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ABSTRACT:

Traditionally, the content for vario-scale maps has been created using a ‘one fits all’ approach equal for all scales. Initially only the
delete/merge operation was used to create the vario-scale data using the importance and the compatibility functions defined at class level
(and evaluated at instance level) to create the tGAP structure with planar partition as basis. In order to improve the generalization quality
other operators and techniques have been added during the past years; e. g. simplify, collapse (change area to line representation), split,
attractiveness regions and the introduction of the concept of linear network topology. However, the decision which operation to apply
has been hard coded in our software, making it not very flexible. Further, we want to include awareness of the current scale when
deciding what generalization operation to apply. For this purpose we propose the scale dependent framework (SDF), which at its core
contains the encoding of the generalization knowledge in the SDF conceptual model. This SDF model covers the representation of scale
dependent class importance, scale dependent class compatibility values, scale dependent attractiveness regions and last but not least
specification of generalization operations that are scale and class dependent. By changing the settings in the SDF configuration and
re-running the vario-scale generalization process, we can easily experiment in order to find best settings (for specific map user needs).
In this paper we design the SDF conceptual model and explicitly motivate and define the scope of its expressiveness. We further present
the improved scale dependent tGAP creation software and present initial results in the form of better created vario-scale map content.

1. INTRODUCTION

For creating a vario-scale map, we start from a large scale vec-
tor base map with polygon objects that form a planar partition
(every part of the mapped domain assigned to exactly one poly-
gon, without gaps or overlaps). A vario-scale map changes with
respect to the scale, where a delta change in the scale results in
a corresponding small change on the map. In other words, the
smaller the delta, the more slightly the change on the map. To
implement a vario-scale map, we use automated generalization.
The generalization process developed by us leads to a topologi-
cal Generalized Area Partition (tGAP) data structure, from which
we can produce maps that change in a gradual way. The changes
were even made more gradual via the Space Scale Cube (SSC),
which uses the scale as a dimension to enable smooth transitions
(van Oosterom, 2005; Meijers and van Oosterom, 2011; van Oos-
terom and Meijers, 2014).

Originally, this generalization process consists of selecting the
least-important area object in the map, then decides on the most
compatible neighbor, and merges these two neighboring areas
into one new area. For deciding the least-important object an
importance function is used, which allows to put more emphasis
on areas of certain feature classes (by increasing their weight and
thus importance) and/or size of the feature. For making a deci-
sion on what is an attractive and compatible neighbor to merge
with, we use a compatibility matrix. This matrix is based on the
compatibility of feature classes. The compatibility of two neigh-
boring objects is determined based on this matrix and the length
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of the common boundary. At the earlier stage of the research,
only one generalization operation was available: merging of area
objects.

The more recent developments of the tGAP creation process have
focused on making more generalization operations available: A
split operation, to divide the area of a polygonal geometry over
its neighbors and a line simplification operation that allows to
simplify boundaries between areas (and at the same time keep
topology safe, i.e. not introducing unwanted intersections be-
tween boundaries). Each operation makes use of compatibilities
and importance values in its own way. Further refinement of the
generalization process included three main directions. The first
one is to explicitly model networks such as roads, waterways,
and railroads even if elements are represented by areas on large
scale representation. The second one is to include features which
are represented by lines (in addition to the areas, cf. Šuba et al.,
2015, 2016). The third one is to use additional regions in which
features are more attractive to each other when they reside in one
region compared to features that reside in two different regions
(Šuba, 2017). Note that these regions can originate from differ-
ent sources, such as an external source of a smaller-scale map
or the result of an optimization process. For example, Haunert
and Wolff (2010) used an integer linear program to compute an
optimization of area aggregation for a target scale, which does
not generate maps at intermediate scales.

These latest developments lead to tailor made, but hard coded so-
lutions for dealing with road/water elements in the map — from
large scale (road/water elements represented as areas) to very
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small scale (elements as lines). To make tuning vario-scale gen-
eralization easier, a more flexible approach is required. We like
to orchestrate and steer which decisions to take at every step of
the generalization process. Such an orchestration depends on the
intended scale for which the generalized data is to be used.

