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ABSTRACT: In this paper, we present an approach for the integration of multiple collected (vector-)polygons that is computed in 

the raster domain. In a first step, all polygons are transferred to the raster domain with a vector/raster-conversion. The integration in 

the raster domain is a simple pixel-wise summation that is much simpler than comparable approaches in the vector domain. The 

results can be optimized with image processing operators. Finally, the integrated data are transferred back into the vector domain 

with a raster/vector-conversion. This approach can integrate not only 2 datasets but is also able to integrate n datasets without any 

modification. We will demonstrate this approach on data that was multiple collected in a student project and we will discuss how the 

integration results can be evaluated with quality measures.  

 

 

 

1. INTRODUCTION 

In the past decades, many algorithms were developed for the 

integration of spatial data from different sources. A very good 

overview is presented in (Xavier et al., 2016). Practically all 

existing algorithms work in the vector domain with the 

exception of (Seo and O’Hara, 2009) who presented a method 

for assessing the geometric quality of linear spatial vector data 

by converting them first in the raster domain and calculating 

displacement vectors based on raster buffers. This approach is 

very efficient but it is not able to integrate the data. To the best 

of our knowledge, all existing integration algorithms can 

conflate only two datasets at one time. The simultaneous 

integration of n datasets into one common datasets is so far not 

described in the literature.  

 

An application that need to integrate not only two but more 

datasets could be for example the extraction of patterns from 

data from mobile sensors: Large numbers of pedestrians or cars 

equipped with mobile sensors can collect continuously spatial 

data. The result is a massive multiple collection of geospatial 

data. With an integration, we can extract for example movement 

patterns or even the geometry of streets or other spatial objects. 

For example, Sultan et al. 2017 describe an approach that uses 

GPS trajectories collected by multiple cyclists to extract spatial 

patterns. 

 

Another application area is the collection of spatial data with 

paid crowdsourcing. It has been shown that we can collect high 

quality data with paid crowdsourcing (Walter and Sörgel 2018). 

However, the problem is that the results can be extremely 

inhomogeneous. Parts of the data are collected with high quality 

whereas other parts are collected with very low quality or even 

with senseless data (Bernstein et al. 2010). This kind of problem 

does not exist in the same intensity in Volunteered Geographic 

Information (Goodchild 2007) projects like OpenStreetMap 

(OSM), because there is a quality control of other users. If a 

user adds incorrect data, it is very likely that other users will 

recognize that and correct them after a while (this must not 

happen immediately but can also happen after some months or 

even years). Additionally, the completeness of OSM datasets 

increases over the time because more and more data are added 

until (most of) all objects are collected (Barron et al. 2013).  

 

An approach to collect homogenous high quality data also with 

paid crowdsourcing would be to collect the data not only once 

but multiple times and to improve the quality with an 

integration of these datasets. This follows the idea of the 

Wisdom of Crowds. Charles Darwin’s cousin Francis Galton 

first observed the Wisdom of Crowds in 1907 (Shrier et al. 

2016). He found out that the average guess of the weight of an 

ox in a ‘guess the weight of the ox’ competition was nearly 

accurate. The average judgement converges to an optimum 

result. In average, the participants estimated the weight of the 

ox was 1207 pounds. The real weight was 1198 pounds 

 

The typical approach to integrate two spatial datasets in the 

vector domain is that first identical geometries are identified 

(matching) and then the actual integration takes place (Walter 

and Fritsch, 1999). Integration techniques of this kind are also 

known under the name conflation, which comes from the Latin 

con flare meaning "blow together" (Lynch and Saalfeld 1985). 

For this purpose, the perpendicular distances from all 

intermediate points from one geometry to the matched geometry 

and vice versa are calculated. The integrated geometry is then 

calculated by connecting all center points of all perpendicular 

distances (Volz and Walter 2006). That means that if we 

integrate two polygons P1 and P2, which have n1 and n2 

intermediate points, the resulting integrated polygon will have 

n1 + n2 intermediate points.  

