
REMOTE SENSING ANALYTICAL GEOSPATIAL OPERATIONS DIRECTLY IN THE
WEB BROWSER

J. Masó 1, A. Zabala 2, I. Serral 1, X. Pons 2

1 CREAF, Fac Ciencies UAB, 08193 Bellaterra Barcelona Spain - joan.maso@uab.cat, ivette@creaf.uab.cat
2 Dep. Geografia, Universitat Autonoma de Barcelona, Edifici B 08193 Bellaterra Barcelona Spain - Alaitz.Zabala@uab.cat,

Xavier.Pons@uab.cat

Commission IV, ICWG IV/III

KEY WORDS: Remote Sensing, Analysis, Geospatial, Web, JavaScript.

ABSTRACT:

Current map viewers that run on modern web browsers are mainly requesting images generated on the fly in the server side and
transferred in pictorial format that they can display (PNG or JPEG). In OGC WMS standard this is done for the whole map view
while in WMTS is done per tiles. The user cannot fine tune personalized visualization or data analysis in the client side. Remote
sensing data is structured in bands that are visualize individually (manually adjusting contrast), create RGB combinations or present
spectral indices. When these operations are not available in map browsers professional are forced to download hundreds of gigabytes
of remote sensing imagery to take a good look at the data before deciding if it fits for a purpose. A possible solution is to create a
web service that is able to perform these operations on the server side (https://www.sentinel-hub.com). This paper proposes that the
server should communicate the data values to the client in a format that the client can directly process using two new additions in
HTML5: canvas edition and array buffers. In the client side, the user can interact with a JavaScript interface changing
symbolizations and doing some analytical operations without having to request any data again to the server. As a bonus, the user is
able to perform queries to the data in a more dynamic way, applying spatial filters, creating histograms, generating animations of a
time series or performing complex calculations among bands of the different loaded datasets.

1. INTRODUCTION

The technology for sending maps on the web for visualization is
now mature. On one hand, mass market tools like Google maps
have popularized maps on the Internet and their APIs allowed
for an explosion of myriad of implementations (Miller, 2006).
On the other hand, the Web Map Server (WMS) standard (de la
Beaujardiere, 2004) has made possible that interoperable maps
from different origins can be combined and shown together in a
single view. Recent web services crawlers has revealed and
increasing number of map services. In 2010 a study detected
1126 WMS services (Li et al., 2010). A second study done only
one year later using a different crawler technology revealed
3712 WMS services (Lopez-Pellicer et al., 2011) with almost
no problems reported on accessing them. The later study also
found that most of geospatial web services as map services
(57%) and there is a lower interest in sharing the data, with
more that 60% of services declared (WFS+WCS) but not active
at the time of the study (only 909 downloading services active).
There where only 17 processing services active at the time of
the study. Web map services are used to serve remote sensing
data and derived higher level products. Just to mention a couple
of examples, NASA developed in 2002 the HDF-EOS Web GIS
Software Suite (NWGISS) that included WMS support (Di et
al., 2002) and, the web service for the Fire Information for
Resource Management System (FIRMS); a product derived
from MODIS data was released later (Davies et al., 2009).

Current map viewers that directly run on modern web browsers
are mainly using 2 strategies. The first one is based on
requesting the server an image that can fill the user view port.
The image is generated on the fly in the server side and
transferred in pictorial format that the web browser can display,
such as PNG or JPEG (OGC WMS may be used to make this
approach standard and interoperable). Secondly, small tiles that

presented together form a map that is shown in the screen can
be requested. Normally, tiles are prerendered or rendered on the
fly in predefined styles and transferred in pictorial format that
the web browser can display, such as PNG or JPEG. OGC Web
Map tile Service (WMTS) may be used to make this approach
standard. In both cases the server executes an internal portrayal
algorithm that is applied to the internal data, to generate a data
visualization result (that is transmitted to the client) in a lossy
process that cannot be reversed by the client to get the values of
the original data. A viewer that limits itself to what is possible
to do with an standard WMS can only offer data visualization
and simple point based queries (GetFeatureInfo).