In this paper, we present the new scale dependent framework
(SDF) to produce content of a vario-scale map. The framework
offers a collection of methods to steer and orchestrate the gen-
eralization process. The first problem we tackle is that for each
step throughout the process we explain how to estimate what the
approximate map scale will be. So far no intended map scale
was known (just importance of objects – mainly related to their
size and importance of the class). This estimation is useful for
selecting a relevant generalization operation (i.e. merge or split).
Secondly, the more important part of our contribution is that we
allow the producer of a vario-scale map to specify what general-
ization decisions to take (per scale range and per feature class).
This, by means of configuration, instead of hard coding the deci-
sions. Vario-scale map producers can specify:

1. Per feature class and per scale range to have a different pref-
erence for which generalization operation to apply (merge
or split);

2. Per feature class to have different importance values per
scale-range (note, these are only applied when recomput-
ing importance, after split/merge operation of new feature,
not for all others as these are in priority queue, and would
be heavy operation to perform);

3. Have compatibility matrix with different values per scale-
range (having scale ranges available can change the rules for
attractiveness between classes per range, e.g. make it less
attractive to merge land and water for smaller scale maps).

4. Define regions that are scale dependent, to influence finding
the most compatible neighbour (e. g. while merging).

Section 2 presents related work. Section 3 introduces the concep-
tual model of the SDF and illustrates how it is populated. Sec-
tion 4 presents how the SDF is used in a generalization step of
the tGAP creation process. Section 5 shows some initial results
and Section 6 concludes the paper by a discussion and giving a
description of future work.

2. RELATED WORK

As illustrated by Müller et al. (1995) and Weibel (1997), geo-
graphical information is scale dependent. We should provide
users appropriate level of details when users are zooming in or
out. Brewer and Buttenfield (2007) designed the ScaleMaster to
guide symbol modification and geometry change in order to gen-
erate a specific-scale map from multiple databases. In addition to
geometry change, they emphasized the use of symbol modifica-
tion to better reduce overall workloads. Their guiding principle,
when users zooming out, was to avoid visual clutter while mak-
ing sure that the geographical information was easily perceived.
As ScaleMaster is a guide to read, cartographers still have to pro-
duce maps manually. Touya and Girres (2013) developed Scale-
Master 2.0 to realize automatic generalization according to the
guide.

Regarding how much content we should keep for a specific scale,
Töpfer and Pillewizer (1966) proposed the radical law. By using
some parameters, this law can take into account whether or not
the symbols are exaggerated and whether the symbols are linear
or areal. To support vario-scale maps, Peng (2017, chapter 4)
continuously generalized buildings to built-up area by growing.
Also they aggregated the buildings that became too close. In the
experiment, their number of buildings decreased quite consistent
with the radical law. However, the total area of buildings increase
at the beginning, and then decreased almost linearly with respect
to the denominator of the scale. This pattern is very different from
the radical law. Jiang (2015) proposed to keep content according
to the so-called fractal nature, which means there are far more
small features than large ones. He argued that the fractal nature is
the root of the radical law of Töpfer and Pillewizer (1966). In or-
der to implement the fractal nature, he employed head/tail breaks,
where head means those features that are larger than the average
and tail means smaller. When zooming out, he suggested keep-
ing only the head features for the next smaller scale map. Šuba et
al. (2016) observed the quantity of features during their contin-
uous generalization of road network. The analyzed the numbers
of building faces, road faces, road edges, and terrain faces. Also
they depicted the area sizes of buildings, roads, terrains, and wa-
ters. Recently, Karsznia and Weibel (2017) used machine learn-
ing for settlement selection. Their method learned selection rules
from a pair of maps: one map at scale 1 : 250,000 and a manu-
ally generalized version of the map at scale 1 : 500,000. Accord-
ing to the learned rules, their method automatically generalized
the original map to obtain a new map also at scale 1 : 500,000.
By comparing to the manual version, the automatic one has accu-
racy 75.6% in the worst case, which means that machine learning
is a promising tool for generalization. Chen et al. (2009) consid-
ered the density as an important aspect for maps of road networks.
They managed to control the densities of different local regions
by using a mesh-based method. Moreover, Touya and Reimer
(2015) inferred the scales for the features on OpenStreetMap.
The features can have different geometric precision depending on
the volunteers. Therefore, it is necessary to know on what scales
we should present the features.

