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ABSTRACT: 

 

Since their inception in the middle of the twentieth century, Digital Terrain Models (DTMs) have played an important role in many 

fields and applications that are used by geospatial professionals, ranging from commercial companies to government agencies. Thus, 

both the scientific community and the industry have introduced many methods and technologies for DTM generation and data handling. 

These resulted in a high volume and variety of DTM databases, each having different coverage and data-characteristics, such as 

accuracy, resolution, level-of-detail - amongst others. These various factors can cause a dilemma for scientists, mappers, and engineers 

that now have to choose a DTM to work with, let alone if several of these representations exist for a specified area. Traditionally, 

researchers tackled this problem by using only one DTM (e.g., the most accurate or detailed one), and only rarely tried to implement 

data fusion approaches, combining several DTMs into one cohesive unit. Although to some extent this was successful in reducing 

errors and improving the overall integrated DTM accuracy, two prominent problems are still scarcely addressed. The first is that the 

horizontal datum distortions and discrepancies between the DTMs are mostly ignored, with only the height dimension taken into 

account, even though in most cases these are evident. The second is that most approaches operate on a global scale, and thus do not 

address the more localized variations and discrepancies that are presented in the different DTMs. Both problems affect the resulting 

integrated DTM quality, which retains these unresolved distortions and discrepancies, resulting in a representation that is to some 

extent inferior and ambiguous. In order to tackle this, we propose an image based fusion approach: using the SIFT algorithm for 

matching and registration of the different representations, alongside localized morphing. Implementing the proposed approach and 

algorithms on various DTMs, the results are promising, with the capacity correctly geospatially align the DTMs, thus reducing the 

mean height difference variance between the databases to close to zero, as well as reducing the standard deviation between them by 

more than 30%. 

 

1. BACKGROUND 

Digital Terrain Model (DTM) is a digital representation of the 

bare earth used for a variety of processes and applications, such 

as GIS, city modelling, land use studies, drainage control, 

geology – to name a few. Since it is a digital model, a discrete 

one, one of the main goals is that it will be “realistic” (in terms 

of similarity, precision, and accuracy), i.e., serve as a reduced – 

nonetheless reliable and accurate - representation of our reality 

(Meyer, 2012). 

 

In an earlier inception, DTMs were generated using scanning and 

digitization of contour lines in existing topographic maps. As a 

result, the accuracies of these models were tied to both the source 

data and the digitization process. Nowadays, modern data 

acquisition technologies have made a vast evolution, with 

techniques like laser scanners, radar, and photogrammetry, which 

can provide an improvement in terms of accuracy, resolution, and 

coverage, i.e., significantly improve the modelling stage. Today, 

large coverage models exist, having high quality, sometimes 

covering the entire earth, such as SRTM (Shuttle Radar 

Topography Mission), ASTER (Advanced Spaceborne Thermal 

Emission and Reflection Radiometer) and WorldDEM. 

 

The fact that several different models exist for the same 

(coverage) area, possesses a dilemma for experts and authorities 

making use of DTMs, whereas mostly they will have to choose a 

single DTM to work with, overlooking the other sources. In most 

cases, the decision is made based on a direct comparison between 

the databases and their characteristics, while choosing the most 

up-to-date or accurate source. This, however, will not always be 

the appropriate and suitable decision, as each DTM has its own 

characteristics, thus important and relevant information might be 

overlooked by choosing a single DTM, both on a global and local 

level. This fact intensifies in cases where it is not an easy task to 

choose the most ‘appropriate’ DTM to use since all DTMs are 

relevant in terms of up-to-date, accuracy, and resolution. Figure 

1 depicts an example of an area represented by two DTMs, 

showing a different representation and characterization of the 

topography. 

 

  
Figure 1. Shaded relief representation of the same area by two 

distinctive DTM sources: SRTM (left) and Survey of Israel 

(right). SRTM presents a more rugged terrain, having more 

detailed features; however, it also has some data-holes. 