Current limitations on the common usage of WMS services
constrain users that are not able to download the data to visual
analysis. Following the statistics provided by Lopez-Pellicer et
al. (2011), there is only a 25% active downloading services in
proportion of the active WMS number of services. There is
almost no chance to process the data remotely given the low
proportion of processing services. Assuming that the current
situation persists, a possible solution could be to add extra
functionalities to WMS clients and services to, at least, support
some analytical capacity in a standard way.

A significant previous attempt to improve the current situation
in the case of gridded data is ncWMS that introduced several
extensions in GetFeatureInfo, symbolization and vertical and
temporal dimensions (Blower et al., 2013). This paper presents
an alternative: to enrich current web map clients by moving
some of the portrayal capabilities from the server (such as
Blower et al. (2013) approach) to the client. The proposed
solution empowers the client that can request to the server
arrays of remotely sensed gridded values for each band and
store them in memory. This is possible with a very simple
extension of WMS consisting in adding a binary raw data

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4, 2018
ISPRS TC IV Mid-term Symposium “3D Spatial Information Science – The Engine of Change”, 1–5 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-403-2018 | © Authors 2018. CC BY 4.0 License.

403

format. In the client side, the user can interact with a JavaScript
interface that encodes the portrayal functionalities and provide
the same visual representation. With the binary raw data, the
client can do much more than simple data visualization, such as
simple statistical calculations on what is in the screen or pixel
based operations among layers from different sources.

The proposed solution works better for information representing
gridded data representing continuous variables, like the ones
coming from remote sensing imagery and derived higher level
continuous products as well as categorical maps that cover all
territory (such as land cover maps), so this is the focus area of
the presented paper.

2. METHODOLOGY

We propose and implement a new strategy were the server
communicates the data values to the client in a format that the
client can directly process using two new additions in HTML5:
canvas edition and binary arrays.

If we follow the GIS and remote sensing optical tradition, 2d
images are transported in a raster binary encodings listing the
values of a georeferenceble grid. With time, several formats
have been suggested that include sophisticated headers
describing the content, some optimizations in terms of tiling,
multi scales, multi dimensions, compression etc. The open
source multi raster format GDAL library (Warmerdam, 2008),
that is an engine for reading raster formats many GIS open
source software usr, currently offers 155 drivers to deal with an
equal number of formats, most of them binary encoded. In the
proposed implementation of our map browser we have selected
the simplest possible binary encoding, sometimes referred as
"raw" format. In the raw format, there is no header that
describes the file content. It directly starts by the sequence of
the values of the grid, represented as an array of binary encoded
numbers, all of the same binary type. Since the size of the
selected binary type is fixed, there is no need to separate them
with a marker. The assumption is that each cell in the grid
contains a single value and the grid is described starting by the
top left value providing all values of the first row of the grid
immediately followed by the values of the second row, with no
separation, and so on until the last value of the last row is
provided. The data type, the size of the grid in terms of rows
and columns and the georeference information (mainly a
bounding box and a coordinate reference system) have to be
communicated by other means.

The proposed JavaScript client is a classical map browser that
has a map area where grid data at screen resolution can be
presented. This area has a stack of several overlaying HTML
transparent divisions of the exact same size, each one ready to
represent the data coming from a layer of a WMS server. The
map area is active and responds to the common actions of pan
zoom and point query requested by the user mouse movements.
A JavaScript detects the actions of the user and translates the in
terms of changes in the extent (bounding box in geoferenced
coordinates) of images needed. Then, the JavaScript code uses
the bounding box coordinates and the fixed number of columns
and rows to elaborate a request to a WMS service that will
result in a response that contains the values corresponding one-
to-one to the pixels of a map area in the screen, just by adding
"format=application/x-img". WMS request is sent in an
asynchronous mode using the XMLHttpRequest() function
configured in a way that binary responses are allowed by means
of this code:

 var xhr = new XMLHttpRequest();
 xhr.onreadystatechange = function(){
 if (xhr.readyState ===
 XMLHttpRequest.DONE &&
 xhr.status === 200)
 {
 // xhr.response contains the
 // binary array
 }
 }
 xhr.open("GET", path, true);
 xhr.responseType = "arraybuffer";
 xhr.send();

