount of points are selected, only the first class 

objects are rendered.  

 

 
 

 
 

Figure 4. Visualization of a conference room using the indoor 

cLoD model. The scenes contain first 50 000, 100 000 points 

respectively sorted by the cLoD value.  

 

5. TEST RESULTS AND DISCUSSION 

To get more understanding for managing and querying the 

indoor point cloud data, possible approaches have been 

implemented in Oracle. Data are stored in a normal flat table, a 

nested table, a table with a spatial index, SDO_PC blocks and 

an IOT respectively (schemas are provided in the Appendix). 

Queries executed only include spatial selection, LoD selection 

and classification selection. Each query is executed several 

times with cache flushed until the response time converges to a 

stable value. The time measurement starts from sending the 

SQL command, while ends with storing the results into a 

Python variable, i.e. an in-memory object. The SDO_PC 

solution is an exception as it writes results into another table. 

The aim of the testing is to examine the possible direction to 
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realize an efficient data management. The test platform is a HP 

DL380p Gen8 server with 2 × 8-core Intel Xeon processors, E5-

2690 at 2.9 GHz, 128 GB of main memory, a RHEL6 operating 

system. The disk storage is a 41 TB SATA 7200 rpm in RAID5 

configuration. Advanced disks such as SSD is also available but 

they are not utilized. 

  

5.1 Flat table 

As every dimension might be queried, so no index is created. 

The table contains following fields: 

X, Y, Z, R, G, B, RoomType, RoomID, Classification, ObjectID, 

LoD 

 

All field use the same data type, NUMBER. With SQL loader, 

the data can be directly imported into a flat table (Table 1). Its 

storage space is 17,141 MB and utilizes 548,495 Oracle logical 

blocks.  

 

Due to the structure, whatever the selection is, a full table scan 

will be executed. All queries tested are listed in Table 1. These 

queries are applied for testing other solutions as well. The first 

COUNT query is executed to learn the speed of a full table scan. 

The second query is concerned with LoD selection, and 4 levels 

are set to assess the scalability (Figure 5) which is linear. 

Similarly, spatial selections are executed. The tendency also 

shows a linear scalability and time cost can be modelled by 9 x 

10-6 n + 6.54 where n is the number of points returned. 

 

From the execution plan, all these queries experience the full 

table scan.  The time cost therefore includes table scanning, if-

statements for filtering and writing into the memory. The linear 

tendency of the real measurements verifies this assertion. With 

a constant representing full table scan and if-statements, the 

main component of time cost lies in the writing part.  

 
Query Number of 

records returned 
Time 

cost (s) 
1. select COUNT(*) from s3disflat 1 15.2 

2. select * from s3disflat where 

lod>0.99/0.95/0.8/0.5 
657,295/ 

3,287,515/ 
31,730,001/ 
122,433,484 

17.72/ 
39.57/ 

277.92/ 
1042.3 

 

3. select * from s3disflat where x>12.075 

and x<20.13 and y>15.267 and y<19.3 and 

z>0 and z<2 / (-9.072, 17.307, 1, 3.208, 
23.557, 2.8) / (4.7, 10.9, -1, 19.2, 31.6, 3.8) / 

(-20.32, -5.9, -2, 21.2, 27.5, 2) 

1,126,508/ 
6,117,966/ 

13,914,061/ 
98,991,886 

16.5/ 
59.8/ 

125.93/ 
861.3 

Table 1. Query performance on S3DISFLAT 

 

 
Figure 5. LoD selection (Query 2) at different levels. The 

tendency shows a linear scalability and Time = 8 x 10-6 n + 

11.73, where n is the output size. 

 

5.2 Nested table 

Oracle supports the nested table, i.e. the data type of a field in a 

table can be another table. By observing the data, we find that 

the fields including RoomType, RoomID, Classification, 

ObjectID cause much redundancy. So, a solution is to store 

these fields into a base table and by adding a Point_tab field of 

which the data type is a table, other information of points could 

be stored (Figure 6). Geom_extent is the spatial bounding box of 

each object where a 3D R-tree index is created. Spatial queries 

will be formulated into an intersection operation with the 

bounding boxes. What is returned is a set of points of whole 

objects, i.e. an approximate answer. This is reasonable as for 

visualization, it is vague to show only part of an object. As LoD 

is another dimension frequently queried, a B-tree index is 

created on the sub tables. After population, the base table 

contains 9,833 records. The total storage space is 21,366 MB, 

out of which 5,246 MB is used to store the B-tree index.  