 

Alternatively, one can suggest an optimized solution that makes 

use of the various available models (sources). However, as each 

source presents different types of detailing, scale, resolution, and 

accuracy (both horizontal and vertical, as well as local) – such a 

solution is not a simple task. An optimized solution can suggest 

the use of all the models (data) simultaneously in the form of 

DTM manipulation, such as data fusion, merging, and rubber 

shitting. Such a solution aims to take the various existing DTMs, 
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and use the cumulative data to present it as one cohesive 

continuous model (e.g., Katzil and Doytsher, 2005; Dalyot, 

2010), with the aim to improve the overall quality and 

representation of the resulting fused DTM (when compared to 

any of the DTMs) by correctly using and modeling the existing 

data from the multiple sources. 

 

Several DTM fusion techniques have been proposed. Some 

involve naive techniques, such as data gap filling (Schultz et al., 

2002), and the weighted averaging of input elevations, based on: 

global measures of error (Roth et al. 2002); height error maps 

from the DTM generation process (Reinartz et al. 2005); terrain 

derivatives (Papasaika et al. 2009); or combinations thereof. The 

weighted technique can also reduce gaps in DTMs (Deo et al. 

2015). Other more sophisticated techniques are also proposed, 

involving the use of other methods, such as sparse representations 

(Papasaika et al. 2011), frequency domain filtering (Honikel, 

1998; Crosetto and Aragues, 2000; Karkee et al., 2008), self-

consistency in the generation process (Schultz et al., 1999, 2002; 

Stolle et al. 2005), or multi-scale stochastic smoothing (Slatton 

et al. 2002). 

 

Still, none of the above techniques consider the horizontal 

differences between the DTMs, thus assuming that there are no 

planar data distortions between the databases. In most situations, 

however, this is not the case, as a DTM acquired from one source 

will not only show discrepancies in the height values to a DTM 

from another source but also show horizontal discrepancies. 

Accordingly, a planar (2D) registration of the different sources 

should take place prior to fusion, introducing more complex 

challenges to the problem, as distortions between the DTMs are 

evident not only on a global level but also on a local one, which 

are needed to be addressed in order to acquire reliable and robust 

integration implementation and accurate results. 

 

The more classical approach to registration is a vector-based 

approach, also known as geometric registration. This approach 

aligns two point datasets using their geometric characteristics. 

Some methods in this family include the Hausdorff distance 

(Huttenlocher et al., 1993; Dubuisson and Jain, 1994), The 

Iterative Closest Point (ICP) algorithm (Besl and McKay, 1992; 

Eggert and Dalyot, 2012), and The Coherent Point Drift (CPD) 

algorithm (Myronenko and Song, 2010). All these approaches, 

however, are very susceptible to noise and outliers (Ben Haim et 

al., 2015). 

 

A different approach is a raster-based registration, which applies 

image-processing techniques for solving dataset registration 

problems. In this approach, a grayscale image represents the 

DTM where each pixel value is the height data. For point 

matching, the most prominent method is the Scale Invariant 

Feature Transform (SIFT) (Lowe, 1999; Lowe, 2004) and 

Speeded-Up Robust Feature (SURF) (Bay et al., 2006). The main 

problem with the image transformation approach is that the 

transformation occurs from one image to another, while in the 

case of DTMs, we aim to find an in-between state that represents 

both datasets simultaneously. One interesting approach to this is 

image morphing, where an initial image is transformed 

seamlessly into another, where each step in the process is defined 

in advance and calculated. Techniques in this field include mesh 

warping (Wolberg, 1990), field morphing (Beier and Neely, 

1992), radial basis functions (Arad et al., 1994), thin plate splines 

(Lee et al., 1994; Litwinowicz and Williams 1994), energy 

minimization (Lee et al., 1996), and multilevel free-form 

deformations (Lee et al., 1995). 

 

In this research, we propose a method for the transformation of 

one DTM to the other as a first stage to data integration, using 

image processing tools, namely SIFT and image morphing. 

Registration and matching are achieved on a local level to 

monitor and quantify local discrepancies between the DTMs, 

while still ensuring that the models remain continuous and intact 

when fused. 