A modified WMS server interprets the format MIME type and,
instead of returning a image portrayal of the data (e.g. a PNG
file), it generates a little-endian binary array as a response of
the GetMap request. Using the new a JavaScript array buffer
object, the data can be stored in a JavaScript variable an
accessed by creating a new DataView() object. Then, depending
on the data type of the binary values, an extraction of the value
of a cell is done like this:

 var dv=DataView(arrayBuffer);
 var i_byte=(ncol*ifil+icol)
 if (datatype=="uint16")
 getUint16(i_byte*2, true);
 else if (datatype=="float32")
 getFloat32(i_byte*4, true);
 else if ...

Next step should be to represent the data in the map area of the
screen. A canvas area is created in a division inside the map
area to be able to manipulate the presentation of this layer. By
requesting to the canvas an image with createImageData(), an
array of numbers is returned. The first 4 numbers (from 0 to
255) corresponds to the RGBA values of the first pixel (A is
opacity), the following 4 numbers corresponds to the RGBA
values of the second pixel and so on, covering the predefined
set of pixels in the screen. The binary arrays returned by the
WMS service are not directly appropriate for populating the
RGBA values. In the map browser, at least one style was
defined and associated to the layer. Styles are a set of rules that
can be performed by the JavaScript client to transform binary
arrays into the proper RGB values that inform about the colour
intensity of an image that represents the data. In our map
browser a style can have one of the following modes: colour
map, RGB and calculation.

The first mode is the simplest one. A single binary array of
values is used to generate the visualization by mapping the

values to a colour map consisting on a predefined list of RGB
values. In case that the value represents a category, the value of

the cell is interpreted as an index into the list of RGB values
(the colour map needs to have the same number of colours than
the numbers of categories). In case that the value represents a
continuous value, a linear transformation is done to map the

minimum possible value in the binary array to the first colour of
the colour map list and the maximum possible value in the

binary array to the last colour of the colour map list (we call
this operation a "rescale") (see

Figure 1). This mode will be appropriate for an NDVI image or
for a land cover (LC) map.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4, 2018
ISPRS TC IV Mid-term Symposium “3D Spatial Information Science – The Engine of Change”, 1–5 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-403-2018 | © Authors 2018. CC BY 4.0 License.

404

Figure 1. HTML representation of a JavaScript generated
window to define the maximum value and the minimum value
to stretch the colour map in an image with continuous values.

The second mode requires that 3 bands are requested to the
server. The first returned binary array will be rescaled to
represent the R colour channel intensity between 0 and 255 of
all pixels of the screen; the second will be rescaled to represent
the G colour channel and the third to represent the B colour
channel. The individual bands can be obtained from 3 different
layers of a WMS server or from the same layer but with an
extra dimension parameter to extract individual bands (e.g.
DIM-BAND=4). This mode is useful to represent band
combinations (e.g. obtaining a natural colour image from a
Sentinel 2 image by requesting the bands 4, 3, 2 from the RGB
values) (see Figure 2 and Figure 4).

Figure 2. HTML representation of a JavaScript generated
window to define new RGB combinations from individual

components.

Figure 3. Screenshot showing an RGB on the fly combination
from Sentinel-2 dataset for the Kalkalpen National Park for a

particular date.