 
RoomType RoomID Class ObjectID Geom_extent Point_tab 

Num Num Num Num SDO_GEOMETRY POINTER 

 
LoD X Y Z R G B 
Num Num Num Num Num Num Num 

Figure 6. Schema of the S3DIS nested table, S3OBJ_NEST, 

containing a base table and many sub tables. 

 
Query Number of 

records 

returned 

Time 

cost (s) 

1. select COUNT(*) from (select u.* from 

S3OBJ_NEST, 
table(S3OBJ_NEST.point_tab) u) 

1 25.3 

2. select u.* from S3OBJ_NEST,table 

(S3OBJ_NEST.point_tab) u where 

u.lod>0.99/0.95/0.8/0.5 

657,295/ 
3,287,515/ 
31,730,001/ 
122,433,484 

5/ 
33.27/ 
207.14/ 
767.4 

3. select roomtype, roomid, class, objected, 

u.* from S3OBJ_NEST,table 

(S3OBJ_NEST.point_tab) u where 

u.lod>0.99/0.95/0.8/0.5 

657,295/ 
3,287,515/ 
31,730,001/ 
122,433,484 

74.66/ 
114.86/ 
342.6/ 

1092.48 
4. select u.* from S3OBJ_NEST,table 

(S3OBJ_NEST.point_tab) u where 

u.R=223/142/ 
Roomtype = 2006 

188,704/ 
2,117,209/ 
1,161,301/ 

14/ 
26.7/ 
7.54 

5. SELECT u.* FROM s3obj_nest s, 

table(s.point_tab) u WHERE 

SDO_ANYINTERACT (s.geom_extent, 

SDO_GEOMETRY(3008,NULL, 

NULL,SDO_ELEM_INFO_ARRAY(1,1007

,3), 

SDO_ORDINATE_ARRAY(12.075,15.267,
0, 20.13,19.3,2))) = 'TRUE' / (-9.072, 17.307, 

1, 3.208, 23.557, 2.8) / (4.7, 10.9, -1, 19.2, 

31.6, 3.8) / (-20.32, -5.9, -2, 21.2, 27.5, 2) 

4,036,284/ 
14,195,028/ 
22,893,270/ 
129,250,908 

27.6/ 
92.96/ 
149/ 
836.6 

Table 2. Query performance on S3OBJ_NEST 

 

Similar to the flat table approach, the second query, LoD 

selection presents a linear tendency with the formula: Time = 6 

x 10-6 n + 7.71. The execution plan shows that only indexed 

range scan is performed. The slope is smaller as there are only 7 

dimensions written out. However, when the RoomType and the 

other attributes in the base table are added (i.e. the 3rd query), 

the execution plan incorporates nested loops to join dimensions 

and the time cost becomes larger. 

 

Without index, the selection on the R (color) dimension of 

Query 4 incurs the full table scan which indeed takes longer 

than the selection on the indexed LoD dimension. However, the 

increase of the output scale could make the writing process 

dominant. Hence, the time cost does not vary much from that of 

LoD when more points are selected. Besides, if the dimension 
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selected resides in the base table, the process, in contrast, can be 

very fast. Only full table scan of the base table (which nearly 

has no cost) and the writing phase take up the time.  

 

With regard to the spatial selection, i.e. Query 5, the original 

full table scan for three dimensions turns into a spatial selection 

using a spatial index. Yet the number of records for searching 

decrease as well, i.e. from full records into records in the base 

table. On the whole, the approximate spatial selection on the 

S3OBJ_NEST table is faster than full table scan selections on 

the S3SDISFLAT table (Figure 7). However, in all cases, the 

approximate selections contain more points (Figure 8). On the 

one hand, this is a result from selections of complete objects; on 

the other hand, since the bounding box is utilized for 

intersection, more objects might get involved. Sometimes the 

outliers are even more than the accurate result itself. 

