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ABSTRACT: 

 

This study presents a regularization approach to refine object boundaries for the purpose of buildings 3D modelling and 

reconstruction. Specifically, the derivative Normalized Digital Surface model (nDSM) image layer is firstly segmented using the 

classical multi-resolution segmentation followed by spectral difference segmentation. As the segmentation results can contain quite a 

number of boundary artefacts in the form geometrical distortions, the Dynamic Polyline Compression algorithm (DCPA) is applied 

as a regularization step in order to refine the outer boundaries, which removes the distortions. This results in higher quality image 

objects for the purpose of 3D models reconstruction. Experimental results after comparing between automatically extracted buildings 

and manually digitized aerial photographs indicate high completeness scores of 94%-97% and correctness of 93%-96%. Overall 

average error is minimized with very low Root Mean Square (RMS) and Overlay errors. 

 

 

 

1. INTRODUCTION 

 

Light detection and Ranging (LiDAR) has been widely used in 

the remote sensing community. This is mainly because such 

data can be obtained over large areas in a relatively short period 

of time (Kwan et al., 2010). LiDAR instruments normally 

include a global positioning system (GPS) receiver for 

positioning, an Inertial Measurement Unit (IMU) for angular 

measurements, and a laser for distance- and position-based 

calculations of a point from land surfaces (Höfle and Rutzinger, 

2011). The advantages of using LiDAR data are its high speed, 

high density, high vertical accuracy and low cost compared to 

traditional photogrammetry. LiDAR systems are becoming more 

widespread in remote sensing with applications in 3D 

reconstruction, specifically the feature extraction phase (Wei., 

2008).  

  

Buildings take up a majority of the terrain in a city. In remote 

sensing, building boundary determination is a crucial and 

challenging task, especially for 3D building reconstruction 

(Rottensteiner and Briese, 2002). Several attempts have been 

made to reliably detect building boundaries. For example, Ma 

(2004) applied image segmentation on the Normalized Digital 

Surface Model (nDSM) raster layer to extract boundaries by 

fine tuning an elevation threshold in order to exclude useless 

features. In the study by Sampath and Shan (2004), they 

performed regularization post segmentation for the 

reconstruction of buildings shapes using a region growing 

algorithm. Xinlian (2005) applied the Smallest Deviation 

Approximation algorithm to LIDAR to extract building 

boundaries. They initially discovered the two farthest points  
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within the building area in order to divide the building into two 

smaller parts. This process is iterated until the similarity 

distance is lesser than a specified threshold.  

 

Most previous efforts have focused on building extraction and 

boundary determination. However, there is also the issue where 

extracted building boundaries are not smooth and contain 

distortions. This paper focuses on these issues, for the purpose 

of buildings 3D reconstruction. Specifically, we perform 

building boundary extraction that is assisted by a regularization 

step that removes distortions/artefacts from building 

boundaries. Following data pre-processing, our approach 

consists of three stages. First, generated nDSM images are 

segmented using the multi-resolution segmentation followed by 

spectral difference segmentation. Second, regularization is 

performed using the Dynamic Polyline Compression algorithm 

(DPCA) on the segmentation results for outer boundaries 

refinement, which is followed by an object-based image 

analysis (OBIA) classification step. Finally, regions classified as 

buildings are modelled in the 3D space based on the extracted 

building boundaries. 

 

2. STUDY AREA AND DATA USED  

This study was conducted over the urban area of Serdang, 

Selangor, Malaysia. Geographically, the study area is located 

within the Universiti Putra Malaysia campus, between 101º 42´, 

101º 43 ´ E and 3º 0´ 9 ̋, 3º 0´ 27 ̋ N. This study area is 

characterized by buildings with different heights with the 

presence of tall trees and vegetation, and small lakes. There is 

also the road network that connects the university with the 

surrounding areas. The surface area of the test sample is 

approximately 1 km2, and is illustrated in Fig. 1. 
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The LiDAR point clouds data was collected by an airborne 

LiDAR system on March 8, 2015. The camera has a spatial 

resolution of 10 cm and the laser scanner has a scanning angle 

of 60° with a camera angle of ±30°. The posting density of the 

LiDAR data was 3–4 pts/m2 (average point spacing = 0.41 m). 