The third mode takes full advantage from the fact that the layers
in the overlaying stack are correlated and since they requested

at the same number of columns and rows and all cells have the
same pixel size, a cell position of a layer is situated in the same
place in the Earth. This means that the JavaScript code can
perform pixel by pixel layer calculations using the actual values
of the binary arrays and immediately present the result at screen
resolution to the user. Calculations can be relatively simple
spectral indices such as EVI or SAVI (Huete 1988) or a
complex model involving several layers. Internally, the
JavaScript code benefits from the eval() function: any
calculation that can be expressed as a pixel by pixel
mathematical expression can be executed by the JavaScript
code (see Figure 4). The mathematical expressions will be
encoded using a generic name of the layer bands. A loop for all
pixels will be done and for each pixel, the generic name of the
layer band will be replaced by the values of that pixel and will
be given to the eval() function to get the result for this pixel.

Figure 4. HTML representation of a JavaScript generated
window to define calculations from existing layers. The

example shows the definition of a Normalized Difference
Vegetation Index using bands 8 and 4 of a Sentinel 2 image.

The capacity of having the actual arrays of values directly in
the client side opens new set of possible applications that were
not available with a classical WMS approach. If the binary
arrays used for visualization are stored for later use, with a little
bit of programming a histogram or a pie chart representing the
area that is occupied by each rang of values or each class can be
presented to the user. The statistical summaries can be easily
calculated by the JavaScript code while one of the available
diagram libraries can be used to plot the graphical
representations. In our case, we opted for chart.js because it
easily supports that each bar of a bar chart has a different
colour; a characteristic that permits us to assign a bar the same
colour as the central value of the bar receives in the map when a
applying the styling rules. Another immediate operation that
can be improved is the point query that will not need to rely on
the GetFeatureInfo but can extract the queried value from the
binary array, fast enough to show the value of all visible layers
by just hovering over them with the mouse. This technology
also allows for the capacity to filter out some values of the
image that do not meet a condition set by another layer (e.g.
represent NDVI values only if the elevation is lower a certain
value, or only for a certain land use category) (see Figure 5).
The style of the generated selection layer can also be edited to
better adjust the visualization among the values.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4, 2018
ISPRS TC IV Mid-term Symposium “3D Spatial Information Science – The Engine of Change”, 1–5 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-403-2018 | © Authors 2018. CC BY 4.0 License.

405

Figure 5. A filter of the NDVI that has a DEM value higher
than 2000 m for the Gran Paradiso Natural Park

With classical WMS services, the generation of animations of a
time series is already possible in the server side by specifying a
time interval in the extra TIME parameter. It is also possible to
build a WMS client that requests individual time frames to a
classical WMS and generates an animation directly on the client
side by overlaying all frames and making only one visible in
sequence at the right time. With the capacity of having binary
arrays, and in addition to the animation, it is possible to present
plots of the temporal evolution of one or more points in the
animated area and eventually detect anomalies by comparing
them with the mean and variance of the visible values in the
bounding box.

In many occasions a pure raw format could result in a very
repetitive encoding as contiguous pixels in an image tend to
repeat the same value. For these cases, we needed to extend the
application/x-img format with Run-Length Encoding (RLE), a
simple encoding that stores repetitions in a more compact way
generating a simple encoding simple enough to be implemented
in real time JavaScript routines. In many cases, the reduction in
bandwidth compensates the increase in the time spend by the
JavaScript code to interpret the binary array. In this extension
of the format, the following pattern is repeated: The first byte is
the number of repetitions and the next bytes are the binary
encoding of the value that is repeated (that might be an int16,
float32, etc). If the number of repetitions is marked as zero this
indicates a special case where the following byte specifies the
number of non repeated numbers that will be followed by n
byte groups representing the n values. In this implementation,
the number of repetitions is a single byte, so it cannot exceed
255 repetitions. The start of a new image row shall be a number
of repetitions (in other words, rows are compressed
independently).