3. CONFIGURATION OF THE GENERALIZATION
PROCESS

To make tuning tGAP creation easier, a more flexible approach is
required. We like to orchestrate and steer which decisions to take
at every step of the generalization process. Such an orchestration
depends, among others, on the intended scale for which the gen-
eralized data is to be used. The scale dependent framework (SDF)
has at its kernel a conceptual model able to represent all informa-
tion needed to describe what generalization operation is used in
what situation (for which class at which scale range). Figure 1
depicts the UML diagram. The core class in the SDF model is
the FeatureClass representing the identifiers, descriptions and the
roles (in the codeList roleType with values: areal, linear or point)
of the different types of classes used in the map. The instances
of the classes may exist throughout all scales. The classes Gen-
eralizationAction, ClassCompatibilityMatrix and Attractiveness-
Region (all subclasses of the abstract ScaleRange class) specify
the knowledge facts needed for generalization which are possibly
scale dependent.

The SDF conceptual model can be converted into a technical
model for a database implementation (SQL DDL schema), which
is then next populated with the SDF records, before the actual
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GeneralizationAction

+ classWeight: int
+ action: actionType 

FeatureClass

+ identifier: int
+ description: char
+ role: roleType

«CodeList»
roleType

+ areal
+ linear
+ point

«CodeList»
actionType

+ merge
+ sp lit 

ClassCompatabilityMatrix

+ compatabilityValue: float

ScaleRange

+ denomStartScale: int
+ denomEndScale: int

AttractivenessRegion

+ geometry: polygon
+ factor: float

instances of the 
C lassCompatibilityMatrix should 
together form a complete (and 
non overlapping set of values in) 
matrix at every scale

0..*

+classTo

0..*

+classFrom

0..*

+class

Figure 1. The conceptual model of the SDF.

class description role

10310 main road linear
10410 regional road linear
10510 local road linear
10600 street linear
10710 road for parking areal
10780 all other features linear
12400 stream linear
12500 lake areal
13000 buildings areal
14010 arable land areal
14040 orchard areal
14060 mixed forest areal
14080 deciduous forest areal
14090 coniferous forest areal
14130 grassland areal

. . . . . . . . .

Table 1. Example ‘feature class’ table. The classes are taken
from Top10NL (Dutch topographic data set intended to be used

at scale 1:10,000).

vario-scale map generalization process is started. This data model
allows to store the essential information that we need while gen-
eralizing. Note that we could also convert the SDF conceptual
model in an XML schema for the exchange format (another tech-
nical model) intended for the exchange of the essential general-
ization information.

Our scale dependent framework is stored by means of several
database tables. Attributes and named associations become
columns in the database tables. Inside the tables we store the
configuration for the generalization process and the role features
play on the map. The configuration is expressed based on class
information, and what should happen with a certain class of ob-
jects at a certain scale. At instance level decisions will be taken
during the generalization (e. g. looking at connectivity of linear
features), but at the moment there is less direct influence possible
for an end user (i.e. a new generalization operation should be
implemented in system).

Table: feature class Within this table all feature classes are
stored that are present in the source data set, together with a

human readable description.