Nonetheless, the ratios of outliers (the extra number of points 

returend divided by the number of points from approximate 

selection) are: 0.72, 0.57, 0.39 and 0.23, which presents a 

decreasing trend as the output size grows.  Consequently, in the 

tail of the curve of time cost (Figure 8), we observe that the 

approximate selection surpasses the accurate selection. It 

implies that the time spent on full table scan becomes more 

significant than the additional time to write extra records into 

the memory.  

 

 
Figure 7. Comparison between the accurate spatial selections on 

the S3SDISFLAT table and the approximate selections on the 

S3OBJ_NEST table. 

 

 
Figure 8. Comparison of the number of points returned from 

spatial selections on the S3SDISFLAT table presented as bars 

and the S3OBJ_NEST table, together with the query execution 

cost expressed using curves.  

 

In summary, the nested table structure complexes the query 

process to some extent, selections to join the dimensions in the 

base table and sub tables for instance. The advancement from 

the B-tree index on LoD is insignificant although it facilitates 

queries with small output. It could be an alternative to order the 

data according to the cLoD value and then use ROWNUM to 

only scan parts of the sub tables to reduce the time cost. The 

access pattern of the LoD dimension is always to select certain 

continuous portion of the points. The approximate method 

presents its advantage when the time cost on the full table scan 

becomes inevitably significant with large output. Besides, it is 

crucial to notice that the importance of each dimension is well 

addressed by such a data structure, i.e. CLASS > SPATIAL > 

LoD > Normal.  

 

5.3 Table with a spatial index 

Compared to the S3DISFLAT, the xyz information is stored in a 

SDO_GEOMETRY object, i.e. SDO_GEOMETRY(3001, null, 

MDSYS.SDO_POINT_TYPE(X, Y, Z), null, null) in the 

S3DISGEOM table. After it, a 3D R-tree is created on the 

geometry column, while the index creation cost 3 hours and 9 

minutes to finish. The other dimensions are normal attributes. 

The table size is 19,175 MB, occupying 611,142 Oracle logic 

blocks, while the spatial index size is 22,011 MB.  

 

For the LoD selection and the spatial selection, initial tests 

present high time cost. Hence, to reduce the workload for 

writing, only XYZ are selected (Table 3). The linear model of 

the LoD selection is: Time = 4 x 10-5 n + 17.6, which entails the 

query execution is much slower than that of S3DISFLAT. The 

main reason is that in the writing part, additional cost is spent 

on converting binary geometry objects into plain coordinates.  

 

It could be observed that the spatial selections based on 

SDO_INSIDE fail to fetch the correct number of points. In 

addition, the process takes huge amount of time to execute. As 

is indicated in the table, the inefficient spatial computation 

comprises the body. Besides, previous developers also proposed 

that an index may not work out if the query was not selective 

enough (e.g. query data distributed across the whole storage). It 

could be much slower than a full table scan. The R-tree index 

created in this solution is very large. With such a cumbersome 

index, searching the pointers and then extracting the data are 

less efficient than a direct full table scan.  

 
Query Number of 

records 

returned 

Time cost 

(s) 

select COUNT(*) from s3disgeom 1 17.3 
select t.x,t.y,t.z from s3disgeom c, 
table(SDO_UTIL.GETVERTICES(c.point

_geom)) t where lod>0.99/0.95/0.8/ 

657,295/ 
3,287,515/ 
31,730,001 

41.54/ 
136.3/ 
1165 

select t.x, t.y, t.z from s3disgeom c, table 

(MDSYS.SDO_UTIL.getvertices(c.point_

geom)) t where SDO_INSIDE 

(c.point_geom, SDO_GEOMETRY(3008, 

NULL, NULL, 

SDO_ELEM_INFO_ARRAY(1,1007,3), 

SDO_ORDINATE_ARRAY(12.075,15.26
7,0,20.13,19.3,2))) / (-9.072, 17.307, 1, 

3.208, 23.557, 2.8) / (4.7, 10.9, -1, 19.2, 

31.6, 3.8)  

911,090/ 
5,541,547/ 
13,163,720 

549.87 

(538.92)/ 
2917.9 

(2761)/ 
6659.6 

(6239.4) 

Table 3. Query performance on S3DISGEOM. Time 

measurements in brackets are roughly the time to perform the 

SDO_INSIDE computation. 