3. RESULTS

In ECOPotential, remote sensing data, in-situ data and
modelling results are created and organized for the benefit of
selected protected areas mainly in Europe. The technology
described in this paper has been implemented in the MiraMon
(Pons, 2002) map browser open source code
(https://github.com/joanma747/MiraMonMapBrowser) and has
been adopted as the project map browser in the Europena Union
Horizon 2020 ECOPotential project (http://maps.ecopotential-
project.eu). The Protected Areas from Space browser aims at
providing a way to discover and explore the potential of remote
sensing data for the management of 20 protected areas without
the need to bulky downloads and setup complex remote sensing

tools. After loading it in the map browser, a dropdown list,
permits to zoom in and focus on one of the protected areas. The
map browser adopts automatically the projection and coordinate
reference system appropriated for that protected area. In this
context, 129 layers have been processed so far, some of them
consisting in time series and thus giving a total of 4102 time
frames (see Table 1). The map browser allows discovering,
visualizing, querying, animating and downloading; and also
integrates metadata and quality descriptions associated to each
layer.

Figure 6. Screenshot for the Gran Paradiso National Park,

showing, on the left, the legend with some of the layers, and in
particular, the phenometrics layer.

Protected Area
Layer

number
Time series frames

Abisko 5 75
Camargue 7 30
Curonian Lagoon 4 18
Danube Delta 8 57
Doñana 7 41
Gran Paradiso 10 415
Har Ha Negev 6 110
Hardangervidda 6 172
High Tatra 6 50
Kalkalpen 9 109
Kruger 4 115
La Palma 9 138
Montado 7 88
Murgia Alta 4 18
Ohrid Prespa Lake 6 26
Peneda Gêres 5 63
Samaria 8 159
Sierra Nevada 9 2358
Swiss National Park 6 43
Wadden Sea 3 17
Total 129 4102

Table 1. Layers and frames in time series processed by
Protected Area

Regarding visualization, appropriate styles have been carefully
crafted considering the characteristics and the semantics of the
information shown. In some cases, more than one style is
provided for the same data. In some others, styles are showing a
different component of the same dataset; such as different
spectral bands, different results of different methods to extract
the same variables, or different variables related to the same
concept. For example, in the phenometrics layer for Grand
Paradiso National Park, the maximum and minimum NDVI
value of the year, as well as the day of the year with when the
maximum and the minimum NDVI occurred are offered as 4

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4, 2018
ISPRS TC IV Mid-term Symposium “3D Spatial Information Science – The Engine of Change”, 1–5 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-403-2018 | © Authors 2018. CC BY 4.0 License.

406

layers (see Figure 6) but in each layer, the results of two
methods (DLogistic and LinIP) are presented for the Terra and
Aqua satellites as 4 styles. In the case of the vegetation metrics
layer for the Swiss National Park, two styles are provided
above the ground biomass and canopy height model.

When protected areas are analysed, they cannot be seen as
isolated places but in relation to its surroundings (Hansen,
2007). That is the reason why most of the datasets included in
the map browser are not limited to the protected area perimeter.
In addition 2 additional layers have been created: a line
showing the border of the area and a mask of the interior of the
protected area. The later is not visible but it is available for
analysis as will be explained below.

With histogram analysis users can easily identify the
distribution of the values for a certain quantitative layer; for
instance the NDVI values as shown in Figure 7. In this case, for
the Gran Paradiso Natural Park, and for a November date, the
maximum number of the values are around 0 (and with a second
peak approaching to 1), which indicates a relatively good state
of the vegetation. Pie charts are also a valuable visualization
tool that allows users to quickly understand the representation
of categorical variables, such as Land Use / Land Cover Maps
(Figure 3). As a matter of example, for the Doñana National
Park, is easy to realize that cultivated and natural terrestrial
vegetation are the most common categories in the park,
followed by natural water (what is expected since Doñana is a
wetland ecosystem system). Attention is made to the point that
the histograms and pie charts are dynamically computed on the
client, and represent only the visible area in the browser, so
zooming in to a certain interest area to obtain its histograms and
pie charts is always possible.

Figure 7. Screenshot showing the histogram representation over

the NDVI dataset for the Gran Paradiso National Park for a
particular date.