The table stores three fields:

1. class: Integer that uniquely identifies the class

2. description: Human description of the feature class

3. role: Role that the objects of this class play on the
map. When an object belongs to a class that repre-
sents objects with nature of linear network features
(for example roads or water ways), different kinds of
generalization operation can be executed (executing a
more specialized merge operation that also takes into
account this network, trying not to break it apart)

Table 1 shows some example records.

Table: generalization actions. This is the core table for record-
ing which class should undergo which generalization opera-
tion at what scale (see Table 2).

The fields that this table contains are:

1. class: Integer, pointing to feature class table

2. weight: Integer, relative importance value for this fea-
ture class class

3. start scale: Denominator of start of scale range

4. end scale: Denominator of end of scale range

5. action: Generalization action to execute [merge —
mergeLinear — split]

Importance values are related to the usage type of the map
(gives a relative importance between classes, to be able to
express for example in the generalization process that water
ways should be preserved longer).

Per class a complete scale range should be defined, without
gaps, and overlaps (and cover all scales: 1 : 1 — 1 : ∞).
This means that at least per feature class 1 entry is required
in this table. For example, Table 2 shows that main road ob-
jects (class 10310) will be merged with a compatible neigh-
bour in the range 1:1 to 1:30,000, and after scale 1:30,000
will be split over their neighbours. To describe this be-
haviour two entries are made in the generalization actions
table.
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class weight start scale end scale action

10310 100 1 30,000 merge
10310 100 30,000 ∞ split
10410 100 1 20,000 merge
10410 100 20,000 ∞ split
10510 10 1 20,000 merge
10510 10 20,000 ∞ split
10600 10 1 15,000 merge
10600 10 15,000 ∞ split
10710 1 1 20,000 merge
10710 1 20,000 ∞ split
10780 1 1 ∞ merge
12400 1000 1 ∞ split
12500 1000 1 ∞ split
13000 500 1 ∞ merge
14010 1 1 ∞ merge
14040 1 1 ∞ merge
14050 1 1 ∞ merge
14060 1 1 ∞ merge
14100 1 1 ∞ merge
14120 1 1 ∞ merge
14130 1 1 ∞ merge

. . . . . . . . . . . . . . .

Table 2. Generalization actions. Parameters for the
generalization process as can be specified. Note that the start
scale and end scale columns contain the specification which

generalization operation to carry out for which scale range. In
case a polygon with the classification ‘local road’ (feature class
10510) is selected to be generalized, the operation that will be

applied is merge (in the scale range 1:start scale – 1 : 20,000) or
split (1 : 20,000 – 1 :∞), dependent on the current estimated

display scale.

Table: class compatibility matrix The creation of the tGAP
structure is driven by two main aspects. First, the global or-
der of the features based on importance value, i.e. in every
step the least-important feature is selected and processed
(merge or split). Second, selection of the most compati-
ble neighbour. To influence the decision, the compatibility
matrix is used (see Table 3). Within the scale dependent
framework, every compatibility value that can be specified,
also gets an associated scale range. The result is that com-
patibility between classes can be changed (e. g. water and
land are compatible for large-scale maps, but for smaller
scales land and water are made quite incompatible, to pre-
vent water taking over too much land).

The fields present in the class compatibility matrix are:

• class-from: Integer, pointing to feature class table

• class-to: Integer, pointing to feature class table

• comp-value: Float, compatibility (the higher, the
more compatible)

• start scale: Denominator of start of scale range

• end scale: Denominator of end of scale range

In some cases map features, such as buildings, gardens and sheds
forming built-up area, should stay visible longer on the map in
aggregated form. Here we propose an additional tool for steer-
ing how these features will be aggregated. The idea is based on
defining coarse regions, depicted by polygons. For every region

code-from code-to compatibility start scale end scale

10310 10310 10000 1 20,000
10310 10310 1000 20,000 ∞
10310 10410 1 1 ∞
10410 10310 1 1 ∞

. . . . . . . . . . . . . . .
12500 14010 10 1 20,000
12500 14010 1 20,000 ∞

. . . . . . . . . . . . . . .
14080 14060 100 1 ∞
14080 14010 10 1 ∞
14080 13000 0.1 1 ∞

. . . . . . . . . . . . . . .