 

5.4 SDO_PC blocks 

 

The schema is analogous to the nested table (Figure 9). In this 

solution, the whole dataset is divided into blocks/BLOBs of 

10,000 points. So each object might be stored into several 

blocks. In the block table S3DISBLKTAB, the column 
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BLK_EXTENT stores the bounding box of each block. On top of 

it, a 3D R-tree index is created. The solution costs 32.5 hours to 

finish, which includes the creation and population from a stage 

table like S3DISFLAT. 32,525 blocks are created in the end. 

The total storage size is 21,417 MB, which is 1/4 more than that 

of the nested table. This is mainly because normally in the last 

block of each object, only a part is used to store the points.  

 
RoomType RoomID Class ObjectID PC 

Num Num Num Num SDO_PC 

S3DISBASE 

 
OBJ_ID BLK_ID BLK_EXTENT NUM_POINTS POINTS 

Num Num SDO_GEOMETRY Num BLOB 

S3DISBLKTAB 

 
X, Y, Z, R, 

G, B, LOD 

BLOB 

Figure 9. Schema of the SDO_PC solution. It includes the base 

table S3DISBASE, the block table S3DISBLKTAB, and the 

BLOBs for real storage of points.  

 

Queries are implemented in SQL scripts (Appendix) with 

SDO_PC tools which is the standard operation in this solution. 

The output is an Oracle flat table and it is difficult to store 

results as an in-memory object.  

 

From Table 4, the LoD selections take enormous amount of 

time to execute, which is mainly caused by unpacking each 

block for filtering, as was indicated by van Oosterom et al. 

(2015). Additional queries are tested to learn the output writing 

rate, and it turns out that in this case, the writing part is 

negligible compared to the unpacking process.  

 
Type Range Number of 

records 
returned 

Time cost 

(s) 

LoD 

query 
>0.99 
>0.95 

- 
- 

>10,000 
>10,000 

Spatial 

query 
(12.075,15.267,0,20.13,19.3,2) 
(-9.072, 17.307, 1, 3.208, 

23.557, 2.8) 
(4.7, 10.9, -1, 19.2, 31.6, 3.8) 
(-20.32, -5.9, -2, 21.2, 27.5, 2) 

1,155,519/ 
6,140,715/ 
13,916,132/ 
99,028,009 

112.5/ 
485.4/ 
808.2/ 
9,380 

 

Table 4. Query performance of the SDO_PC solution. 

 

The spatial query is more efficient thanks to the spatial index. 

However, still considerable time is spent on decoding the blocks 

and the successive scanning to return the precise results. The 

performance deteriorates severely in the last query. It should be 

noted that the spatial operators utilized causes inaccurate 

selections once again. 

 

The schema of this solution is similar to the nested table, but 

unpacking blocks is needed. It is not preferred considering the 

LoD selection where each BLOB has to be unpacked for 

filtering. But this is inevitable as no operators is available for 

creating a 4D geometry (i.e. BLK_ENTENT) used for indexing. 

A substitute is to utilize X/Y/LoD as the bounding box to index. 

However, Z dimension plays a more important role in the 

indoor environment than outdoor. Additionally, the solution 

also has the problem of long loading process. 

 

5.5 Index-Organized Table (IOT) 

 

The Oracle IOT is an index integrated data structure. The 

primary key and non-key column data stored within the same B-

tree structure in leaf nodes. The logical model is however, still a 

table. Changes to the table, for example, adding new rows, or 

updating or deleting existing rows, result only in updating the 

index. It is the fact that most of the time, X/Y/Z/LoD would be 

selected together. Using pySFC (Meijers, 2017), we encode 

X/Y/Z/LoD into a Morton key which is the primary key of the 

IOT. Specifically, X, Y and Z values are multiplied by 1,000 to 

become integers. The cLoD value are expressed as the ranking 

number. Then by interleaving the bits of the four dimensions 

(Psomadaki, 2016), the Morton key could be derived. As the 

length of bits after encoding could exceed the limit of the 

NUMBER type, so VARCHAR is used to store the key. Other 

dimensions keep the same as that of the S3DISFLAT. The total 

storage size is 21,179 MB. 