The produced histogram or pie chart covers the whole area
visible in the map browser. This means that it might include the
protected area and the surroundings. To prevent the
surroundings to contaminate the analysis a selection operation
can be done to exclude all area outside the park. This is done by
filtering out the pixels that are not on top of the mask of the
park. The selection is done directly in client side. In Figure 9,
we can see that the pie chart of the park and its surroundings
has a much bigger presence of cultivated areas than the interior
of the park alone.

Figure 8. Screenshot showing a pie chart representation for a

categorical dataset (a Land Use Land Cover Map) for the
Doñana National Park.

Figure 9. Screenshot showing a pie chart of the land use
categories of the Bayerischer Wald Park considering the

surroundings of the park (upper part) and only the park area
(lower part).

The combination of this feature with the selection one opens a
wide range of applications allowing the user to perform
complex queries on the browser such as: how the percentage of
some habitats categories varies with altitude? Which is the
NDVI histogram for crop areas in a certain protected area and
its comparison with the NDVI for the whole protected area?
The answer to these questions can be obtained with applying a
few operations in the map browser. Thus, analytical queries can
be done to extract the NDVI in areas of Gran Paradiso
National Park over 3000 meters (Figure 10, selection on the
left), and under 1500 meters (Figure 10, selection on the right).

Figure 10. Selections from the Gran Paradiso Natural Park

DEM. On the left, areas over 3000 m, and on the right, areas
under 1500 m.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4, 2018
ISPRS TC IV Mid-term Symposium “3D Spatial Information Science – The Engine of Change”, 1–5 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-403-2018 | © Authors 2018. CC BY 4.0 License.

407

Figure 11. Pie chart for the Gran Paradiso Natural Park Habitats

over 3000 m.

Among these selections, habitats distributions can be extracted,
showing pie charts on the proportions of each present
categorical variable. Different habitat distributions can be
observed from the Figure 11 pie chart (habitats over 3000 m)
and the Figure 12 pie chart (habitats under 1500 m) and we can
realize that altitudes under 1500 m have a bigger variety of
habitat types that the altitudes above 3000 m.

Figure 12. Pie chart for the Gran Paradiso Natural Park Habitats

under 1500 m.

Analytical queries over the histogram for the NDVI can show
the differences among areas. For Har Ha Negev (mostly a
desertic area) Figure 13 shows the histogram for the Sentinel-2
NDVI for the whole protected area, while Figure 14 only
presents the values of NDVI that are terrestrial cultivated
category (by creating a selection of the NDVI values only over
the LULC layer).

Figure 13. NDVI histogram over the Har Ha Negev Protected

Area.

A different visualization of the same concept can be done by
asking the client to load the entire Sentinel-2 NDVI time series
and perform a video animation. This can be done over the entire
area, or just over the selection previously done for the
terrestrial cultivated areas.

Figure 14. NDVI histogram over the Har Ha Negev Protected

Area, only for the terrestrial cultivated category extracted from
the LULC layer.

While showing the animation, the user can click on a particular
pixel and get a graphic representation of the complete series and
compare the shape of the curve at different points (see Figure
15 and Figure 16). In particular, we can see the opposite
behaviour in the NDVI for the points A and B probably related
to different agricultural practices.

Figure 15. Time series video for the Sentinel-2 NDVI on the

small area of the terrestrial cultivated LULC category.

Figure 16. Clicking on particular points, a graphic on the

evolution of the NDVI for the whole series can be derived. In
this case, the comparison is among points A and B.

4. LIMITATIONS

The main limitation of this approach is that the operations
described before are done at the screen resolution. In practice,
this means that you can only cover a big area at a coarse
resolution. This has no impact in the visualization, since the
data cannot be presented at a better resolution than the one in

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4, 2018
ISPRS TC IV Mid-term Symposium “3D Spatial Information Science – The Engine of Change”, 1–5 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-403-2018 | © Authors 2018. CC BY 4.0 License.