Table 3. Example of a scale dependent compatibility matrix.

(a) Attractiveness regions are
formed by removing the road

objects and uniting all
connected components.

(b) The objects (in purple)
belong to an urban region
(obtained from an external

source).

Figure 2. Examples of attractiveness regions

a scale range is associated when the region is to be used. For
every map object a relationship is determined with the relevant
regions. If a map object overlaps with the polygon it is said to
be a member of the region. The fact that objects are, or are not,
a member of the same region will have an influence on the cal-
culated compatibility value, by determining a scaling factor to be
used for the resulting compatibility value. The regions can stem
from external sources or can be generated from the source data
set by geometric processing (e.g. leaving out the road network
and making a union of the resulting polygons). Note that the re-
gions can also be overlapping and one object can be member of
multiple regions.

Figure 2 gives an illustration of objects being part of different
regions, where the green regions are defined by leaving out the
road objects and the purple region is a definition of urban area,
obtained from an external source.

Table: attractiveness regions For storing the information about
the regions, we use the following fields:

• geometry: Polygon that describes a region its extent

• start scale: Denominator of start of scale range when
the region is to be used

• end scale: Denominator of end of scale range

• factor: Multiply with this factor the compatibility
value when objects are in the same group
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Estimate
current scale

Select the
least-important object

Decide
operation

No operation

Step to scale formula from
Huang et al. (2016)

Queue of faces is used

Operation picked from
scale ranges,
inspired by ScaleMaster
(Touya & Girres, 2013)

Back to queue Merge, split, and simplify
operations for road network

1)

2)

3)

4)
Execute

operation

Figure 3. Outline of actions for one generalization step.

During the phase for determining the compatibility value, a factor
larger than 1 is used, when an object is in the same region as
one of its neighbours (neighbour is more attractive). The regions
make it possible to better steer what should happen for example
in case of rural and urban areas, i.e. to prevent merges from rural
to urban regions.

4. OUTLINE OF A GENERALIZATION STEP IN THE
PROCESS

The whole generalization process is composed of a sequence of
steps. Every step consists of multiple actions, where decision
making is included. Repeating theses steps results in simpler
and simpler maps. So far, making decisions in the vario-scale
generalization process was based on feature class, geometry con-
figuration, etc. The information about current scale, for which
specific objects were processed, was never included, until now.
We propose an algorithm to improve automatic generalization for
every generalization step based on estimated target scale. Fig-
ure 3 shows the outline. One generalization step is composed
of the following sequence of steps: Estimate target scale, select
the least-important object, decide on if we generalize, and, if so,
execute an generalization operation.

4.1 Estimate current scale

With respect to the relation between the tGAP structure and the
scale, we employed map generalization with tGAP to produce
a sequence of successively more generalized maps so that these
maps go well together, similar to Chimani et al. (2014) and Peng
et al. (2017). Instead of considering each level of generaliza-
tion independently (current practice), we consider the sequence
of maps as a whole. For example, a removed building should not
appear again when users are zooming out. In our perspective,
each intermediate map is as important as the final map. Our pro-
posed strategy starts by estimating a scale for which the operation
is performed. This estimation originates from recent development
of a web client for vario-scale maps, see Appendix of Huang et
al. (2016). When a user requests a map in the viewer, a scale has
to be determined. We assume that at every tGAP step there is one
fewer areal object on the map. The relationship between a tGAP

step

scale

Figure 4. Graph of relationship between number of objects and
scale for sample data, where Sb = 10,000 and Nb = 8,068.

step and the estimated denominator of scale can be described by
the following formula:

St(Q) = Sb

√
Nb

Nb −Q
(1)

where Sb is the denominator of base/start map’s scale, e. g., Sb =
10,000 for the instance shown in Figure 4. Nb is the total number
of objects on the base map. Variable Q is the number of steps.
Note that for a given data set, only Q is a variable while Nb and
Sb are constants. For example, Figure 4 shows the relationship
between steps and estimated scales for a real data set.

