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ABSTRACT: 

 

This paper discusses a current issue for several experimental science disciplines, which is the Big Data Problem (BDP). This research 

study focused on light intensity and ranging (LiDAR) datasets, which are collected for modelling spatial features found on the surface 

of the earth. Currently, LiDAR datasets are known to be extremely redundant for many applications. Using a formula that allows for 

calculating the variance of the target-induced error (so-called T-error) caused by the discretisation and quantisation of a 3D surface as 

a criterion for the quantitative assessment of the fidelity of a model, the use of a Q-tree-based split of the surface is proposed for cells 

of various sizes depending on the fidelity requirements. A LiDAR dataset representing a 1 km x 1 km terrain surface tile using 

approximately 12 x 106 points was used during the experiments. The initial LiDAR dataset was used to produce a digital terrain model 

(DTM) at a 0.5 m x 0.5 m resolution, which was used as a reference model. Subsequently, the initial LiDAR dataset was decimated at 

various rates, and the resulting DTMs were compared with the reference model. The Q-tree based data structure was utilised to illustrate 

that the Q-tree approach allows for the production of DTMs at a ‘controlled’ fidelity with a considerable reduction in data volume. 

 

 

1. INTRODUCTION 

The Big Data Problem (BDP) is an unwelcome by-product of the 

acquisition of spatial data at continuously increasing spatial, 

spectral radiometric and temporal resolution levels (e.g., Jianping 

et al. 2009). This trend in spatial data acquisition provides several 

advantages that allow for an increased level of fidelity of 

geospatial models. One way to reduce the impact of the BDP on 

business and science fields is to use the precise amount of data 

that is necessary for a given task, perhaps by observing a certain 

‘safety margin’. This is only possible if a criterion exists to 

effectively translate the assumed fidelity or accuracy level into a 

procedure to select a subset of data required for the task.     

 

Technology developments in surveying equipment, including 

laser scanners (LiDAR), have increased the accuracy of captured 

data and have reduced the time required for the acquisition of 

data. This allows for an increased fidelity of reality modelling; 

however, the volume of data produced by the state-of-the-art 

equipment significantly contributes to the increasing challenge 

related to data storage and processing time as well as to the 

management and dissemination of data, which is known as the 

BDP. 

 

One way to mitigate the BDP is to reduce the volume of the data 

used for a given purpose. A ‘smart’ approach to reducing or 

completely removing the redundancy of geodata is to set a 

quantitative criterion, which helps identify a subset of the entire 

dataset that would be sufficient to achieve a given goal or to 

create a product at an assumed fidelity level. 

 

In this paper, the redundancy issue related to LiDAR datasets is 

examined. The starting point is the observation that to estimate a 

slope of a surface of a given non-divisible area (a unit), only three 

LiDAR points are required; however, a LiDAR dataset could 

store 10 or even more points to represent one square metre of a 

surface. Therefore, the redundancy in the considered case is at 

least 70%. 

 

A simulation experiment was conducted, which was designed to 

identify differences between: a) Digital Terrain Models (DTM)s, 

which were derived by decimation at arbitrary rates from the 

original LiDAR dataset, and b) datasets, which were decimated 

using a Q-tree 2D space partitioning algorithm. The resulting 

DTMs were compared with the DTM derived from the full 

resolution LiDAR dataset. 

  

In the ‘a’ case, the decimation was performed by randomly 

selecting LiDAR points without considering the geometric 

properties of the modelled surface. In the ‘b’ case, the fixed-σ 

criterion (Becek, 2012) was used to perform the Q-tree 

partitioning of the LiDAR dataset and to derive the final DTM as 

an array of pixels of various sizes, which were multipliers of the 

smallest pixel (0.5 m x 0.5 m in this case). 

 

The results of the comparison of the DTMs derived using both 

methods clearly indicated that the Q-tree approach implemented 

with the fixed-σ criterion performs much better in terms of the 

volume of data needed to represent a terrain. An unquestionable 

attribute of the Q-tree approach is that it can be fully controlled 

by the user in terms of setting a level of accuracy for the final 

DTM. One drawback of the Q-tree is that contemporary hardware 

and software solutions implicitly assume that data, e.g. image 

data, are stored as an array of pixels of equal dimensions. This 

simply means that the Q-tree to be shown on a screen must be 

converted into pixels of the same size. 

 

2. MATERIALS AND METHOD 

2.1 Test Area 

As a test site, a topographically diverse area was selected in 

which the elevation varied from 1 m to 80 m above mean sea 

level (amsl). Both flat and hilly terrain features are represented 

by the selected sample. Narrow, both natural and anthropogenic, 

channels were included in the sample. Figure 1 shows a 
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hillshadow picture of a DTM of the 1 km x 1 km area of interest 

(AOI) selected for the study. 