408

the screen, but can have impact in other operations. Indeed, the
exact values of the statistical calculation of the area of each
class represented in histograms and pies depend on the cell size
and the generalization algorithm done by the server when
responding to the client.

The second limitation is due to the JavaScript execution engine
speed. JavaScript was initially intended to deal with simple
tasks in the client such as validation of HTML FORM user
inputs to avoid unnecessary communication to the server of
FORM inputs that are clearly wrong and can be filtered out.
With time, both JavaScript language definition and JavaScript
execution engines have been evolving. The language rapidly
evolved into a much more complete and engines became much
faster. Soon it was clear that it was possible to encode
sophisticated applications in JavaScript (Bradenbaugh J, 1999).
Still there are characteristics of the language that makes it
difficult to optimize such as the absence of numerical data types
that are related with the CPU architectures and that are common
on other languages (such as long integers and double precision
floats) (Wagner, 2017). In our case, the first implementation of
the routine that takes a binary array and converts it in the
numerical RGBA values array needed for the canvas rendering
was unacceptably slow taking 5-6 seconds to process a window
of 1000x800. We did considerable progress by optimizing the
code and we were able to reduce time below 1 second in
applying a colour-map and 1-2 seconds in generating an RGB
combination from 3 binary arrays. For the moment, the
performance is acceptable for real time visualization but there
are two competing factors that might affect the future adoption
of the presented approach: Desktop screens are becoming
bigger and pixel size in mobile phone screens is decreasing fast.
In the near future, map windows will require bigger number of
pixels to be processed, making the described conversion slower.
At the same time, JavaScript engines are becoming better and
could compensate the effect.

There is also another technical limitation that is originated by
the web browser. In order for the JavaScript to be able to read
and operate with the array buffer, both the client and the server
need to be in the same server. If they are from different servers,
the web browser prevents the data from being read for security
reasons. Cross Origin Resource Sharing (CORS) offers an
escape to this situation but it is up to the server to implement it.
This is a limitation that is not present in classical WMS clients
showing PNGs and could prevent to overlay array buffers from
different origins conditioning the interoperability of the whole
approach. That is why is especially important that CORS
solutions are applied in the server that implements the WMS
array buffer extension. The solution consists on the server
returning the right headers Access-Control-Allow-Origin and
Access-Control-Allow-Methods. Our implementation of the
server takes care of CORS to allow other clients to be able to
interoperate with our server data using the approach presented
in this paper.

5. CONCLUSIONS

We propose a new way of implementing map browsers on the
web, based on some new characteristics of HTML5 such as
canvas and array buffers. This solution permits to move some
functionality to the client side reducing the number of
interactions with the server and giving more analytical tools to
the user. The solution focuses on the requirements of data that
is continuous describing a given area, such as the remote

sensing raw data and higher level products, including both
categorical and continuous values.

The proposed solution is still based on the interoperable and
mature OGC WMS service and only requires a reinterpretation
of the outputs expected from a GetMap request. In the future,
this could be described in a small extension of the current
version of WMS describing how to provide arrays of binary
data. In practice, any WMS service could adopt the proposed
solution with only small modifications.

Results show that JavaScript is able to perform fast enough to
process the necessary information to populate the canvas
RGBA array that is rendered in the screen and to permit a fluid
interaction with the user. The solution gives the user much more
flexibility in the way colour-maps and RGB combination can be
defined and, in addition, the client can offer a new set of
operations that were not possible with a classical
implementation of a WMS client. This solution provides a
much more convenient client side implementation of the point
query operation that replaces and removes the need to send a
GetFeatureInfo request for each pixel queried.

Doing analysis at screen resolution has advantages and
disadvantages. The main advantage is the minimization of the
necessary bandwidth while maintaining visual quality and
providing some fast analytical tools for exploring the data. The
main drawback is that only a subset of analytical operations is
meaningful at screen resolution. Even if it is meaningful, the
exact result may vary with the "zoom level" of the data
presented and should be interpreted with caution. The role of
such analysis should be exploratory and final results should be
confirmed by downloading the data at full resolution and
repeating them with desktop remote sending or GIS tools.