 

2. METHODOLOGY 

As this research focuses on grid type datasets (i.e., raster format), 

image processing approaches are investigated and analyzed. As 

such, the following four phase workflow is conducted: (1) 

interest point detection, (2) point matching, (3) TIN construction, 

and (4) DTM morphing. 

 

2.1 Interest Points Detection 

A DTM grid data is a datatype constructed from points with 

regular intervals between them, with each point having a certain 

height data attached to it. This type of data is equivalent to a 

greyscale image data, with a certain pixel size that represents the 

intervals and a pixel color that represents the height. Therefore, 

the tool chosen for interest point detection is the Scale-Invariant 

Feature Transform (SIFT). The SIFT algorithm uses a Difference 

of Gaussian (DoG) calculation to detect key points within an 

image. The DoG method takes an image and resamples it to 

multiple scales, called octaves. For each of those octaves two or 

more Gaussian filters are calculated using different σ values. 

Following the DoG process, a local extremum is detected by 

comparing a pixel in an image to its 8 neighbors, as well as to the 

9 closest pixels on both the scale below and the scale above. In 

addition, a final test is performed on the detected key point - edge 

removal using a 2x2 Hessian matrix. This edge removal is 

important as the DoG process is very sensitive to edges, and can 

lead to a high noise in the process if not preliminary dealt with. 

  

2.2 Point Matching 

Following the extraction of interest points from two datasets, we 

aim to match homologous interest points that exist in both 

datasets; henceforth, a point matching process needs to take 

place. In order to find the corresponding point-pairs, the point 

descriptor result from the SIFT algorithm is used. This descriptor 

is calculated using two steps. In the first step, an orientation is 

assigned to each key point using the gradient calculation from the 

neighboring points; this gives each point a description for both 

scale and direction. The second step creates a more robust 

description that takes into account not only the point itself, but 

also its neighborhood. A 16x16 window is used around the point, 

with each point in that window also assigned an orientation. In 

addition, a 16 sub-blocks of 4x4 are picked, with an orientation 

calculation of each sub-block. The final result is a 128 bin 

descriptor. 

 

It is important to note that even after the SIFT matching, outliers 

might still exist. As such, an outlier elimination process is 

implemented. This process takes into account the fact that 

different DTMs of the same area should have almost the same 

orientation value, and that the Euclidean distance between 

corresponding point-pair should be similar to the one calculated 

for all pairs. Thus, based on a statistical calculation (average and 

standard deviation), in case a Euclidean distance of a certain 

point-pair is not in the acceptable statistical range, this point-pair 

is considered an outlier and is removed. After removal, a new 

average value is calculated, and the process continues until no 

outliers are detected. 
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2.3 TIN Construction 

After finding corresponding point-pairs in the two DTM 

databases, a Triangular Irregular Network (TIN) is constructed 

for both datasets. These triangles represent a local area in the 

data, which will allow the handling of localized areas within the 

DTMs. Thus, instead of handling the entire surface by a single 

averaged matching, we divide it to multiple intendent matched 

surfaces. The TIN itself is constructed using the Delaunay 

Triangulation (DT) method. 

 

It is important that both TINs in the two DTMs are identical, i.e., 

each triangle-surface is constructed relying on the same interest 

points (required for the morphing stage in Section 2.4), such that 

a single TIN is constructed for one of the DTMs, and its 

topological structure is copied to the other one. In addition, in 

order to have a TIN structure that covers the entire coverage area 

represented in the DTMs, the corner points in both DTMs are 

artificially chosen as point-pairs. This, however, will affect the 

accuracy of the process alongside the databases’ edges, but is 

important to keep to handle the complete data represented in the 

DTMs.  