4.2 Select the least-important object

In our approach every generalization step picks the correspond-
ing least-important object in tGAP to perform a generalization
operation The least-important object is defined by the importance
function: Importance(a) = Area(a) ∗WeightClass(a). In other
words, the importance of a feature is based on its size and the
weight of the class to which it belongs. Before the generalization
process starts, we compute importance values for all the objects
and store the objects in a priority queue according to the impor-
tance values. Then we are able to process the objects from the
least-important one to the most-important one. One option to deal
with the resulting object of a generalization operation is to put the
object back in the priority queue according to the sum of the two
old importance values (in case of a merge operation). It would
also be possible to change the importance values for all objects
after each generalization step (as we have a new estimated map
scale). This, however, is expensive due to the fact that we have
a priority queue that orders all objects globally, which means we
have to reorder after generalization step. Another less expensive,
but still scale aware, operation is to recalculate the importance
value of the new object and then insert the new object in the queue
according to its new importance value. For this the class weight,
that is now scale dependent, can be used.

4.3 Decide operation

At this phase of the process, the least-important object and the
estimated scale are known. Depending on the relevant role and
action, obtained via the feature class and estimated scale, we can
pick the right generalization operation. Also the attractiveness
regions for this map scale are used in deciding what the most
compatible neighbour is. Moreover, a merge operation can be ex-
ecuted in some variants: 1. a merge based on both the length of
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1 : 11,531 1 : 14,083 1 : 19,752 1 : 108,925

step (above) and scale (below)

1 : 10,000
0

Operations in percentage

75%

50%

25%

100%

Figure 5. The percentages of operations executed per 100 steps
in the tGAP creation process.

common boundary between the faces and the compatibility ma-
trix, 2. a merge taking into account the linear network around area
objects, cf. Šuba et al. (2015).

4.4 No operation

There are situations when a selected operation is better to post-
pone because a better operation may exist for a specific geomet-
rical configuration. Those situations in principle contradict an
original intended operation (as specified in Table 2). We deal
with such a situation in this section. Currently there is only one
option implemented. That is, if a face does not satisfy a certain
condition, then we raise its importance and put it back in the pri-
ority queue. No operation like merge or split is performed for this
tGAP step, and the face will be processed later.

4.5 Execute operation

The last step of the proposed process for one generalization step is
to perform the selected operation and deal with all consequences
(change of geometry or attributes). Only at this stage is the tGAP
structure changed. Our current prototype provides merge, split,
and simplification as boundary operations.

5. RESULTS

Currently we are implementing the new framework for scale de-
pendent tuning of the generalization process. The preliminary
results we have obtained so far show that the rules as specified
are taken into account and are effective. From Figure 6a to Fig-
ure 6b, we can see some merges of roads (the red circles in Fig-
ure 6b mark some examples). The red area in Figure 5 repre-
sents the amount of roads’ merging. That these merge opera-
tions should take place is specified in Table 2. The rules specify
that all road objects should be merged from scale 1 : 1 up to
(at least) scale 1 : 15,000. By comparing Figure 6b with Fig-
ure 6c, one can observe that some streets (class 10600) are split
as of step 5,687 (for example, the road marked by the red ellipse
in Figure 6c). This phenomenon is also illustrated in Figure 5,
where the orange area starts to emerge and then grows (thus roads
are being split, starting at the specified scale). Also we can see
that the main roads continue merging (red area in Figure 5). This
again reflects the rules as specified in Table 2. At step 7,664 also
the main roads have been split (see for example the road marked
by ellipse in Figure 6d)). Moreover, all the buildings have been
removed. This is why the black area in Figure 5 degenerates to a
line.