The minimum and maximum elevations are 36 and 69 m, 

respectively.  

 

 
Figure 1. The study area. 

 

 

3. METHODOLOGY 

The proposed methodology consists of three (3) main stages. 

Note that these stages are executed after data pre-processing 

(Section 3.1). The main stages are: 

 

1. Segmentation: Each nDSM layer is firstly segmented 

into spectrally similar regions to allow OBIA. This is 

crucial so that the image is partitioned into regions 

that are deemed semantically significant. Such regions 

commonly share a homogenous trait such as being 

spectrally similar. Two segmentation algorithms are 

applied namely multi-resolution segmentation 

followed by spectral difference segmentation. 

2. Regularization and OBIA-based classification: Weih 

and Riggan (2010) showed that OBIA outperforms 

pixel-based methods for multi-spectral images. OBIA 

is also faster since whole regions are considered 

instead of individual pixels (Kalantar et al., 2017b; 

Ahmed et al., 2017). Similarly, our work adopts an 

OBIA-based classification approach where the 

regions are classified into building, tree or noise. 

Note that many of the segmented regions contain 

artefacts (i.e. jagged edges/artefacts). To alleviate this 

problem, we apply the DPCA before performing 

OBIA classification in order to refine each region. 

This assumedly will produce better extracted regions.  

3. 3D modelling and reconstruction: Ideally, the 

extracted building boundaries should be smooth 

polygons. The output from step (2) is then used as a 

reference to reconstruct and model the buildings in 

3D space. 

The proposed technique was developed using the eCognition 

(Trimble Geospatial) and ArcGIS10.3 applications where the 

overall flow is shown in Fig 2. 

 

 
Figure 2. The overall methodology. 

 

 

3.1 Data pre-processing 

Several pre-processing steps are necessary in order to prepare 

the data for the main processing and analysis. Firstly, the 

LiDAR point cloud data is converted into the LAS (LASer) 

extension. Data with regards to laser returns are recorded from 

ground and non-ground target strokes. To derive the required 

digital elevation model (DEM), only returns from bare-earth are 

considered where the data needs to be separated through the 

filtration process in Zhao et al. (2007). Using the Inverse 

Distance Weighing (IDW) interpolator, terrain points are 

processed to generate the DEM layer and surface points are 

processed to generate the Digital Surface Model (DSM) layer. 

Sample results are shown in Figs. 3a and 3b. Since the nDSM is 

basically the absolute elevation of artificial elevation features 

with regards to the earth, it is derived by subtracting the DEM 

layer from the DSM layer using the map algebra tool in ArcGIS 

10.3. This is represented in Eq. 1. 

                          (1) 

Notice the different colored pixels in the nDSM (Fig. 3c). This 

depicts the different objects’ heights from the terrain, which 

renders the nDSM useful for buildings classification as height 

and other parameters are available. 
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Figure 3. Laser scanning data derivatives (a) DEM, (b) DSM, 

(c) nDSM. 

 

 

3.2 Segmentation 

As mentioned, OBIA works on segmented regions within an 

image. Therefore, we firstly perform multi-resolution 

segmentation where the algorithm iteratively groups image 

objects until the upper object variance limit is reached. Fractal 

borders of each segmented region is minimized by weighting 

the scale parameter with the separation of shape and   

compactness   parameters. Next, spectral difference 

segmentation (SDS) is applied to further refine the 

segmentation results. SDS merges neighboring image objects 

whose spectral means fall below a specified threshold.  In our 

work, the threshold that yielded best results (representing 

maximal spectral difference) is 12. Applying two segmentation 

steps is motivated by the work of Ostdijk et al., (2008) where 

decent segmentation results were consistently obtained across 

their dataset. Figure 4 illustrates sample results after 

segmentation using multi-resolution and spectral difference 

segmentations.  
 