 

Another important aspect of this process that needs to be taken 

into consideration is the area of a single triangle in the TIN 

structure. In case a small triangle exists in the TIN structure, it 

means that relatively close interest points exist, such that a small 

triangle can be considered as redundant, introducing noise to the 

overall process. Henceforth, a supplementary process is 

implemented designed to eliminate small triangles, where a 

minimum threshold area value is set. This value is a function of 

two parameters, the resolution of the DTM and the density of the 

interest points found; the higher the resolution is the smaller the 

area value allowed will be. The process itself inspect each 

triangle in the set, and when a triangle is found that does not meet 

the threshold, its vertices are removed from the set and are 

replaced with a new point calculated based on the vertices’ 

centroid, and a new DT calculation takes place, as depicted in 

Figure 2. This process will continue until no more triangles are 

found that meet the requirement. 

 

2.4 DTM Morphing 

The morphing process consists of creating a local transformation 

between the two databases that hinges on matching the TIN of 

one database, to the TIN on the second database. Basically 

meaning that a point that exists in a certain triangle in one DTM 

is transformed to its new location in the corresponding triangle in 

the second DTM database using a local transformation between 

the triangles, as depicted in Figure 3. To define the new location, 

an affine transformation is calculated for each triangle that relies 

on the vertices' coordinate values, as depicted in Equation 1. 

 

D S S

D S S

X aX bY c

Y dX eY f

  

  
 (1) 

where XD, YD is the destination coordinates, XS, YS is the source 

coordinates, and a, b, c, d, e, f are the local transformation 

parameters. The values of the six unknown parameters are 

calculated using an equation system consisting of six equations, 

two for each point-pairs that define the corresponding triangles. 

 

 

 
Figure 2: An example of a small (redundant) triangle removal: 

the triangle in red (top) is smaller than the predefined threshold, 

and thus is removed, where its vertices’ centroid is defined as a 

new point in the new DT process (bottom). 

 
Figure 3. A transformation example between two corresponding 

triangles: a point in the left triangle is locally transformed to its 

corresponding position on the right triangle. 

 

This triangle transformation process is akin to a rubber sheeting 

process found in different GIS tools. The major difference here 

is that the height value that is different for both triangles’ location 

is also taken into consideration, and is calculated using local 

interpolation within the triangle, depicted in Equation 2. 

 

31 2

1 2 3

1 2 3

1 1 1i

PP P

P

HH H

d d d
H

d d d

 



 

 (2) 

where HP1, HP2, HP3 are the heights of the triangle vertices, and d1, 

d2, d3 are the Euclidean distances from the corresponding vertices 

to point Pi. After calculating the heights of the point in both 

triangles, the bias is calculated as the difference between them. 

Thus, the final point height in the destination will be the height 

of the source point plus the bias, as depicted in equation 3. This 
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is calculated for all DTM points, achieving a more accurate local 

discrepancies monitoring, as opposed to a global one. 

 

f SP PH H Bias   (3) 

The main idea behind this local morphing process is the creation 

of a seamless transition between two DTMs, which is a first stage 

before integration, while maintaining the continuous structure of 

both DTMs involved in the process. 

 

3. EXPERIMENTAL RESULTS 

An area covering close to 15  sq. km in a mountainous area in 

northern Israel was analyzed. To evaluate our methodology, two 

DTMs were used for that area, one from the SoI (Survey of 

Israel), and one from NASA’s SRTM. Both DTMs are depicted 

in Figure 4. SIFT automatically detected 48 interest points in the 

SoI DTM, and 50 in the SRTM DTM, with 38 point-pairs. The 

SIFT results are depicted for both DTMs in Figure 5. After 

eliminating outliers and duplicates, a total of 31 point-pairs 

remained for the TIN process, which calculated 64 triangles. A 

100 sq. m triangle area threshold was used to eliminate redundant 

data. 

 

Based on the above, the comprehensive geospatial local 

morphing process was implemented, transforming points from 

one DTM to their corresponding and accurate location in the 

other. Table 1 and Table 2 depict the statistical results for the 

height difference values per location for the entire DTMs. The 

Mean value of the height difference calculated for more than 

20,000 points was reduced to almost zero, where both the RMSE 

and STDEV values were reduced by close to half. This means 

that the proposed methodology is able to accurately align the 

DTMs, and thus can be used to integrate both DTMs. Observing 

the values in the tables, it is clear that the process correctly 

identified the local geospatial correspondence(s) of both DTMs, 

precisely modeling any local discrepancies exists between them, 

accurately positioning them geospatially. This is presented in 

Figure 6, showing that in general the large height discrepancies 

(in white) are removed after transformation – the right image 

(after morphing) depicts much less white areas, when compared 

to the left image (before transformation). The white areas that 

still remain are on the borders, and are the result of the corner 

points that are artificial point-pairs. 