(a) step 0, scale 1 : 10,000

(b) step 4,301, scale 1 : 14,635

(c) step 5,687, scale 1 : 18,408

(d) step 7,664, scale 1 : 44,688

Figure 6. Initial results. Merging and splitting of road objects
follows the generalization actions, dependent on the estimated

scale, specified in Table 2.

6. DISCUSSION AND FUTURE WORK

We have presented how we have made the tGAP creation pro-
cess more scale aware, and that, dependent on the estimated map
scale we can express better than before what generalization op-
eration should happen. We have introduced the SDF conceptual
model, which makes it possible to store the information of mak-
ing these scale dependent decisions. Moreover, our initial ex-
periments indicate that this information is used effectively within
the resulting tGAP creation process. The concept of attractive-
ness regions (groups of objects) also fits well in the scale depen-
dent framework for creating vario-scale maps: Different regions
may be switched on and off depending on the scale (when com-
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puting compatibility). From the experiment we learned that the
new framework gives more grip on the generalization process,
and thus on the resulting vario-scale map content. Therefore, this
framework is promising.

Having the scale dependent framework available makes it possi-
ble to tune the generalization process, though the approach should
now be tested more rigorously. This will require iterative cycles
of specifying, visualizing and evaluating the resulting maps, and
possibly adjusting the rules as specified. The SDF allows much
easier tuning of the generalization process at an higher level: In-
stead of changing hard-coded values in the source code it is now
possible to just edit the configuration and re-run the generaliza-
tion process. By testing and assessing the resulting vario-scale
representation, it is easy to adapt certain aspects of the general-
ization process to get better vario-scale content. According to the
configuration, this adaptation can be related to certain types of
features or operations within a certain scale range. However, as
this tuning may require quite some work and is likely to be sim-
ilar for data sets with similar nature, it would be good to be able
to share this knowledge/information. Therefore, we could make
a predefined set of abstract superclasses and related operations
available in a default configuration. We could set a number to
each of the abstract superclasses, as this would fit in the configu-
ration tables. By mapping from the concrete feature classes of a
data set to the abstract superclasses, we can share the information
on the generalization process. As a result, data sets from different
providers could be generalized in similar way, e. g. topographic
data sets from Germany and from The Netherlands could share
the same set of generalization rules. Next to this, as map scale
is now made explicit and known with each generalization step,
we can simplify the boundaries between areas in a more granu-
lar way than before. For simplifying boundaries’ geometry, this
implies that we know how detailed an edge is and then we can de-
termine the boundaries to be simplified. Furthermore, we should
not over-simplify the boundaries. Finally, we now have only area
features in the queue (no lines). In the scale dependent frame-
work we would also like to have line features in the queue and
to associate which generalization operation is needed when the
least-important line feature is selected. We should investigated if
we want to put line features and area features in the same queue,
or we prefer to have two separate queues. Despite these new fu-
ture work items, the current initial version of the scale dependent
framework for the tGAP/SSC creation is a big step forward.
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Huang, L., Meijers, M., Šuba, R. and van Oosterom, P., 2016. En-
gineering web maps with gradual content zoom based on stream-
ing vector data. ISPRS Journal of Photogrammetry and Remote
Sensing 114, pp. 274–293.

Jiang, B., 2015. The fractal nature of maps and mapping. In-
ternational Journal of Geographical Information Science 29(1),
pp. 159–174.

Karsznia, I. and Weibel, R., 2017. Improving settlement selection
for small-scale maps using data enrichment and machine learn-
ing. Cartography and Geographic Information Science 45(2),
pp. 111–127.

Meijers, M. and van Oosterom, P., 2011. The space-scale cube:
An integrated model for 2D polygonal areas and scale. In:
E. Fendel, H. Ledoux, M. Rumor and S. Zlatanova (eds), ISPRS
Archives Volume XXXVIII-4/C21, 28th Urban Data Management
Symposium, Delft, pp. 95–101.

Müller, J.-C., Weibel, R., Lagrange, J.-P. and Salgé, F., 1995.
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