 
Type Range Search 

depth/Number 

of ranges 

Number of 

records 

returned 

Time cost (s) 

LoD 

query 
>0.99 
>0.95 
>0.8 
>0.5 

57/105 
56/51 
53/61 
51/59 

688,127/ 
3,342,335/ 

31,981,567/ 
123,731,967 

8.8 + 36.36/ 
22.69 + 193/ 

217.2 + 

2,019/ 775.6 

+ 7,848.5 
Spatial 

query 
(12.075,15.267,0,2

0.13,19.3,2) 
(-20.32, -5.9, -2, 
21.2, 27.5, 2) 

52/261 
52/261 

273,608,340/ 
273,608,340 

3001.7 + 

(>10,000)/ 
2950.5 + 

(>1,0000) 

Table 5. Query performance of the IOT solution. The first part 

of time cost is query time including writing into the memory, 

while the second part is the decoding cost. 

 

The searching process is based on the key, so the original 

dimension spans have to be translated into the ranges in the one-

dimensional key. Due to the LoD structure embedded in the 

Morton code (in this case, every four bits represent a level), it is 

possible to control the computational depth (Table 5) to 

generate the ranges. It implies that a larger depth corresponds 

more ranges, i.e. the result selected would be more accurate. In 

the end, these ranges are inserted into the WHERE clause in a 

SQL command to execute. Initial tests indicate too many ranges 

in the WHERE clause would be very inefficient.  For all queries, 

the computation of ranges takes less than 1 second. 

 

In the tests, the writing results contain all dimensions except 

LoD. As Table 5 shows, the querying process takes less time 

than that of the S3DISFLAT thanks to the index although more 

points are returned. This is more obvious when the output is 

small where writing is not the body. However, more time is 

spent on decoding. In fact, the decoding process constitutes 

another linear factor in the performance in addition to writing 

results. The current implementation of decoding is of 

complexity O(n) where n is the output size. If we intend to 

achieve the O(logN) (N refers to the input data size) 

performance of the B-tree, the n should be below of level of 106 

if N does not exceed 1030. Otherwise, the decoding process 

would become dominant. It implies that for large point clouds 

management, the additional encoding/decoding is not a 

rationale choice unless a new computational framework would 

be directly built on the encoded data.  

 

With respect to the spatial queries, due to large time cost, the 

smallest spatial query and the largest spatial query are used for 

testing. As can be seen from the table, both queries return the 

whole dataset as the result. In real experiments, larger search 

depth is tried, but the query execution takes too much time to 

return the result. The inefficient spatial querying is radically 

caused by the value distribution of different dimensions 

encoded in the Morton key. Basically, the LoD dimension is a 

long series with distinct values for each point, which makes it 
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superior in the Morton key. The query then becomes extracting 

a thin slice from a large 4D cube, which is bound to be 

inefficient. The continuous LoD dimension may thus be 

removed from the Morton key encoding, but LoD selection then 

becomes a problem. Hence, employing the appropriate unit 

which controls the resolution and range of the data 

representation in the Morton code is a critical issue in which a 

proper balance has to be determined.   

 

There are two major advantages in applying an IOT approach. 

First, it utilized the B tree to organize the whole storage based 

on a combined column SFC key where several dimensions are 

involved. Second, SFC is leveraged to group points together so 

that relationships such as spatial neighbouring could be 

sustained. So the selection could be more consecutive instead of 

too many intermittent retravel from the memory. Besides, the 

structure is more compact compared with the separate table and 

index approach with less pointers stored. This has direct 

influence on querying process where the “join” between index 

and table is more efficient.  

 

6. CONCLUSIONS AND FUTURE WORK 

This research is an exploration of a state-of-the art solution to 

manage large indoor point clouds for visualization in the 

navigating mode. First the cLoD which could help improve the 

performance of large data visualization is introduced into data 

management. Then by establishing a benchmark and utilize 

various Oracle solutions to test, we gained essential insights 

which indicate possible directions to further develop a nD 

PointCloud structure (Liu et al., 2018a): 

 

1. Flat table with B-tree index and plain scanning could be 

efficient enough for management of large point clouds. A trick 

is how to realize the priority of different dimensions. Current 

unsatisfactory performance is mainly caused by the long writing 

process. In case of visualization, a possible solution is to 

transfer the data retrieved directly to GPU for rendering. Then 

smart caching strategies might be applied to buffer a part of the 

query results into memory in parallel. Besides, the superfluous 

table scanning could also be improved. An intuitive approach is 

to avoid unnecessary scanning by harnessing the cLoD 

dimension of which the access pattern is normally extraction of 

a continuous portion of the storage. Another option is to 

develop an approximate accessing scheme.  