3.3 Regularization and OBIA-based Classification  

In order to refine any undesirable artefacts on the polygons 

generated from the segmentation process, we performed a 

regularization step by applying the dynamic polyline 

compression algorithm (DPCA). Besides refining region edges, 

DPCA also reduces the number of over-segmented polygons 

(while avoiding under-segmentation), which decreases 

processing time. The algorithm works by removing vertices 

causing the resultant polyline to pass through a subset of the 

source vertices (Gribov 2015).  Figure 5 shows the effects of 

applying the DPCA on the polygons. 

  

Once regularized, classification can be performed. Each of the 

segmented regions is classified using the Random Forest (RF) 

classification algorithm, into one of the following classes: 

building, tree or noise. RF is an ensemble learning technique 

that generates a multitude of random decision trees that are then 

aggregated to compute a classification (Breiman, 2001). The RF 

classifier was chosen since it involves few user-defined 

parameters to yield the best overall accuracy levels. These 

accuracy levels are either comparable to or better than other 

classifiers such as Maximum Likelihood and conventional 

Decision Trees (Lawrence et al., 2006), AdaBoost decision trees 

and neural networks (Chan and Paelinckx., 2008), and Support 

Vector Machines (Pal., 2005; Kalantar et al., 2017a). 25 

samples for each class were selected to train the RF algorithm. 

The classification algorithm was applied to the whole study area 

and all image objects were then classified into: building and 

trees or noise.  Basic information of study area is needed in 

order to have an efficient classification. In this study, an aerial 

photo is used to identify the ground features (i.e. Land 

use/cover). Geometry features namely, shape index rectangular 

fit, compactness was used for building extraction (Kibret 2016). 

Buildings Detected based on the calculation of feature’s 

geometry (shape index, rectangular fit and compactness) in 

order to prepare this layer to the final step of the extraction 

process (Kibret 2016). The classification results are evaluated 

using the confusion matrix (Table 1). This matrix was then used 

to calculate the overall accuracy and kappa index. The overall 

accuracy and kappa index were estimated as 91.9% and 0.891, 

respectively.  

 

3.4 3D Modelling and Reconstruction  

After the regularization step on the building boundaries, the “Z” 

dimension of LiDAR data can be used to obtain the elevations 

of each segmented region. The 3D visualization of buildings 

with simple flat, multi-level flat or complex roofs achieved by 

segmenting portions of roofs whose “Z” share similar values. A 

sample of reconstructed 3D buildings is shown in Figure 8. 

 

(a) 

(b) 

(c) 
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Figure 4. The results after applying a) multi-resolution 

segmentation, b) spectral difference segmentation. 

 

 
Figure 5. Effects of applying the dynamic polyline compression 

algorithm (Adapted from: https://goo.gl/9jrrRw) 

 

4. RESULTS 

We initially present the results of regularization after DCPA. 

The regularization allowed extraction of the most compact and 

refined regions after both multi-resolution and spectral 

difference segmentations. This is mainly because DCPA 

reduced the number of over segmented regions, while avoiding 

under segmentation. Figure 6 shows sample results of applying 

DCPA on our dataset. It can be clearly seen that over-

segmented regions have been eliminated. It is also observed that 

the outer boundaries of the buildings are still well preserved, 

which will in turn greatly facilitate the classification stage (and 

hence, extraction). Ultimately, it can also be expected that the 

3D models being reconstructed will be better. Figure 7 shows 

the final extraction results from LiDAR data and Figure 8 

showing the reconstructed 3D building models. The 3D 

modelling was made possible by using the average height of the 

area occupied by the respective boundaries. It can be seen that 

the building is classified based on their roof type into three 

classes namely, complex, multi-level flat, and simple flat. The 

block model is sufficient for our application because it provides 

a good basis for visualization, which in turn can be useful for 

spatial planning and disaster scenario modelling. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ground Truth (Pixels) 