 

If we want to integrate more than two datasets (see for example 

Figure 1) this approach has problems. If we would select one 

start dataset and then integrate successive all other datasets to 

this dataset, we would get different results depending on which 

dataset was selected as start dataset. In addition, an iterative 

approach where we first integrate dataset 1 with dataset 2 and 

then the integrated dataset with dataset 3 and so on, would lead 

to different results depending on the processing order. 

Furthermore, the integrated polygons would contain a huge 
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number of intermediate points and could contain self-overlaps. 

In order to solve this problem, we introduce a raster-based 

integration approach which is very simple to realize and which 

is able to integrate any number of datasets.  

 

The rest of the paper is organized as follows. In section 2, we 

describe the implemented workflow and the corresponding 

parameters. In section 3, we show the test data and the reference 

data that we used for testing the approach. In the next section, 

we show integration results on examples and discuss the 

influence of the implemented parameters. In section 5, we 

discuss how the integration results can be evaluated with 

similarity measures. A conclusion and outlook completes the 

paper. 

 

 
 

Figure 1. Example of multiple collected road network data 

 

2. WORKFLOW 

The workflow of the integration is shown in Figure 2. First, we 

transform the vector data into a raster cell matrix with a 

vector/raster-conversion. As parameter, the cell size (in meter) 

has to be defined. Initially, all raster cells have the value "0". 

The vectors are “drawn” onto the matrix and each time the 

corresponding cells are incremented by one (see Figure 2 a-c).  

 

At those locations where the geometries of the different datasets 

are similar, we will get raster cells with high values – at all 

other locations low values. The raster cell matrix can then be 

processed with image processing methods, like smoothing, 

morphological operations or binarization (see Figure 2 d). In 

our approach, we first normalize the data and then we apply a 

3x3 Gauss filter. The final computation in the raster domain is a 

binarization with a selectable threshold. The raster 

representation is then skeletonized and transformed back into a 

vector representation (see Figure 2 e). Finally, the vector data is 

smoothed with a Douglas-Peucker line smoothing (Douglas and 

Peuckcr 1973) which needs a buffer width as input parameter. 

 

An advantage of this approach it, that is can be used for line and 

area objects in the same way since we describe the area objects 

by their surrounding lines in the vector and in the raster domain. 

Alternatively, it would be thinkable to represent the areas not 

only with their boundaries but also to use the interior pixels. 

The process chain could be adapted easily to this kind of 

representation.  

 

3. DATASETS 

Figure 3 shows a map representing the sixteen states of 

Germany which was used as a source for data collection. We 

advised 23 students to collect all states as part of a student 

exercise. 

Figure 4a shows a part of the input map and Figure 4b shows 

the same part of the data that were collected by the different 

students. It can be seen that the different students collected the 

data very differently. Some of the students collected the data 

very precisely whereas other students collected the data only 

with very few intermediate points. Figure 4c shows the 

reference data set which we collected by ourselves  

 

 

a) b)

c) d)

e)
 

Figure 2. Workflow of the raster-based integration 

 

 
 

Figure 3. Data source for the collection of the data 
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Figure 4. Used datasets: (a) Zoom-in into the data source that 

was used for data collection (b) Results of multiple data 

collection (c) Reference data set 

 

4. RESULTS 

Figure 5 shows on examples the processing of the data in the 

raster domain. The map from which the data was collected is 

shown in Figure 5a, the reference data in Figure 5b and the 

multiple data collection in Figure 5c. Figure 5d, 5e and 5f show 

the corresponding raster data with different raster cell sizes: 

300m, 150m and 75m. The images are normalized into an 

interval [0, 255]. Large cell sizes (like in Figure 5d) have a 

smoothing effect and the different polygons from the multiple 

data collection cannot be distinguished anymore in the raster 

domain. If we use smaller cell sizes, we can see the structure of 

the different polygons still in the raster data. This effect can be 

seen already in Figure 5e and even stronger in Figure 5f. 

 

Therefore, the next processing step is a smoothing with a Gauss 

filter to eliminate the high frequency structures. We used in all 

examples a 3x3 filter mask. Figure 5g, 5j and 5h show the 

results of the smoothing of the data of Figure 5d, 5e and 5f. It 

can be seen that in Figure 5h (with raster cell size 75m) it is still 

possible to identify the different polygons of the input data. 