 

2. The approximate querying shows its superiority when the 

output size is large. The nested table approach is based on 

objects, i.e. semantic information, while the IOT approach 

controls the accuracy of query through the search depth. In 

general, the probability density function (Kraska et al.,2017) 

could be utilized to locate the targets roughly in the storage, for 

example, development of a nD histogram based on the 

distribution of points to refine the ranges.  

 

3. Use of spatial data types is not recommended. In the 

experiments, none of the spatial computation could return 

accurate results. This might be related to the tolerance settings 

in the metadata table used for executing queries. Also such an 

approach relies on spatial indexes which turn out to be very 

cumbersome. The index size is even larger than original data 

and it works inefficiently. Lastly, additional encoding/decoding 

processes are required. The decoding is a linear factor in the 

time cost, which undermines any gain of time from smart 

searching of the data. This point is not only confined in spatial 

data types, but also applies to the Morton coding. In the 

research,  a physical bound of 106 for the IOT approach is 

derived. If the output size exceeds it, the decoding process 

would become dominant. However, such a threshold could be 

improved by developing best practices, e.g. implementation 

inside the DBMS. Then the approach can be acceptable for 

example, in virtual realize equipment where the memory size is 

limited. Accordingly, research focus could shift to the LoD 

computation to determine the most representative points.  

 

With knowledge acquired, the research could be extended to 

integrate point cloud models of cities where classification 

information is also involved. As the object is the minimum unit, 

a semantic index structure could be established, e.g. name of 

town and then the city’s name. A high dimensional point cloud 

management could then be developed as a case study.  

 

Apart from novel data management, more aspects could be 

improved. Current implementation including Python query and 

encoding/decoding scheme, the SDO_PC and IOT structure is 

not optimal. Benchmarks applied are simple and are not verified 

and discussed with industrial professionals. Scalability is not 

fully incorporated. The computation of LoD still originates from 

an engineer thinking, instead, visual perception/computer vision 

should also be taken into account. The argument on whether 

utilize a cLoD or discrete LoD reserve to be solved.  
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APPENDIX 

SQL for table creation 

Flat table: 
CREATE TABLE S3DISFLAT (X number, Y number, 

Z number, R number, G number, B number, 

RoomType number, RoomID number, Class 

number, ObjectID number, LoD number); 

 

Nested table: 
CREATE TYPE Point_type as object (X number, 

Y number, Z number, R number, G number, B 

number, LoD number); 

 

CREATE TYPE Point_table IS TABLE OF 

point_type; 

 

CREATE TABLE S3OBJ_NEST (RoomType number, 

RoomID number, Class number, ObjectID 

number, Geom_extent SDO_GEOMETRY, Point_tab 

Point_table) NESTED TABLE Point_tab STORE 

AS Points; 

 

CREATE INDEX bb_idx ON S3OBJ_NEST 

(Geom_extent) INDEXTYPE IS 

MDSYS.SPATIAL_INDEX PARAMETERS 

('sdo_indx_dims=3'); 

 
CREATE INDEX nested_tab_idx ON Points (LoD); 

 

Table with a spatial index: 
CREATE TABLE S3DISGEOM (Point_geom 

SDO_GEOMETRY, R number, G number, B number, 

RoomType number, RoomID number, Class 

number, ObjectID number, LoD number); 

 

CREATE INDEX point_idx ON S3DISGEOM 

(Point_geom) INDEXTYPE IS 

MDSYS.SPATIAL_INDEX PARAMETERS 

('sdo_indx_dims=3'); 

 

SDO_PC blocks: 
CREATE TABLE S3DISBASE (RoomType number, 

RoomID number, Class number, ObjectID 

number, PC SDO_PC); 

 

CREATE TABLE S3DISBLKTAB AS select * from 

mdsys.sdo_pc_blk_table; 