 

Another area from both databases was analyzed with the same 

coverage area, depicted in Figure 7. SIFT has detected 58 interest 

points in the SoI database and 80 in the SRTM database, and out 

of those 43 matched point-pairs were found. After eliminating 

outliers and duplicates, a total of 38 pairs remained for the TIN 

process. A 50 sq. m triangle area threshold was used. Table 3 and 

Table 4 depict the statistical results for the height difference 

values per location for the entire DTMs. These results are not as 

good as the previous area due to higher signal-to-noise ratio. For 

the RMSE and STDEV values we can see that the initial values 

are lower than the previous area, but the final improvement was 

not as effective, which is a result of the transformation not being 

as accurate due to the existing noise. The SRTM database in 

particular was noisier than the SOI database, as can be seen by 

the amount of interest points found in the SIFT process, as 

opposed to the SOI one. This means that the algorithm is less 

effective when noisy or rugged surfaces are involved, but can still 

produce reliable results, with a meaningful statistical 

improvement. 

  
Figure 4. 25 m resolution DTMs: SoI (left) and SRTM (right) 

for area #1. 

 

  
Figure 5. SIFT point extraction results: SoI (left) and SRTM 

(right) for area #1. 

 

  
Figure 6. TIN construction and shift vector for each point in 

area #1. Grey values depict height difference value per point: 

before morphing (left) and after (right). 

 

Value Before (m) After (m) Improvement (%) 

Mean  -0.96 -0.01 99 

RMSE 7.28 4.07 44 

STDEV 7.22 4.07 44 

Table 1. Height difference values for area #1 before and after 

morphing, with no triangle threshold. 

Value Before (m) After (m) Improvement (%) 

Mean  -0.96 0.11 89 

RMSE 7.28 3.87 47 

STDEV 7.22 3.87 47 

Table 2. Height difference values for area #1 before and after 

morphing, with triangle threshold. 

 

  
Figure 7. 25 m resolution DTMs: SoI (left) and SRTM (right) 

for area #2. 
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Value Before (m) After (m) Improvement (%) 

Mean  1.23 -0.75 39 

RMSE 5.55 3.61 35 

STDEV 5.41 3.53 35 

Table 3. Height difference values for area #2 before and after 

morphing, with no triangle threshold. 

Value Before (m) After (m) Improvement (%) 

Mean 1.23 -0.54 56 

RMSE 5.55 3.65 34 

STDEV 5.41 3.61 33 

Table 4. Height difference values for area #2 before and after 

morphing, with triangle threshold. 

 

4. DISCUSSION 

Based on the preliminary experiments presented here, the results 

are very promising. The most notable improvement is the 

reduction of the mean height difference values between the 

DTMs, which have been reduced to almost zero, implying that 

the process manages to monitor local discrepancies, and in doing 

that manages to co- model and align both databases. Another 

important issue is that the noisier the data is the more effective 

the triangle removal, as shown in the second experiment, where 

the mean difference reduction was 56% as opposed to 36% when 

no triangles were removed. However, more experiments are 

needed, with other DTM sources and topographic 

representations, to find the optimal adaptive threshold value for 

triangle removal. Overall, the proposed methodology and 

algorithms are robust and effective. 

 

Future work will try to extend this methodology and improve the 

algorithms to higher resolution DTMs, as well as to DSM type 

models. In addition, other problems related to DTM fusion are 

planned for investigation, such as filling missing data. The 

overall objective is to extend this process into an automated 

fusion process, where the local transformation (geospatial 

morphing) quantifications (values) will be used to transform both 

DTMs simultaneously ‘towards’ each-other to create a seamless 

fused DTM product. 
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