ACKNOWLEDGEMENTS

This work was supported by the European Union's Horizon
2020 Programme [ECOPotential (641762-2)]; Spanish Ministry
of Economy and Competitiveness [ACAPI (CGL2015-69888-P
MINECO/FEDER)]. Xavier Pons is recipient of an ICREA
Academia Excellence in Research Grant (2016–2020).

REFERENCES

Blower J. D., Gemmell A. L., Griffiths G.D., Haines K.,
Santokhee A., and Yang X., 2013, A Web Map Service
implementation for the visualization of multidimensional
gridded environmental data. Environmental Modelling and
Software 47, pp. 218-224

Bradenbaugh J., 1999, JavaScript Application Cookbook by
Paperback Book, O'Reilly Media, Incorporated ISBN:
1565925777

Davies D.K., Ilavajhala S., Wong M.M., and Justice C.O., 2009,
Fire Information for Resource Management System; Archiving
and Distributing MODIS Active Fire Data, IEEE Transactions
on Geoscience and Remote Sensing, 47 (1) pp. 72-79

de la Beaujardiere, J. (2004) OGC Web Map Service (WMS)
Interface, Ver.1.3.0, OGC 03-109r1. Available from:
http://portal.opengis.org/files/?artifact_id=5316.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4, 2018
ISPRS TC IV Mid-term Symposium “3D Spatial Information Science – The Engine of Change”, 1–5 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-403-2018 | © Authors 2018. CC BY 4.0 License.

409

Di L., Yang W., Deng M. and Deng D., 2002, Interoperable
Access of Remote Sensing Data Through NWGISS. IEEE
International Geoscience and Remote Sensing Symposium.
DOI: 10.1109/IGARSS.2002.1025004

Andrew J., Hanse A. J. and DeFries, 2007, Ecological
Mechanisms Linking Protected Areas to Surrounding Lands.
Ecological Applications, 17, 4, pp. 974–988.

Huete A. R., 1988, A soil-adjusted vegetation index (SAVI),
Remote Sensing of Environment, 25, 3, pp. 295-309.

Li W., Yang C. and Yang C, 2010, An active crawler for
discovering geospatial Web services and their distribution
pattern – A case study of OGC Web Map Service, International
Journal of Geographical Information Science, 24:8, 1127-1147,
DOI: 10.1080/13658810903514172

Lopez-Pellicer F. J., Béjar R., Florczyk A. J., Muro-Medrano P.
R., and Zarazaga-Soria F. J., 2011, A Review of the
Implementation of OGC Web Services across Europe,
International Journal of Spatial Data Infrastructures Research,
6, pp. 168-186.

Miller C. C., 2006, A Beast in the Field; The Google Maps
Mashup as GIS_2, Cartographica, 41 (3) pp. pp. 187-199.

Pons, X., 2002, MiraMon. Sistema d'Informació Geogràfica i
software de Teledetecció Centre de Recerca Ecològica i
Aplicacions Forestals, CREAF. Bellaterra. ISBN: 84-931323-4-
9,

Wagner L., 2017, WebAssembly Will Finally Let You Run
High-Performance Applications in Your Browser. IEEE
Spectrum

Warmerdam F., 2008, The Geospatial Data Abstraction Library,
pp 87-104. In: Hall G.B., Leahy M.G. (eds) Open Source
Approaches in Spatial Data Handling. Advances in Geographic
Information Science, Vol 2. Springer, Berlin, Heidelberg

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-4, 2018
ISPRS TC IV Mid-term Symposium “3D Spatial Information Science – The Engine of Change”, 1–5 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed.
https://doi.org/10.5194/isprs-archives-XLII-4-403-2018 | © Authors 2018. CC BY 4.0 License.

410