 

Figure 1. Hillshadow DTM of the AOI 

2.2 Data 

The primary data used for this experiment were captured during 

LiDAR and aerial photography acquisition, which took place in 

Brunei Darussalam on 18 March 2018. The aim of the LiDAR 

data capture acquisition was to study the features of the urban 

structure, including vegetation and water bodies. The designated 

LiDAR point resolution was >10 ptm-2, and orthophoto with 

pixel size of 5 cm. A RIEGL LMS-Q680i LiDAR Scanner was 

used for the acquisition. This instrument is a full waveform 

instrument, allowing for capturing an unlimited number of 

returns. The instrument is able to scan at 266,000 pts-1, which 

translates to 200 lines-1. The ranging accuracy of the instrument 

is 0.02 m (one sigma). The IGI GPS/IMU AeroControl II system 

was used to provide the navigation and orientation parameters. 

The acquisition was performed on a DA42 MPP aircraft during 

good weather conditions from a flying altitude of 600 m above 

the terrain. 

 

The LiDAR dataset was classified using the TerraSolid software 

package. The classes of the LiDAR points and some statistics for 

the identified classes of points are shown in Table 1. 

 

Class No of pt. 
Dens. 
(ptm-2) 

Min 

Z 

(m) 

Med. 

Z 

(m) 

Max 

Z 

(m) 

Ground 2,336,142 2.5 0.99 6.43 79.3 

Low veg 1,012,185 1.0 1.07 8.14 79.2 

Med veg 824,548 0.82 1.42 16.52 81.1 

High veg 7,504,178 7.5 3.15 36.08 149.3 

Buildings 1,013,509 1 3.56 15.72 87.1 

Total 12,690,562 12.7    

Table 1. LiDAR point statistics used during the experiment 

The 0.5 m x 0.5 m lattice DTM was produced by dividing the 

triangulated ground class points only. 

  

2.3 Method 

2.3.1 Vertical Accuracy Model for a DTM 

 

A short outline of the vertical accuracy model for a DTM, which 

was essential to this research, is provided below (Becek, 2008).  

 

The variance of the pixel error of a DTM can be written as the 

sum of variances of three statistically independent error sources 

as follows: 

 

𝜎𝐷𝐸𝑀
2 = 𝜎𝐼

2 + 𝜎𝐸
2 + 𝜎𝑇

2  (1) 

 

where  𝜎𝐼
2, 𝜎𝐸

2 𝑎𝑛𝑑 𝜎𝑇
2 = variance of the instrument - (I), 

 environment - (E) and target-induced error, 

 respectively. 

 

The I-error occurred due to the instrument and method used to 

capture the data based on which the DTM/DSM in question was 

captured. The E-error occurred due to the environmental 

conditions/parameters that adversely impact the function of the 

instrument as well as other equipment during data acquisition. 

Both components of the I- and E-error sources usually remain 

quite stable, especially when the time span of the data capture is 

relatively short. 

 

The T-error occurred due to the geometric properties of the 

terrain surface and the assumed pixel size of the DTM/DSM. The 

variance of the T-error can be calculated using Equation 2 

(Becek, 2008): 

 

𝜎𝑇
2 =

𝑑2𝑡𝑔2(𝑠)

12
    (2) 

 

where  d = pixel size 

 s = slope. 

 

As terrain topography varies from pixel to pixel, which is 

reflected in Equation 2 by slope s, the T-error varies accordingly. 

The magnitude of the T-error is also controlled by pixel size d: a 

larger pixel size enhances the T-error variance. 

 

Equation 2 and the conclusions regarding the variable that 

controlled the magnitude of the T-error level formed the basis of 

the proposed approach to control the redundancy of digital data, 

and in particular, the redundancy of the LiDAR data representing 

the surface of the terrain. 

 

2.3.1 Q-tree Data Structure  

 

One of the schemes used to partition a 2D space is known as a 

quad tree, or a Q-tree (Finkel & Bentley 1974, Samet 1984, de 

Berg et al. 2008). An algorithm that produces a Q-tree recursively 

subdivides a 2D space into four quadrants, or regions, also known 

as leaves. The subdivision of leaves continues until the smallest 

size of a leaf (assumed) is reached or a space covered by a leaf 

satisfies a certain criterion. For this project, Equation 2 was used 

as a criterion, which translated the slope of the terrain within a 

leaf and the leaf size with the accuracy of the pixel elevation of a 

DTM (Becek, 2008, 2012, 2014). 

 

2.3.2 The Algorithm 

 

To conduct this study, a slightly different algorithm for 

generating a Q-tree was used. Rather than dividing the large 

leaves into four smaller leaves, a reverse, or ‘bottom up’, 

procedure was implemented. The major steps and the most 

important computer implementation details of the algorithm are 

as follows: 
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1. The AOI was subdivided into 220 cells (1,048,576), 

which translates to 0.98 m for one cell on the ground. 

2. The elevations of the LiDAR points within each cell 

were used to estimate the slope. 

3. Using Equation 2, the variance of the T-error was 

calculated. 

4. The T-error variance was compared with the user-

defined vertical accuracy level (expressed as the 

variance of a DTM’s vertical error). Five accuracy 

levels were selected for the simulation experiment. 