Class Buildings Trees Total 

Unclassified 262 47 309 

Buildings 6501 0 6501 

Trees or noise 2 5103 5105 

Total 6765 5150 11915 

Ground Truth (Percent) 

Class Buildings Trees Total 

Unclassified 3.87 0.92` 24.56 

Buildings 96.1 0 41.93 

Trees 0.03 99.67 35.07 

Total 100 100 100 

Overall Accuracy 0. 91 

Kappa Coefficient 0.8913 

Table 1. The confusion matrix and accuracy scores for the 

classification step. 

 

(a) 

(b) 
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Figure 6. The segmentation results (a), (c) before regularization 

and (b), (d) after regularization. 

 

 

 
Figure 7. The classification result from LiDAR data. 

 

 

 

 

 
Figure 8. 3D model with classification based on building roof 

type. 

 

4.1 Accuracy assessment 

Accuracy assessment was applied by comparing between the   

extracted boundaries and the reference data of the manually 

digitized aerial photos of the buildings’ boundaries (at 10cm 

resolution). The four quality measures of Completeness, 

Correctness, Root Mean Square (RMS) error and overlay error 

are used to assess the accuracy for the training and validation 

datasets. Completeness represents the percentage of correct 

extraction whereas RMS error is related to geometrical 

accuracy. Area difference and overlay errors are used to 

determine the shape similarity between the buildings (Haithcoat 

et. al, 2001).  

 

Completeness and correctness are calculated by comparing 

between the number of extracted buildings and number of 

buildings in the reference data. Horizontal RMS error is 

calculated as the distances between the corresponding building 

corners. Overlaying the extracted buildings on top of the 

reference data leads to the discovery overlay errors as well as 

area and perimeter difference measurements. Since the reference 

data does not have height information, vertical geometric 

accuracy is not assessed. 

 

The calculated quality measures are listed in Table 2. 

 

 

 

 

 

 

 

 

 

 

5. DISCUSSION 

In this study, the accuracy of building extraction is performed 

through segmentation algorithms (multiresolution and spectral 

difference) and DCPA based on LiDAR point cloud data. The 

proposed methodology is capable of producing a 2D building 

polygon and 3D building models. 3D building models or 2D 

building polygons are used in most of web-based maps and 3D 

navigation maps. In this context, the proposed approach will be 

useful to update building information of maps. The comparison 

Table 2. The accuracy assessments for building extraction. 

 Area 1 Area2 

Total building number 89 45 

Completeness 94% 97% 

Correctness 93% 96% 

RMS  Error 0.8 m 0.7m 

Overlay error 13% 4% 

(a) (b) 

(c) (d) 
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between buildings boundaries as shown in Figure 6 shows 

promise that the regularization process of DCPA adds value for 

the final extraction. Additionally, corner points of buildings 

seem to appear at their proper locations, even if the original 

dataset did not contain points at these positions. 

 

 

6. CONCLUSION 

The main objective of this research is to study the effects of 

regularization in the buildings region extraction workflow. The 

regularization algorithm used in this work is DCPA, which is 

applied after segmentation. Results show that building 

boundaries containing geometrical distortions are refined using 

DCPA.  Image objects are also properly segmented where over 

and under-segmentation are avoided. Classification results are 

promising where accuracy is 0.91 and RMS and overlay errors 

are kept low. Furthermore, compactness and correctness scores 

are also promising at 93%-97%. It is worth noting that the 

dataset used in this work consists of complexly shaped 

buildings. The proposed approach however still manages to 

produce robust boundaries.  3D models generated from the 

extracted buildings are also presented. In future work, we plan 

to extend the approach to extract 3D building models from 

terrestrial LIDAR data and components with more complex 

shapes will be detected and regularized. 
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