This is an indicator that a larger filter mask should be used for 

the smoothing. 

 

After the smoothing, the data is binarized and the skeleton is 

computed. The results of this step can be seen in Figure 5j, 5k 

and 5l. The skeleton in Figure 5l is not as smooth as in the other 

examples because of the insufficient smoothing of the data in 

the step before.  

 

After calculating the skeleton, the data has finally to be 

transferred back into the vector domain. This step can be seen in 

Figure 6. The map from which the data was collected is shown 

in Figure 6a. The selected part of the map is the same as in 

Figure 5 but a larger area can be seen. The extension of the data 

of Figure 5 is indicated with a rectangle. Figure 6b shows the 

multiple collected data and Figure 6c the result of the 

processing in the raster domain. For this example, we used a 

cell size of 100m and again a smoothing with a 3x3 Gauss filter. 

 

Figure 6d shows the result of the raster/vector conversion in 

blue and the reference data in red. After a raster/vector-

conversion, usually a line smoothing has to be applied. 

Otherwise, the data can contain high frequency structures that 

we do not want to have in the data. Examples can be seen in the 

upper left part of the test area. The line smoothing should also 

eliminate blocky structures because of the quadratic pixels. For 

the line smoothing, we use a Douglas-Peucker algorithm which 

recursively divides the lines into smaller parts and eliminates all 

points that are in a buffer with a width ε. In Figure 6e we used a 

buffer width of 1000m and in Figure 6f a buffer width of 

2000m. The larger the buffer width the larger is the smoothing 

effect.  

 

 

5. QUALITY EVALUATION 

When we compare visually the results with the reference data, it 

can be seen that the integrated data show in many areas less 

details as the reference data. This is not because of the line 

smoothing with the Douglas-Peucker algorithm but is inherent 

to the proposed approach. It can be seen already in the input 

data that small details are “washed out” because of the multiple 

geometries. That means that the result of the integration of 

multiple collected data will be typically in a larger scale as the 

input data itself. 

 

The quality of the results depends of course strongly on the 

selected parameters of the process chain, which are in our case: 

the raster cell size, the size of the Gauss filter, and the 

smoothing factor of the Douglas-Peucker algorithm. In order to 

optimize those parameters we calculated different integrated 

datasets with different parameters and compared the results with 

the reference data. We measured the similarity of the integrated 

data and the reference data with the following measures: 

 

- Area difference  

- Hausdorff difference  

- Centroid point difference  

- Perimeter difference  

a)

b)

c)
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a) b) c)

d) e) f)

g) h) i)

j) k) l)

2km

 
Figure 5. Results of the raster-based integration: (a) data source; (b) reference data; (c) multiple data collection; (d) – (f) 

raster data before smoothing with raster cell sizes 300m, 150m and 75m (g); raster data after smoothing with a 3x3 Gauss 

filter with raster cell sizes 300m, 150m and 75m; (j) – (l) skeleton with raster cell sizes 300m, 150m and 75m 
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a) b)

c) d)

f)e)

5km

 
 

Figure 6. Results of the raster-based integration: (a) data source; (b) multiple data collection; (c) skeleton (d) result of the 

raster/vector-conversion in blue, reference data in red; (e) vector data smoothed with Douglas Peucker with buffer width 

1000m in blue, reference data in red; (f) vector data smoothed with Douglas Peucker with buffer width 1000m in blue, 

reference data in red
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In order to evaluate not each single polygon, we measured the 

average differences of all polygons of the whole dataset 

(16 polygons).  

 

Table 1 shows exemplarily the results by using the cell sizes 

150m, 110m and 75m. For the 75m raster cell size we used two 

different Gauss filters with a size of 3*3 and 9*9 because the 

3*3 filter does not smooth the data enough for small raster cell 

sizes as we discussed already in the section above. In all 

configurations we applied no line smoothing. In the table we 

marked the highest similarity with green colour and the lowest 

similarity with red colour for each similarity measure. It can be 

seen that there is no clear trend detectable. If we change the 

parameters in the process chain, typically the similarity 

measures improved for some of the polygons but declined for 

other polygons at the same time.   