5. If the T-error was smaller than the given vertical 

accuracy level, four leaves were merged together to 

form a larger leaf. This step is shown in Figure 2. 

6. If the T-error estimated for a particular leaf was equal 

to or larger than the threshold, the leaf was accepted as 

the final leaf. 

The computer implementation of the algorithm was 

performed using the 64-bit version of Python script. 

 

 

Figure 2. Leaf Merging Operation 

To evaluate the validity of the proposed Q-tree partitioning of the 

LiDAR dataset procedure, five versions of the original LiDAR 

dataset were produced, and then corresponding DTMs were 

developed at the same resolution (0.5 m x 0.5 m). Each DTM was 

compared with the reference DTM (produced from the full 

resolution of the LiDAR dataset). 

 

Both volume reduction procedures, i.e. the decimation- and Q-

tree-based procedures, were compared, and conclusions were 

drawn. 

 

3. RESULTS 

The decimation rate was expressed in terms of the number of 

LiDAR points omitted from the full resolution dataset. For 

example, decimation rate = 10 means that every 10th point was 

taken for the decimated dataset. Because the point density of the 

ground class was 2.5 ptm-2, the arbitrary selected decimation 

rates were 10, 50, 100, 200 and 1000. These decimation rates 

translated to 0.25, 0.05, 0.025, 0.0125 and 0.0025 ptm-2, 

respectively.  

 

Table 2 lists the basic statistics of the comparison of the 

decimated DTMs at specific arbitrary selected rates. For all cases, 

the decimation did not introduce any bias to the decimated 

models (Mean dZ was close to 0 m) except the doubted reading 

for the 1000 decimation rate. The standard deviation of the mean 

dZ increased according to the increased decimation rate, as 

expected. 

 

No of 

pixels/ 

decimation 

rate 

Min dZ 

(m) 

Max dZ 

(m) 

Mean dZ 

(m) 

Overall 

Std dZ 

(m) 

2336/1000 -38.21 25.68 -0.24 3.21 

11680/200 -13.88 11.11 -0.1 1.48 

23360/100 -10.57 10.23 -0.06 1.08 

46723/50 -8.94 9.82 0.01 0.80 

233600/10 -6.33 5.44 0.01 0.36 

Table 2. Results of the comparison of the decimated DTMs vs. 

full resolution DTMs 

 

In the next step, five versions of the Q-tree for the DTMs were 

derived, assuming the following arbitrary selected accuracy 

levels (the fixed-σ criterion): 0.36, 0.8, 1.08, 1.48 and 3.21 m. 

These Q-tree DTMs were compared to the full resolution DTMs. 

Table 3 lists the basic statistics of the comparisons for each DTM 

identified according to the number of cells. 

 

Number of 

cells 

Min 

dZ 

(m) 

Max 

dZ 

(m) 

Mean 

dZ 

(m) 

Overall 

Std dZ 

(m) 

2206 -3.1 3.6 -0.04 0.89 

10711 -1.7 1.9 0.0 0.57 

17652 -2.5 2.6 0.0 0.49 

27380 -1.8 1.7 0.0 0.42 

69857 -0.8 0.9 -0.01 0.29 

Table 3. Results of the comparisons of Q-tree DTMs vs. full 

resolution DTMs 

 

Some of the data provided in Tables 2 and 3 were used to produce 

Figure 3, which shows a relationship between the standard 

deviation of the mean difference (or the accuracy of the DTM) 

vs. the number of cells/pixels used to represent the DTM. 

Corresponding curves for both types of DTM representations are 

shown. 

 
Figure 3. Experimental relationship between the number of pixels 

used to represent DTMs vs. the standard deviation of 

the mean elevation difference between the decimated 

and reference DTMs 
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Figures 4a and 4b illustrate hillshadow representations of the full 

resolution DTMs overlaid with the Q-tree with the lowest and 

highest number of cells, respectively. 

 

 

a) 

 

b) 

Figure 4. Hillshadow DTM Overlaid with the Q-Tree Containing 

2206 cells a) and 69,857 cells b) 

 

4. CONCLUSIONS 

The aim of this simulation experiment was to propose a potential 

solution to the BDP in the context of geodata, particularly in the 

context of datasets used to store information related to 

topography. The investigated approach was Q-tree surface 

partitioning with a fixed-σ criterion. The results clearly indicated 

that the Q-tree significantly outperforms the random data 

decimation approach in terms of the number of pixels needed to 

achieve a given accuracy level of the resulting DTM as well as in 

terms of the fidelity of the results. The latter is clearly illustrated 

by Figure 4b: the narrow topography features, presumably 

channels, streams, etc., that are associated with the larger slopes 

are covered by much smaller cells. The current implementation 

of Q-tree partitioning with the fixed-σ criterion does not 

automatically merge neighbouring leaves belonging to different 

branches of the Q-tree even if the fixed-σ condition is satisfied. 

This result warrants further studies regarding Q-tree 

representations of geodata not only related to topography but also 

to other types of geodata. 
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