 

CREATE TABLE tmp_heap as (select X as 

VAL_D1, Y as VAL_D2, Z as VAL_D3, R as 

VAL_D4, G as VAL_D5, B as VAL_D6, LoD as 

VAL_D7 from S3DISFLAT; 

 

PC := SDO_PC_PKG.init('S3DISBASE ', 'PC', 

'S3DISBLKTAB', 'blk_capacity=10000', 

mdsys.sdo_geometry(3008, null, null, 

mdsys.sdo_elem_info_array(1,1007,3),mdsys.s

do_ordinate_array(-37.928, -26.078, -2.645, 

29.927, 46.056, 6.576)), 0.0001, 7, null); 

 

SDO_PC_PKG.create_pc(PC, 'tmp_heap',  null); 

 

IOT: 
CREATE TABLE S3DISIOT (SFC varchar2(200), R 

number, G number, B number, RoomType number, 

RoomID number, Class number, ObjectID 

number, CONSTRAINT SFC4D_PK PRIMARY KEY 

(SFC)) ORGANIZATION INDEX; 

 

SDO_PC query script 

LoD: 
INSERT into PC_RES SELECT query_points.X, 

query_points.Y, query_points.Z from 

table(SDO_PC_PKG.CLIP_PC(each.pc, 

SDO_GEOMETRY(3008, null, null, 

SDO_ELEM_INFO_ARRAY(1,1007,3), 

SDO_ORDINATE_ARRAY(-37.928, -26.078, -2.645, 

29.927, 

46.056,6.576)),SDO_MBR(SDO_VPOINT_TYPE(0,0,

0,LoDmin), SDO_VPOINT_TYPE 

(256,256,256,1)),null,null)) 

query_blocks,table(SDO_UTIL.GETVERTICES(SDO

_PC_PKG.TO_GEOMETRY(query_blocks.points, 

query_blocks.num_points,3,null))) 

query_points; (LoDmin equals 

0.99/0.95/0.8/0.5) 

 

Spatial: 
INSERT into PC_RES SELECT query_points.X, 

query_points.Y, query_points.Z from 

table(SDO_PC_PKG.CLIP_PC (PC, SDO_GEOMETRY 

(3008, null, null, SDO_ELEM_INFO_ARRAY (1, 

1007, 3), 

SDO_ORDINATE_ARRAY (Xmin, Ymin, Zmin, Xmax, 

Ymax, Zmax)),null,null,null)) query_blocks, 

table(SDO_UTIL.GETVERTICES(SDO_PC_PKG.TO_GE

OMETRY (query_blocks.points, 

query_blocks.num_points,3,null))) 

query_points; (Spatial range are 

(12.075,15.267,0,20.13,19.3,2) / (-

9.072,17.307, 1, 3.208, 23.557, 2.8) / (4.7, 

10.9, -1, 19.2, 31.6, 3.8)) / (-20.32, -5.9, 

-2, 21.2, 27.5, 2) 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4, 2018 
ISPRS TC IV Mid-term Symposium “3D Spatial Information Science – The Engine of Change”, 1–5 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-4-365-2018 | © Authors 2018. CC BY 4.0 License.

 
372

https://bitbucket.org/bmmeijers/pysfc
https://www.nist.gov/sites/default/files/documents/2018/01/05/2018-nist-psiap-pc2_nofo.pdf
https://www.nist.gov/sites/default/files/documents/2018/01/05/2018-nist-psiap-pc2_nofo.pdf
http://www.pointclouds.nl/docs/User_Requirements%20_MPC.pdf
http://www.pointclouds.nl/docs/User_Requirements%20_MPC.pdf

	1. INTRODUCTION
	2. RELATED WORK
	3. BENCHMARK
	3.1 Data
	3.2 Queries

	4. LOD COMPUTATION
	4.1 Geometric LoD
	4.2 Semantic LoD

	5. TEST RESULTS AND DISCUSSION
	5.1 Flat table
	5.2 Nested table
	5.3 Table with a spatial index
	5.4 SDO_PC blocks
	5.5 Index-Organized Table (IOT)

	6. CONCLUSIONS AND FUTURE WORK
	ACKNOWLEDGEMENTS
	REFERENCES
	APPENDIX