 

 

 

cell width 150m 110m 75m 75m 

filter size 3x3 3x3 3x3 9x9 

avg. area difference (km²) 86.38 74,71 111,17 94,12 

avg. Hausdorff diff. (km) 8,90 9.03 8.93 9.02 

avg. cent. point diff. (km) 0,32 0,26 0,26 0,25 

avg. perimeter diff. (km) 125,9 113,6 116,1 119,3 

 

Table 1: Evaluation of the similarity of the integrated data with 

the reference data by evaluating different parameters. 

 

A reason for these not satisfying results are that the used quality 

measures are on the one hand somehow correlated and on the 

other hand the consideration of a single measure is not 

sufficient to describe the quality, because one of the measures 

may indicate high similarity, but another measure may indicate 

low similarity at the same time. What we need is an integrated 

quality measure that considers different geometric aspects at the 

same time. However, an integration is not trivial, because the 

measures cannot just simply be added. A solution could be a 

statistical approach like it is described in Walter and Fritsch 

(1999). In this approach, measures from the information theory 

are used to integrate different similarity measures for the 

matching of spatial data.  

 

When we look at the input data, it can be seen that some of the 

collected polygons have very low quality (see Figure 7). This 

has a negative effect to the quality of the integrated data. If we 

can detect those polygons automatically, we can remove them 

before the integration and we can expect that the quality of the 

integration will increase. In a test, we evaluated how the 

similarity measures of the multiple representations are 

statistically distributed (see Walter and Sörgel, 2018).  

 

Figure 8 shows the frequency distribution of the area difference 

of a polygon that was collected 56 times by different students 

compared with a reference polygon. The distribution shows an 

approximated normal distribution and the maximum frequency 

is near that value where the similarity difference between the 

collected objects and a reference object is minimal 

(difference = 0). If this is the case, we can identify automatically 

the polygons that are very dissimilar and remove them before 

the integration. We found similar results also for the other 

similarity measures.  

 

 

 

 

Fig 7 Polygons collected with low quality 

 

Fig 8 Frequency distribution of the area difference between 

multiple collected polygons and a reference polygon 

 

 

6. DISCUSSION 

In this paper, we have discussed a raster-based approach for the 

integration of multiple collected vector data. One of our ideas 

was that we could utilize the Wisdom of the Crowd (If many 

individuals measure the same object, the average geometry 

should be near the real geometry). This idea has proved only 

partially. The integrated geometry is better than many of the 

individual representations but small details can disappear since 

there is inherent smoothing effect because of the multiple 

representations.  

 

However, these are first results and there is room for 

improvements. For example, it is easy to identify those 

representations, which are very dissimilar to the other 

representations. Typically, these representations are inaccurate 

because most of the representation are indeed near the real 

geometry. If we remove the dissimilar representations before the 

integration, we can expect better integration results because we 

eliminated the “outliers”.   

 

Another point is that we can easily identify areas, where the 

collection of the objects was difficult because the object 

boarders were difficult to detect in the image. These are the 

areas were the multiple representation have very different 

geometries. Figure 9 shows the two isles Rügen and Usedum 

which are in the northern part of Germany. Some of the students 

collected the corresponding polygon including the isles and 

some not because they were not sure if they belong to the state 

Mecklenburg-Vorpommern or not. An integration in that area 
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does not make sense because the integrated geometry will go 

through the isles. However, situation like this can be identified 

automatically because of the strongly different representations. 

This enables also to estimate the quality of the integrated 

polygons by evaluating how different the input polygons are. 

 

a)

b)

20km

 
 

Fig 9 The isles at the boarder of Mecklenburg-Vorpommern 

were collected by some of the students and by some not: 

(a) data source; (b) multiple data collection 

 

 

What we still need is a method to evaluate better the quality of 

the results. The literature describes many similarity measures to 

compare spatial data but the consideration of single measures is 

not sufficient to describe the quality. What we need is an 

integrated measure. This will be part of our future research. 

 

One positive aspect of our approach is that the computing in the 

raster-area can be done extremely fast which means that we can 

easily process also input data that consists of much more 

different representations as in our test. 
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